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Abstract
A mental representation is a system of symbols
isomorphic to some aspect of the environment, used to
make behavior-generating decisions that anticipate
events and relations in that environment. A
representational system has the following
components: symbols, which refer to aspects of the
environment, symbol processing operations, which
generate symbols representing behaviorally required
information about the environment by transforming
and combining other symbols, representing
computationally related information, sensing and
measuring processes, which relate the symbolic
variables to the aspects of the world to which they
refer, and decision processes, which translate decision
variables into observable actions. From a behaviorist
perspective, mental representations do not exist and
cannot be the focus of a scientific psychology. From a
cognitivist perspective, psychology is the study of
mental representations, how they are computed and
how they affect behavior.
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B13 morality (Austin 1954, p. 112). The second sense
of morality is found to be indicative of changes
of state and not part of the basis of law.
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!QA: The copyeditor report gives this as University of California:
please give correct affiliation

!QA:MMental representations were banned from scientific
psychology by the behaviorists. They came back into
psychology during the so-called cognitive revolution,
when information processing models came to domi-
nate psychological theorizing.

sx0015They were banned by the behaviorists for two
reasons. First, they are not directly observable; they
must be inferred from their observable behavioral
consequences. Radical behaviorists believed that in-
ferred entities had no valid role to play in a scientific
psychology (SkinnerB17 1938,B18 1950,B19 1990). Second, men-
tal representations are not neurobiologically trans-
parent: it has been and remains difficult to say how the
entities and processes central to many kinds of
hypothesized mental representations might be realized
by currently understood neurobiological processes
and structures. Not surprisingly, efforts to eliminate
mental representations from psychological theorizing
have often been driven by a desire to anchor psycho-
logical theorizing in neurobiology. (See, for example,
Edelman & TononiB3 2000; Hull,B9 1930,B10 1952; Rumelhart
& McClelland,B14 1986.)

sx0020Another difficulty is that it has not always been clear
what cognitive psychologists understood by the term
representation. This lack of clarity is due to the
inherent complexity and abstraction of the concept.
Although mental representations are central to pre-
scientific folk psychology, folk psychology does not
provide a rigorous definition of representation, any
more than folk physics provides a rigorous definition
of mass and energy. Representation, rigorously de-
fined, is a mathematical and computational concept.

sx0025The cognitive revolution was closely tied to the
emergence of computer science because computer
science created indubitably physical machines that
unequivocally computed. This dispelled the wide-
spread belief that computing was an inherently mental
activity in the dualistic sense—mental and therefore
not physical. More importantly, computer science led
to a deeper understanding of what it meant—from a
physical and mathematical perspective—to say that
something computed (TuringB20 1936). Computation
became an object of mathematical thought rather than
merely a tool of such thought.

sx0030A representation, mental or otherwise, is a system of
symbols. The system of symbols is isomorphic to
another system (the represented system) so that
conclusions drawn through the processing of the
symbols in the representing system constitute valid
inferences about the represented system. Isomorphic
means ‘having the same form.’ The form in question is
mathematical form, the forms of the equations speci-
fying the relations among the symbols and among the
things that the symbols represent. For example, Ohm’s
law—I¯V}R—which is the equation for the relation
between current (I ), voltage (V ) and resistance (R) in
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an electrical circuit, has the same form as the equation
for the relation between speed (S), force (F ) and
viscous resistance (R) in a mechanical system like a
shock absorber—S¯F}R. The identical form of these
two equations is suggestive of the much broader
isomorphism (mathematical equivalence) between
electrical, mechanical, hydraulic and thermal systems
that gives rise to linear systems theory in engineering.

sx0035The symbols in the above two equations differ, but
that is only to remind us that the physical variables
they refer to differ. The important thing is that the
equations that describe the two systems are the same.
Because the forms of the relations the variables enter
into are the same, we can represent a mechanical
system with an electrical system (and vice versa). And
we can represent either of them with a paper and pencil
system that we endow with a suitable mathematical
form. What matters in representations is form, not
substance.

sx0040The symbols in an information processing system (a
symbol system) have two fundamental properties:
they refer to things outside the system and they enter
into symbol processing operations. The symbol pro-
cessing operations in the above examples are the
operations of arithmetic (V divided by R) and the
rewrite rules (rules of algebra) dictated by the princi-
ples that define the system of arithmetic operations.

sx0045We believe that we understand simple electrical
circuits because the inferences we draw from manipu-
lating the symbols on paper correctly predict what we
observe when we make the corresponding manipu-
lations of the electrical circuit itself. Thus, for example,
simple algebra, allows us to deduce from I¯V}R that
IR¯V. When we measure I and R and compute the
numerical product of the two measurements, the
number we get turns out to be the same number that
we get when we measure V. Our paper and pencil
representation of the electrical circuit, which includes
both the symbols themselves and the rewrite rules that
we observe in deriving IR¯V from I¯V}R, correctly
predicts the results of the measurements that we make
on the circuit itself.

sx0050The above example of a symbolic system contains
three distinct contrivances—symbols, rules that gov-
ern the manipulation of those symbols, and measuring
processes. The measuring processes relate the nu-
merical values of the symbols to the voltages, resist-
ances and currents to which they refer. Because these
are obviously human contrivances, it might seem that
representations are artifacts of a purely humanmanner
of interacting with the world, requiring perhaps some
form of consciousness. However, the same three
contrivances are present in a process control com-
puter. Such a computer is also a human contrivance,
but it interacts with the world without human in-
tervention. Itmeasures physical variables using digitiz-
ing transducers, symbolizes those variables by means
of bit patterns in its memory banks, manipulates those
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symbols in accord with the applicable rules of algebra
and physics, and uses the results to control observable
actions—all without human intervention.

sx0055The cognitive revolution was predicated on the
possibility that brains—both human and animal—are
process control computers contrived by evolution
through natural selection. They assess their environ-
ment through sensory or perceptual processes; they
symbolize the results of these assessments by values
stored in memory; they manipulate those values by
means of the relevant mental operations (the oper-
ations of perception and thought); and they use the
results (percepts, inferences and deductions) to control
behavior. If so, then mental representations are the
very stuff of psychology. A psychology without mental
representations is no more possible than a physics
without masses and energies.

Thus, from the standpoint of a cognitivist, psy-
chology is the science of mental representations. The
essential questions in psychology are: What repre-
sentations does the mind compute? From what data
does it compute them? How does it compute them?
How does a given representation get translated into
observable behavior?

1. Information

sx0060An important development in the mathematical treat-
ment of computation and representation was the
rigorous definition and quantification of the infor-
mation carried by signals (ShannonB16 1948). Signals are
symbols that convey information from one location in
space and time to another—like, for example, the
nerve signals that carry information about the en-
vironment from sensors in the periphery to the brain.
The amount of information conveyed by a signal is a
function of the amount of information about the
world already present at the site where the signal is
received and processed. When a digitizing thermom-
eter sends a bit pattern to a computer specifying the
temperature of a fluid, the signal, that is, the trans-
mitted bit pattern, conveys information about the
environment to the computer. The less information
the computer already has about the temperature, and
the more precisely the bit pattern received specifies
what the temperature is, the more information is
conveyed by the signal (See Rieke et al.,B13 1997 for the
rigorous development of these ideas in the analysis of
neural signaling.).

sx0065This idea that the amount of information conveyed
by a signal is measured by the amount by which the
signal reduces the receiver’s uncertainty about the
state of the world is highly intuitive: If we already
know that the temperature is 70°, then a signal
indicating that it is 70° tells us nothing. This simple
idea has, however, non-intuitive mathematical conse-
quences. It implies, for example, that signaling pre-
supposes prior knowledge on the part of the receiver
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regarding the range of possibilities. If the mind of the
newborn baby is truly a blank slate, with no beliefs
about what temperature its environment might have,
then any signal that tells it what the temperature
is—even if imprecisely—conveys an infinite amount of
information. In information theory, no signal can
convey an infinite amount of information in a finite
amount of time. Thus, in order for us to acquire
information about the world from our experience of it,
we must have built into our information processing
structures implicit representations of the range of
environments that could be encountered. We must
know in advance something about the world we are to
experience.

sx0070This implication of information theory, together
with the consideration that the machinery of com-
putation itself seems unlikely to arise from the impact
of experience on a system not endowed with some
initial computational capacity, gives a nativist cast to
information processing theories of mind. If the brain is
fundamentally an organ of computation devoted to
the computation of the mental representations that
enter into the decisions leading to actions, then it does
not seem that it could get up and running without a
non-trivial amount of genetically specified structure,
much of which contains implicit knowledge about the
world to be represented. That is why extreme empiri-
cists tend to be anti-representational: they tend to
reject the cognitivist assumption that the mental
representations are the stuff of psychology.

2. Decision Processes

sx0075Symbols are translated into observable behavior by
means of control variables and decision processes. A
control variable specifies a parameter of an action, for
example, the angle that is to be maintained with
respect to a directional reference stimulus like the sun

(see illustrative example belowillustrative example below). A decision variable is a
computed symbolic value representing some aspect of
the current environment that merits a response just in
case it exceeds some criterion, called the decision
criterion. The analysis of decision processes in modern
psychology has been heavily influenced by statistical
decision theory, which treats the structural and formal
features of decisions made in the face of ambiguous
information (Green & SwetsB8 1966). The information
about the world carried by symbols is ambiguous for
two reasons: First, the processes that generate the
symbolic values are inherently and inescapably noisy.
The temperature of the fluid cannot be exactly known
and hence it cannot be known with certainty whether
an environmental variable actually does exceed some
criterion; it can only be known with varying degrees of

sx0080probability. Thus, decisions are inherently statistical
in nature. Optimal decision processes must take
account of the statistical uncertainty about the true
value of critical variables. Second, one and the same
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sensory input may be generated by more than one state
of the world. For example, radically different arrange-
ments of surfaces in the three-dimensional environ-
ment can produce identical images when projected on
to the two-dimensional retina. In computing a rep-
resentation of the three-dimensional environment that
generated these inputs, the brain must be sensitive to
the relative likelihoods of various three-dimensional
configurations, given the two-dimensional projection
that has been sensed. The analysis of optimal decision-
making under these conditions brings in another
aspect of statistical decision theory, Bayesian inference
(Knill & RichardsB12 1996).

3. Illustrati�e Examples

sx0085The development of mathematical analyses of in-
formation processing and decision making inspired a
psychology focused on mental representations. What
has sustained it are the many examples of human and
animal behavior that imply an underlying represen-
tation. Some the simplest and most illuminating
examples are found in learned behavior in non-human
animals that depend on underlying representations of
abstract but basic properties of the world like distance,
direction, duration and time of day (phase of the day-
night cycle).

sx0090A honeybee forager, when she returns to the hive
after discovering or revisiting a source of rich nectar,
does a dance that symbolizes the solar bearing (di-
rection relative to the sun) and distance of the source
from the hive. Foragers that have followed her while
she danced later leave the hive and fly in the indicated
direction for the indicated distance before they begin
to look for the source. Because the dance directly
symbolizes direction and distance and because the
witnesses to the dance base their own flight directions
and distances on what they have observed, it seems
inescapable that the direction and distance of the
source must be represented in the system that controls
bee behavior, the bee brain. In this case, the repre-
sentational nature of mental processes is manifest in a
behavior that is itself representational. (See Gallistel

B4 1998 for a recent review of insect navigation and bee
dancing, emphasizing the information processing
implications.)

sx0095The dance is in the form of a figure eight. It is
performed on the vertical surface of the interior of the
hive out of sight of the sun. When running the middle
bar of the eight (the part common to the two circles),
the dancing bee waggles rapidly from side to side. The
angle of this waggle run with respect to the vertical
symbolizes the direction of the source relative to the
sun, while the number of waggles symbolizes the
distance.

sx0100The angle of the waggle run with respect to the
vertical changes during the day so as to take into
account the changing direction of the sun, even under
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conditions where the dancers have not seen the sun nor
anything else in the sky that indicates where the sun is
for hours or even days. Both the dancer and her
audience are able to represent compass direction
(direction relative to the earth’s surface) by reference
to the sun’s compass direction, first, because they have
learned the solar ephemeris, the compass direction of
the sun as a function of the time of day, and, second,
because they possess a circadian clock. The circadian
clock symbolizes the time of day. It is a cyclical
molecular process within nerve cells (Gekakis et al.,

B6 1998; SehgalB15 1995), with approximately the same
period as the day-night cycle that is synchronized to
the sun’s cycle every dawn and dusk by signals coming

sx0105from photoreceptors. Because this biochemical cycle
within cells is synchronized with the day-night cycle,
phase within this biochemical cycle—the momentary
concentrations of the different molecules whose con-
centration varies cyclically—indicate the phase of the
earth’s rotational cycle, that is, the time of day.

sx0110The solar bearing symbolized by the direction of the
waggle run is computed from the representation of
two different aspects of the bee’s previous experience.
One set of experiences are those from which she learns
the solar ephemeris (Dyer & DickinsonB2 1996). The
other is the foraging experience from which she learns
the compass direction of the source from the hive. The
solar bearing is the angular difference between the
compass direction of the source from the hive and the
current direction of sun (as given by the solar
ephemeris).

sx0115There does not appear to be a way to account for the
bee’s behavior without endowing her brain with the
capacity to symbolize the time of day, compass
direction and distance. She has also to have the
capacity to learn functions like the solar ephemeris. A
function is a set of paired symbols, an input symbol
and an output symbol. The input symbol in the solar
ephemeris represents the time of day, while the output
symbol represents the compass direction of the sun. A
function may be realized by means of a look-up table,
which stores the possible pairs of input and output
symbols, but this can make large demands on memory.
Alternatively, a function may be generated by a
neuronal process that transforms an input signal into
an output signal. In that case, the relation between the
input and the output of this process must have the
same mathematical form as the solar ephemeris itself.

Finally, the bee brain must be able to compute an
angular difference, a symbol representing the differ-
ence between the compass direction given by its solar
ephemeris function and the compass direction of the

sx0120source. This latter symbol is retrieved when needed
from the memory generated at the time the bee found
the source. The result of this computation, the symbol
representing the angular difference between the direc-
tions represented by two other symbols, represents the
solar bearing of the source. It is this angle that we
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observe when a dancer makes her waggle run. A
psychology focused on mental representations rests on
the claim that there is no way to explain this robust
and reliable fact about bee behavior except by an
appeal to the kind of information processing just
described.

sx0125A second example of the fundamental role that
information processing plays in the control of behav-
ior comes from the extensive studies of conditioned
behavior in the common laboratory animals—the rat,
the pigeon, and the rabbit. In Pavlovian conditioning,
the experimenter repeatedly presents temporally
paired elementary stimuli. For example, using rabbits
as subjects, the experimenter may repeatedly present a
tone followed at a short latency by an annoying puff of
air directed at the sclera of the eye or an annoying
shock to the skin around the eye. The tone is called a
conditioned stimulus (CS), because it elicits observable
behavior only after conditioning, while the puff or
shock is called an unconditioned stimulus (US),
because it elicits observable behavior in the absence of

sx0130any conditioning. When a US has reliably followed a
CS, the subject responds to the CS in anticipation of
the US. In the present example, the rabbit blinks when
it hears the tone. This blink is called the conditioned
response. It is so timed that the moment of peak
closure more or less coincides with the moment when
the US is expected. If the US sometimes comes at a
latency of 0.4 seconds and sometimes at a latency of
0.9 seconds, the rabbit learns to blink twice, with the
first blink peaking at about 0.4 seconds and the second
at about 0.9 seconds (Kehoe et al.,B11 1989).

sx0135Evidently, the rabbit measures and remembers the
durations of the intervals between the onsets of the
tone and the onsets of the US. How else can we explain
the fact that it matches the latency of its response to
the latency of the US? The rabbit must possess a

sx0140memory like the memory that Alan Turing (B20 1936)
placed at the heart of his mathematical abstraction of
a computing device, the so-called Turing machine.
This notional machine has a memory to which it writes
and from which it reads symbols. If the rabbit did not
have a memory in which it could store a symbol
representing the CS-US latency and from which it
could subsequently retrieve that symbol, its ability to
match its conditioned response to that latency would
be inexplicable.

sx0145It is a general property of conditioned behavior that
the latency of the conditioned response is proportional
to the CS-US latency (Gallistel & GibbonB5 2000).
Moreover, from the nature of the variability in
conditioned response latencies, it appears that the
decision to about when to make a conditioned re-
sponse following the onset of a CS must be based on
the ratio between the remembered CS-US interval and
the interval elapsed since the onset of the current CS
(Gibbon et al.,B7 1984). Thus, when the tone sounds, the
rabbit retrieves from memory a symbolic value repre-
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senting the CS-US interval, measures the time elapsed
since the onset of the tone, to generate a constantly
growing signal whose momentary magnitude repre-
sents the duration of the currently elapsed interval,
computes the ratio of the two values, and responds
when the ratio exceeds a critical value.

sx0150Just as bees can compute an angular difference from
directions (compass angles) stored in memory, so rats
can compute a temporal difference from durations
stored in memory, as shown by experiments using
what is called backward conditioning. In a backward
conditioning experiment, the US precedes the CS. For
example, a tone CS comes on 1 second after a shock
US ends. Under these conditions, subjects respond
weakly or not at all to the tone, because it no longer
gives advanced warning of the US. Although they do
not respond to the tone, they learn the (negative)
interval between it and the shock. This is shown by
also teaching them a forward temporal relation be-
tween a light and the tone. When they have also been
taught that the onset of the light predicts the onset of
the tone after a latency of 5 seconds, then they respond

sx0155strongly to the light (Barnet et al.,B1 1997). From their
representation of the tone-shock interval (¯®1 se-
cond) and their representation of the light-tone in-
terval (¯­5 seconds), they appear to have computed
the expected light-shock interval (4 seconds). Conse-
quently, they react fearfully to the light, even though it
has never been followed by shock. Its only connection
to shock is by way of the tone, but they do not react
fearfully to the tone itself, because it has always
followed the shock. The predictive relation of the light
to the shock has been inferred by computations
performed with the symbols that represent the two
durations.

sx0160As these illustrative examples show, animals are
able to function effectively in a complex world because
their brains construct mental representations of
behaviorally important aspects of that world—spatial
relations, temporal relations, numerical relations,
social relations, and so on. Wherever there is regularity
and form in the world, animals represent that regu-
larity and that form in order to exploit it for their own
ends. The most basic mechanism of life itself—the
genetic mechanism—is a mechanism for copying,
transmitting, and processing information. A signifi-
cant fraction of that information specifies the im-
mensely complex structure of the brain, an organ
dedicated to the processing of information about the
animal’s environment.
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