About the Book

New Exercises

Logic in Action

Software

Additions and Changes

Errata

Above and Beyond

Slide the Symbols

About the Author

Acknowledgments

 

Comments on the Book

Comments on this site

 

 


Chapters 12-15

Chapters: | 12 | 13 | 14 | 15 |

Chapter 12

A.

  1. (x) (P1x L2xr)
  2. (x) (L2jx) v (y (F2jy)
  3. (x) (P1x & S2jx)
  4. (x) (M1x & S2dx)
  5. (x) (S1x T3axt)

B.

#1.

  1. (x) (B1x H2rx)
  2. B1f
  3. H2rf

#2.

  1. (x) (C1x & B3nxr)
  2. (x) (C1x & H2rx)

#3.

  1. K3ceb
  2. (x) (P1x & K3cxb) & (y) (P1y & K3yeb)

Chapter 13

Top

A.

  1. (x) (P1x & (y) (P1y L2xy))
  2. (x) (P1x & (y) (P1y L2yx))
  3. (x) (M1x & (y) (B1y (z) (L1z P3yzx)))
  4. (x) (G1x & ~(y) (B1y & (z) (P1z P3xyz)))
  5. (x) (D1x (y) (S1y & (z) (P1z & W3yxz)))
  6. (x) (B1x & (y) (S1y & (z) (T1z R3yxz)))
  7. (x) (C1x & y) (P1y z) (D1z S3yxz)))

B.

#1.

  1. (x) (L1x (y) (F1y & (z) (T1z & P3xyz)))
  2. (x) (L1x)
  3. (x) (F1x & (y) (T1y & (z) (L1z & P3zxy)))

#2.

  1. (x) (P1x & (y)) (T1y (z) (F1z & E3xzy)))
  2. (x)) (T1x (y) (F1y & (z) (P1z & E3zyx)))

#3.

  1. (x) (T1x & (y) (C1y (z) (G1z & ~C3yxz))) (This sentence is ambiguous; if you think the sentence can be true if one or two cats climb the tree -- as long as not ALL cats do so -- then you might be inclined to symbolize it as follows: (x) (T1x & ~(y) (C1y (z) (G1z & C3yxz))) )
  2. (x) (C1x (y) (G1y & (z) (T1z & C3xzy)))

#4.

  1. (x) (L1x (y) (T1y & (z) (W1z L3yxz)))
  2. (x) (L1x)
  3. (x) (L1x & (y) (W1y (z) (T1z & C3zxy)))

Chapter 14

Top

A.

#1.

  1.

(x) (B1x H2rx)

P
  2. B1f P
  3. ~H2rf NC
X 4. B1f H2rf 1, UQ
  5.
  /     \
~B1f   H2rf
  X     X
4,

All branches close: valid argument.

#2.

X 1.

(x) (C1x & B3nxr)

P
X 2. ~(x) (C1x & H2rx) NC
3. (x) ~ (C1x & H2rx) 2, QE
X 4. C1a & B3nar 1, EQ
X 5. ~ (C1a & H2ra) 3, UQ
6. C1a 4, &
7. B3nar
8.
 /    \
~C1a  ~H2ra
 X      O 
5, ~&

Open branch: invalid argument

Chapter 15

Top

A.

  1. ~(x) (P1x & (y) (T1y H2xy))
  2. ~(x) (P1x & ~(y) (T1y & H2xy))
  3. (x) (C1x & (y) (G1y ~E2xy))
  4. (x) (C1x ~(y) (G1y & E2xy))

B.

#1.

  1. (x) (H1x (y) (P1y & ~(z) (N1z & C3xyz)))
  2. (x) (H1x A1x)
  3. ~( (x) (A1x (y) (P1y & (z) (P1z & C3xyz))))

#2.

  1. ~(x) (D1x & B1x)
  2. (x) (D1x v A1x)
  3. (x) (P1x & ~A1x)
  4. ~(~(x) (P1x & ~B1x))

C.

  1. (x) ( (y) (F1y & H2xy) C1x)
  2. (x) ((y) (W1y & B2xy) F1x)
  3. (x) (P1x ((y) (B2xy A1y))
  4. ~((x) ((y) (S2xy B1y ) S1x)

D.

#1.

  1. (x) ((y) (T1y & C2xy) C1x)
  2. (x) ((y) (S1y & A2xy) (z) (T1z & C2xz))
  3. (x) ((y) (S1y & A2xy) C1x)

#2.

  1. (x) ((y) (L2xy L1y) T1x)
  2. (x) (P1x & (y) (B1y & L2xy))
  3. ~(x) (P1x T1x)

E.

#1

  1. (x) (P1x ((y) (C1y (O2xy B2xy))))
  2. (x) ((C1x & (y) (P1y & B2yx)) S1x)
  3. (x) ((C1x & (y) (P1y & B2yx)) S1x)

#2.

  1. (x) (B1x ((y) (A1y (M2xy R2xy))))
  2. B1s & A1h
  3. M2sh R2sh

#3.

  1. (x) (P1x ((y) (F1y (S2xy K2xy))))
  2. ~(x) (F1x ((y) (P1y (K2yx S2yx))))
  3. (x) (P1x & (y) (F1y & S2xy & ~K2xy))

F.

#1-#4: see M&A solutions

#5.

  1. (x) (C1x ((y) (M1y (C2xy E2xy))))
  2. (x) ((y) (M1y & E2xy) ~H1x)
  3. ~(x) (C1x & (y) (M1y & C2xy) & H1x)

#6.

  1. (x) ((P1x & F1x) (y) (P1y L2yx))
  2. (x) (P1x (y) (P1y & ~L2yx)
  3. ~(x) (P1x & F1x)

#7.

  1. ~(x) (P1x & (y) (D1y & P2xy) & U1x)
  2. ~(x) (P1x (y) (D1y & P2xy))
  3. ~ (x) (P1x (y) ((D1y &P2xy) ~U1x))

#8.

  1. (S1j (x) (B1x P1x)) & ((y) (B1y P1x) S1j)
  2. (x) (T1x & M2jx) (x) (B1x ~P1x)
  3. ~(x) (T1x & M2jx) A1j
  4. ~A1j ~S1j

#9.

  1. ~(x) (P1x & (y) (T1y (~S2xy & W2xy))
  2. ~(x) (P1x & (y) (T1y ~W2xy) & (z) (C1z W2xz))
  3. (x) ((P1x & (y) (C1y W2xy)) (z) (T1z S2xz))

Top