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Categorical perception (CP) refers to the enhancement of perceptual sensitivity near category
boundaries, generally along dimensions that are informative about category membership. But
it remains unclear exactly which dimensions are treated as “informative” and why. This pa-
per reports a series of experiments in which subjects were asked to learn statistically-defined
categories in a novel, unfamiliar two-dimensional perceptual space of shapes. Perceptual dis-
crimination was tested before and after category learning at various features in the space, each
defined by its position and orientation relative to the maximally informative dimension. The re-
sults support a remarkably simple generalization: the magnitude of improvement in perceptual
discrimination at each feature is proportional to the mutual information between the feature
and the category variable. This finding suggests a “rational” basis for categorical perception,
in which the precision of perceptual discrimination is tuned to the statistical structure of the
environment.

Statement of relevance: Categorical perception (CP) is a famous phenomenon of learning in
which subjects learning categories become measurably more sensitive to the underlying per-
ceptual features that distinguish the categories. CP has been extensively studied, but key as-
pects of it are still poorly understood: in particular, we do not know exactly which features
subjects become more sensitive to, and why. This paper demonstrates a remarkably simple
generalization: subjects learn to be more sensitive to features in proportion to how much in-
formation they convey about the categories to be learned. Mutual information (MI) is a basic
information-theoretic measure that expresses the relationships among variables. This finding
suggests a “rational” allocation of neural resources to perceptual features, shedding light on
the way learning builds on and modifies the underlying neural representation of perceptual
features. It should be of interest to all researchers interested in the underlying mechanisms of
learning.

Introduction

Categorical perception (CP) refers to the enhancement
of perceptual sensitivity near category boundaries (Harnad,
1987). After learning to classify stimuli into discrete classes,
subjects’ ability to make fine discriminations along percep-
tual dimensions that are “informative” about the categories
can measurably improve. CP and associated changes in per-
ceptual discrimination were first observed in phonological
perception (Liberman, Harris, Hoffman, & Griffith, 1957) but
have since been observed along a number of visual features,
including orientation (Rosielle & Cooper, 2001), facial fea-
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tures (Rotshtein, Henson, Treves, Driver, & Dolan, 2005; Vi-
viani, Binda, & Borsato, 2014) and shape (Gauthier, James,
Curby, & Tarr, 2003; Folstein, Palmeri, & Gauthier, 2014).
For example, in one influential study (Goldstone, 1994), sub-
jects trained to classify objects into two categories of objects
distinguishable by their size became more sensitive to size
differences (improved discrimination, d′), but not (as much)
to brightness differences. Such findings are remarkable be-
cause they reflect a profound interaction between cognitive
and perceptual mechanisms: a change to basic perceptual
processes attributable to the acquisition of a new concept by
an adult organism (Schyns, Goldstone, & Thibaut, 1998).

In modern terminology, the term CP is sometimes re-
served for changes to categorization performance (referring
to the tendency for subjects’ category judgments to change
abruptly near the category boundary), while concomitant
changes to discrimination performance are referred to as ac-
quired distinctiveness (AD, for improvements in discrimina-
tion between categories) or acquired equivalence (AE, for
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degradation of discrimination within categories, which is ob-
served in some though not all studies) (Goldstone, 1994;
Livingston, Andrews, & Harnad, 1998; Goldstone, Lippa,
& Shiffrin, 2001; Notman, Sowden, & Ozgen, 2005; Fol-
stein, Gauthier, & Palmeri, 2010; Folstein, Palmeri, & Gau-
thier, 2013; Folstein et al., 2014). The neural basis of AD
and AE are thought to involve modification of receptive
field structure (Sigala & Logothetis, 2002; Kang, Shapley,
& Sompolinsky, 2004; Li, Ostwald, Giese, & Kourtzi, 2007;
Folstein, Palmeri, Van Gulick, & Gauthier, 2015). How-
ever, notwithstanding several neural-network models of CP
(Casey & Sowden, 2012; Damper & Harnad, 2000), the
computational mechanisms underlying these effects are still
poorly understood.

Some studies (e.g. Goldstone & Steyvers, 2001) have con-
cluded that improvement in perceptual discrimination (AD)
tends to occur in proportion to each feature’s informative-
ness (or relevance or diagnosticity) about the categories to
be learned. But it is not clear which perceptual features the
system treats as “informative” and why. In many studies, cat-
egories are distinguished by a clear, deterministic boundary
separating one class from another—often a linear boundary
separating a 2D perceptual space into two clear-cut halves. In
such a space, a perceptual feature that crosses the category
boundary is perfectly predictive of category membership,
making it informative by any reasonable metric, while any
feature that does not cross the boundary is completely unin-
formative. But hard classification boundaries are not char-
acteristic of natural categories, which have been understood
for decades to have typicality gradients and correspond-
ingly “soft” classification boundaries (Posner & Keele, 1968;
Rosch, 1973). When categories are defined more natural-
istically via statistical distributions (Huttenlocher, Hedges,
& Vevea, 2000), no dimension is perfectly predictive, and
a variety of definitions of informativeness are possible. For
example, some studies have defined categories as bivariate
Gaussian (normal) distributions in a 2D space (e.g. Maye,
Werker, & Gerken, 2002; Lake, Vallabha, & McClelland,
2009). In this case, Lake et al. (2009) found that a partic-
ular measure of informativeness, the L2 norm between the
posterior distributions, predicted improvements in perceptual
discrimination, but this measure was not compared with al-
ternatives.

However classical information theory provides a more
natural and well-motivated measure of informativenesss: the
mutual information (MI), which quantifies how much of the
variation in one variable is predicted by another (Cover &
Thomas, 1991). MI is widely used in neuroscience (Piasini &
Panzeri, 2019), animal learning (Balsam, Fairhurst, & Gallis-
tel, 2006) and machine learning (Battiti, 1994) to quantify in-
formational relationships among variables. The MI between
a category variable C and a feature f is defined as

MI(C, f ) = H(C) − H(C| f ),

where H(C) is the prior Shannon uncertainty about the cate-
gory, and H(C| f ) is the conditional uncertainty about the cat-
egory once the feature is known, both measured in bits if logs
are taken in base 2. The MI represents the degree to which
learning the value of the feature reduces the observer’s un-
certainty about which category the stimulus belongs to, and
thus constitutes a natural measure of the “informativeness” of
the feature. Indeed recently Bates, Lerch, Sims, and Jacobs
(2019) showed that features that provide mutual information
about a category variable undergo more improvement in dis-
crimination than those that do not, and Bates and Jacobs (in
press) provided a comprehensive theoretical argument that
the quantity of conveyed information is capped at the MI.

However, the manner in which the system quantifies in-
formativeness cannot be determined using a hard category
boundary, as has been used in virtually all studies (includ-
ing those of Bates et al., 2019). With such a boundary,
all of the information (however defined) is concentrated at
the boundary, and features that do not cross the category
boundary convey no information whatsoever about the cat-
egory variable. This makes it impossible to test interme-
diate values of informativeness (again, however defined),
and moreover completely confounds all reasonable mea-
sures of informativeness, because all of them are maximal
at the boundary and minimal everywhere else in the fea-
ture space. The experiment below solves some of these
problems by using probabilistically-defined categories sep-
arated by a soft boundary in a novel two-dimensional feature
space. The allows for the evaluation of “diagonal” features
through the space, in addition to the category-relevant and
category-irrelevant axes to which previous studies have been
restricted. The resulting experiment includes a whole range
of levels of informativeness (rather than just relevant and ir-
relevant), and also deconfounds various potential measures
of informativeness.

Moreover, most studies of CP use features such as color
or facial features with which the visual system has enormous
prior experience, and which also may have some degree of
innate categorical structure (Folstein et al., 2015), making it
difficult both to induce changes to perceptual sensitivity and
to attribute them directly to training. To more carefully iso-
late the effect of learning, it is desirable to use a feature space
that is as unbiased and unfamiliar to subjects as possible.

The experiments below use a space of randomized, sub-
jectively novel perceptual features with which subjects can
be assumed to have little or no prior experience (Fig. 1).
Stimuli are drawn from a high-dimensional space of “blob”
shapes, created by modulating radial fourier components
(Op de Beeck, Wagemans, & Vogels, 2003; Dickinson, Bell,
& Badcock, 2013) defining shape contours (Fig. 1a). Shape
is very high-dimensional space in which most dimensions
involve subtle combinations of contour geometry that are
novel and difficult to verbalize (Destler, Singh, & Feldman,
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2019). From the initial high-dimensional space, a 2D feature
space is randomly selected by choosing 3 random points in
the space, which define a random plane, and then randomly
choosing an origin and two orthogonal basis vectors in this
plane (via the Gram-Schmidt process), which together define
a coordinate frame (Fig. 1b). This results in a 2D manifold
of shapes from which stimuli are chosen, any subspace of
which defines a potential feature (Fig. 1c). Note that unlike
many previous studies (e.g. Folstein, Gauthier, & Palmeri,
2012; Folstein et al., 2013; Viviani et al., 2014; Wallraven,
Bülthoff, Waterkamp, van Dam, & Gaissert, 2014; Dieciuc,
Roque, & Folstein, 2017) this feature space is not a “morph
space” constructed by weighted combinations of fixed stim-
uli at the poles. Rather it is a completely novel space newly
novelized (randomized) for each subject. Unlike a morph
space there is no familiar or consistent stimulus shape at the
poles, and indeed there are no poles, thus reducing the possi-
bility of a preexisting categorical bias present in most previ-
ous experiments.

Within the feature space, two categories are defined by
circular bivariate Gaussian distributions (Fig. 1d), which de-
fine a “soft” linear optimal classification boundary (shown as
a dotted line in Fig. 1e). The overlap between the two Gaus-
sians can be modulated by changing their (common) stan-
dard deviation σ, which determines the maximum possible
proportion correct (ideal performance level or IPL, equal to
one minus the Bayes error). IPL was set to 95% in Exps. 1-3
(σ = .150), 90% in Exp. 4 (σ = .188), and 99% in Exp. 5
(σ = .105).

Critically, this procedure defines a feature space that is
fully “rotatable” (with a Euclidean L2 norm) meaning that
any direction through this space defines a potential shape
feature—including some that might be somewhat verbaliz-
able, but many others that are not (Op de Beeck et al., 2003;
Hockema, Blair, & Goldstone, 2005). In contrast feature
spaces in most studies (if 2D at all) consist of two separable
features (e.g. size and brightness) with only the two cardinal
axes as potential features, implying an L1 (citiblock) norm.
It is well-established that diagonal dimensions that combine
cardinal axes are more difficult to learn than axis-aligned fea-
tures (Ashby & Maddox, 2011). But in the spaces used here
no direction is any more cardinal than any other (and thus
no space any more “diagonal” than any other), and moreover
the orientation of the subspace is randomized for each sub-
ject. Hence in the experiments below exactly which features
are informative depends only on the category structure cho-
sen. This procedure makes it possible to cleanly assess the
informativeness of shape dimensions purely as a function of
the category learned, without confounding from the subjects’
prior experience.

Experiments

Participants. Subjects were adult members of the under-
graduate community (N = 20, 22, 21, 21, and 21 in Exps. 1–5
respectively), recruited from introductory psychology classes
and naive to the goals of the experiment.

Discrimination task. Perceptual discrimination was as-
sessed at selected features of interest (FOIs) before and af-
ter the categorization task. Each FOI is defined as a point
x = (x, y) and direction v = (u, v) in the shape space; 5 or 6
such features were evaluated in each experiment (details in
Supplementary Table ?? and Fig. 2). To measure discrimina-
tion, pairs of shapes (size about 4dva) were presented (white
on a dark background, one at a time each for .25sec sepa-
rated by .5sec ISI, and spatially offset by about 10dva), and
the subject was asked to indicate if they were the same or
different. Each pair of shapes was located at the desired lo-
cation in feature space plus or minus a variable discrepancy
in the given vector direction, x ± λv/2. The featural differ-
ence λ was then adaptively reduced on successive trials by
the Psi method (Kingdom & Prins, 2010) until the shapes
could no longer be distinguished, resulting in an estimate
of the threshold of distinguishability at each FOI. Staircases
were randomly interleaved. Threshold estimates stabilized in
about 15 minutes (about 50-100 trials per feature). Subjects
performed the discrimination task before and after the cate-
gorization task, providing pre- and post-training estimates of
discrimination threshold at each FOI. The main dependent
measure is the difference in thresholds pre-training minus
post-training at each FOI, ∆threshold.

Categorization task. Stimulus shapes (size about 4dva)
were drawn randomly with equal probability from either
the A category (a circular bivariate Gaussian centered at
x = .25, y = .5 of the unit square, see Fig. 2) or the
B category (also a circular bivariate Gaussian, centered at
x = .75, y = .5). The two-Gaussian category structure de-
fines a maximally informative dimension, depicted as hori-
zontal in figures. Stimulus shapes moved downwards from
the top of the screen at about 8dva/sec over a starry field,
and were visible for maximum of 2.5 seconds or until re-
sponse. (The motion was intended to draw subjects’ atten-
tion to the stimulus (Franconeri & Simons, 2003).) The in-
structions framed the task as a space-based video game (see
sample screen in Fig. 1f) in which subjects had to use key-
board buttons to fire at “hostile” ships (category A) or wel-
come “friendly” ships (B), and received feedback after each
response in the form of a happy face (correct classification)
or frown (incorrect). Each subject ran 300 trials, taking about
20 minutes, a number that piloting suggested was sufficient
to induce measurable CP effects.

Design. Exps. 1-3 all used the same two-Gaussian cate-
gory structure (95% IPL), differing only in the choice of FOIs
(Fig. 2). FOIs were chosen so as to broadly survey the space
including a broad range of MI levels (see below), and also
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Figure 1. Procedure for creating a novel, randomized perceptual space in which categorization occurs. (a) Shapes are defined
by four radial Fourier components (only three depicted). (b) A random plane through this 4D space is chosen. (c) In this plane,
a random origin and two orthogonal basis vectors are chosen, resulting in a 2D shape space through which any direction is a
potential shape feature. (d) In this space, A and B categories are each circular bivariate Gaussians, respectively centered at
(.25,.5) and (.75,.5) of the unit square. (e) Viewed as a contour plot, this category structure defines a linear optimal classifi-
cation boundary (vertical) with a maximally informative dimension (horizontal). (f) Sample screen from categorization task,
showing a shape to be classified.

to target several specific comparisons. Exp. 1 (Fig. 2a) tested
six FOIs, including three at the inter-category midpoint (with
α = 0◦, 45◦ and 90◦ relative to the maximally informative di-
mension) and three at the center of category A (at the same
three orientations). This comparison is potentially interest-
ing because some studies (e.g. (Folstein et al., 2010)) have
suggested that mere exposure to stimuli rather than category
training per se is sufficient to induce CP; stimuli near a cate-
gory center are more frequent, but less diagnostic, than those
between categories. Exp. 2 (Fig. 2b) also used 6 FOIs, 3 at
the midpoint (α = 0◦, 45◦, 90◦) and 3 at a point elsewhere
on the optimal classification bound (α = 0◦, 45◦, 90◦). Com-
paring features on and off the main axis is interesting be-
cause most studies use a 1D space so all comparisons are

necessarily “on axis.” Exps. 3–5 investigated the effect of α
more finely, using 5 features at the inter-category midpoint
ranging from maximally to minimally informative in equal
angular steps (α = 0◦, 22.5◦, 45◦, 67.5◦, 90◦). Exp. 3 used the
same category structure as Exps. 1 and 2 (95% IPL), while
Exp. 4 used a “softer” category boundary (IPL = 90%) and
Exp. 5 a “sharper” one (IPL = 99%). The manipulation of
IPL does not change the optimal classification boundary, but
(as discussed below) it does change the quantity of infor-
mation available at the FOIs, allowing a more fine-grained
evaluation of CP as informativeness is varied. Supplemen-
tary Table ?? give a complete list of the FOIs used in all five
experiments.
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Figure 2. Category structure and features of interest (FOIs) at
which discrimination was evaluated in (a) Exp. 1 (b) Exp. 2
and (c) Exps. 3–5. Green and red circles indicate A and
B categories respectively (each is a bivariate Gaussian in-
dicated by a circle of radius σ). Each FOI is a point and
direction in the 2D perceptual space.

Results

Categorization task. Performance on the categorization
task was very variable, with average performance far be-
low the theoretical limit (IPL), presumably reflecting the ex-
tremely unfamiliar and nonverbalizable shape features over
which categories were defined. Mean performance (s.d.)
in Exps. 1-5 were respectively 85% (6%), 83% (6%), 80%
(5%), 83% (7%), and 86% (7%). Results reported below
include only subjects with overall performance over 70%,
which includes 80/105 subjects (76%). Setting the criterion

to 50% includes 97/105 subjects (92%), which adds noise to
the results but does not affect the main conclusions.

Notwithstanding the subjects’ uneven performance, their
responses showed clear evidence of the “sharpening” of the
category boundary over the course of learning associated
with CP. To quantify this, subjects’ responses in the cate-
gorization task were fitted to a one-dimensional Gaussian
classifier of the form p(A|x) = N(x; µA, σ

2)/[N(x; µA, σ
2) +

N(x; µB, σ
2)] (i.e., an ideal observer classifier) with the sin-

gle free parameterσ fitted by least-squares to the data in each
block of 50 trials for each subject. In this model, the parame-
ter σ modulates the sharpness of the classification boundary,
with high values of σ indicating broad category distributions
and a more gradual transition between categories, and low
values indicating narrower category distributions and a more
abrupt transition. Fig. 3 shows plots of the progression of
subjects’ mean estimated sigmas over the course of train-
ing in each experiment. In all of the plots sigmas start high
and progressively decrease (sharpen), gradually approaching
their respective target values (i.e. those from which the stim-
uli were actually generated). The change from broader to
narrower sigmas from the first block of the experiment to
the last was statistically substantial (BF > 3) in all 5 exper-
iments. In these plots, the classification curve is approxi-
mately linear in the first block—meaning that the classifica-
tion probability changes in approximately equal increments
with each step through the feature space, that is, completely
non-categorically. By the last block, the fitted values of
sigma are such that the classification is a relatively sharp step
near the boundary, in the classical pattern associated with
CP. Note though that since sigmas seem to be asymptoting
near their “true” values (that is, the values used to generate
the stimuli), this increasingly categorical performance sim-
ply seems to reflect approximately optimal category learning.

Discrimination task. Discrimination improved substan-
tially (BF10 > 3 pre- vs. post) in all 20 of the FOIs at which
α was less than 90◦ (and thus the feature was diagnostic at
all), but not in the other seven FOIs (BF10 < 3). That is,
subjects became more sensitive to those features—and only
those features—that were predictive of category member-
ship. The subjects demonstrated acquired distinctiveness af-
ter only about 20 minutes of category training, in contrast to
thousands of trials of training in many studies. This unusu-
ally rapid induction of AD presumably reflects the novel fea-
ture space, whose unusual initial difficulty allowed subjects
to improve rapidly with training. The finding of AD with
integral shape dimensions contrasts with the study of Op de
Beeck et al. (2003) (though see Hockema et al., 2005). Over-
all thresholds decreased from a mean (s.d.) of .35 (0.007)
to 0.26 (0.009) after training (recall that the category means
were separated by .5 of the unit square). The magnitude of
discrimination improvement (∆threshold) was not correlated
with performance on the categorization task (R2 = 0.00084,
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Figure 3. Plots of fitted values of σ in (a) Exps. 1-
3 (95% IPL) (b) Exp. 4 (90% IPL) and (c) Exp. 5
(99% IPL). Each subject’s responses in the categorization
task were fitted to the ideal classification curve p(A|x) =

N(x; µA, σ
2)/[N(x; µA, σ

2) + N(x; µB, σ
2)], with µA and µB

set to their true values of .25 and .75 respectively and σ fitted
by least squares to the subject’s responses. The fitted value
of σ modulates how broad or narrow the subjects’ induced
category is, with larger values entailing a “softer” decision
boundary and smaller values entailing a “sharper” one (vi-
sualized in insets). As can be seen in the plots, the subjects
generally progressed over the course of training from softer
boundaries to sharper ones.

BF10 = 0.09). The manipulated position factors had rela-
tively small effects in individual experiments (Fig. 4). How-
ever a clear pattern emerges when the results of all five ex-
periments are combined, as follows.

The main analysis is the magnitude of improvement in dis-
crimination (∆threshold) as a function of the mutual informa-
tion MI(C, f ) = H(C)−H(C| f ) between the category variable
C (= A or B) and a given FOI f . H(C) = −p(A) log2 p(A) −
p(B) log2 p(B) is the prior uncertainty about the category,
which in the experiments is always 1 bit because the two
categories are equally likely. H(C| f ) = −p( f ) log2 (A| f ) −
p( f ) log2 (B| f )− p(¬ f ) log2 (A|¬ f )− p(¬ f ) log2 (B|¬ f ) is the
conditional uncertainty about the category once the feature
is known. Intuitively, each feature f can be thought of as
a binary division of the perceptual space into two halves
(Fig. 5a); MI(C, f ) measures how much information an ob-
server gains about C (which category a given stimulus be-
longs to) from learning which “half” of f it falls in.

In this sense MI quantifies the diagnosticity of a given
stimulus property with respect to the shape’s category mem-
bership.

MI is maximal for “horizontal” (α = 0◦) features lying on
the classification boundary, but its value there is affected by
the sharpness of the boundary, modulated in the experiments
by the IPL. For example the MI for such features in Exps. 1–
3 (95% IPL) is .71 bits, in Exp. 4 (90% IPL) .53 bits, and in
Exp. 5 (99% IPL) is .92 bits. Features with α = 90◦ (perpen-
dicular to the classification boundary) have MI = 0; they are
completely “uninformative.” Between these extremes MI de-
pends in a more complex way on both the feature’s position
and orientation.

Fig. 6 show ∆threshold as a function of MI for all 27 FOIs
aggregating across Exps. 1–5 (with different colors/symbols
for each experiment). The plot shows a clear linear rela-
tionship: the magnitude of AD (∆threshold) rises with MI
(R2 = 0.5663,BF10 = 3, 697). The linear relationship be-
tween MI and ∆threshold in individual experiments was re-
spectively R2 = 0.48, 0.71, 0.89, 0.006, and 0.94, suggesting
that the effect is robust and replicable. As discussed above,
previous papers have found that AD is larger in category-
relevant features than in category-irrelevant ones. The cur-
rent results show that, as Bates and Jacobs (in press) sug-
gested, the degree of AD at each feature is proportional to
its informativeness, as measured by the magnitude of mutual
information it shares with the category variable.

Changes to discrimination performance observed were
all positive, indicating “acquired distinctiveness” rather than
“acquired equivalence.” The regression intercept of .0550
gives the magnitude of AD at MI = 0, i.e. an overall prac-
tice effect. On the basis of information-theoretic constraints,
Bates et al. (Bates et al., 2019; Bates & Jacobs, in press) have
argued that if channel capacity is fixed then improvements
to representational precision in some dimensions need to be
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Figure 4. Results for Exps. 1–5, showing ∆threshold as a function of α (angular deviation from most informative dimension)
and position in the feature space (Exps. 1 and 2). Panels c-e show best fitting cosine function.

offset by degradations in others. No such effect is apparent
in the current data, as all discrimination changes were in the
same direction. It it is possible that such tradeoffs may have
been swamped by an overall practice effect, meaning that
the total channel capacity allocated to featural representation
may have increased over the course of training. Unfortu-
nately the current data do not allow this issue to be addressed
more decisively.

Given the particular categories and features used in these
experiments, most of the variation in MI (about 85%) is due
to α, while the rest is due to feature position and IPL. Hence
it is fair to wonder whether the effect of MI on AD might in
fact be entirely due to α rather than MI per se. However
a regression of ∆threshold onto α alone is less predictive
than MI (R2 = 0.4257 compared to R2 = 0.5663 for MI;
the difference in fits is statistically substantial, BF10 = 44.4).

Moreover, a Bayesian ANOVA on the entire dataset favors
(maximum posterior) the additive model that includes all
three factors (α, feature position, and IPL) over any subset
model (BF10 = 11.820). Thus the effect of MI appears to
depend on all three component factors, and in particular is
not attributable to α alone, although the contribution of fea-
ture position and IPL is relatively subtle and should be more
comprehensively explored in future experiments.

As mentioned, several other definition of informativeness
have been proposed, including the L2 norm between the pos-
terior distributions (Lake et al., 2009), and the (squared)
derivative of the posterior, which reflects the sharpness of the
category boundary (Clayards, Tanenhaus, Aslin, & Jacobs,
2008). The squared posterior derivative is related to the MI
and Fisher information, and plays an important role in the
theoretical literature on neural population coding (Pouget &
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true

false
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(b)
Figure 5. (a) Calculation of MI at an arbitrary feature f . The
MI is the shared information between the feature f (which
side of the boundary defined by f does the stimulus fall on?)
and the category C (which category does it belong to?) (b)
A map of MI as induced by the category structure used in
Exps.1-3, showing the magnitude and direction of maximum
MI at each point in the space.

Zemel, 2007; Bonnasse-Gahot & Nadal, 2008). However
in the current data the the L2 norm predicts ∆threshold less
well than does MI (R2 = 0.45, worse than the fit for MI
by BF10 = 24.3) as does the squared posterior derivative
(R2 = .25, worse than the fit for MI by BF = 1,626). Hence
in addition to MI’s more natural axiomatic derivation as a

measure of the information conveyed by one variable about
another, MI gives a better fit to the human data.

Discussion

Several studies have found that feature discrimination
tends to improve more for features that are informative about
learned categories than for those that are not (e.g. Goldstone
& Steyvers, 2001; Folstein et al., 2013, 2014; Bates et al.,
2019). The results of Exps. 1–5 show that “informativeness”
can be quantified by mutual information: the more informa-
tion a feature conveys about the category, in a classical Shan-
non sense, the more subjects (on average) tend to gain in
sensitivity at that feature. This improvement in discrimina-
tion (AD) is directly attributable to category training, and is
associated with the progressive development of sharper cat-
egory boundaries over the course of training (CP). The ef-
fect is better predicted by MI than it is by other measures
of informativeness, such as the posterior slope, the posterior
L2 norm, or the orientation of the feature with respect to the
maximally informative dimension. Overall, these results cor-
roborate the role of information theory in quantifying how
the brain allocates representational resources (Balsam et al.,
2006; Nelson, McKenzie, Cottrell, & Sejnowski, 2010; Sims,
2018), and suggest that such allocation is rationally tuned to
the category structure of the world (Lake et al., 2009; Maye
et al., 2002; Feldman, Griffiths, & Morgan, 2009; Soto &
Ashby, 2015; Bates & Jacobs, in press).

One notable consequence of these results is to deempha-
size the division between features that cross category bound-
aries and those that do not, which is often highlighted in def-
initions of CP. In the MI account features that cross the cat-
egory boundary are the most informative, but are not qual-
itatively different from other features in the space that con-
vey information about the category albeit to lesser degrees.
This observation helps explain a variety of previous results,
e.g. those of Goldstone (1994), who found that discrimi-
nation improvement was not limited to the category bound-
ary, but was distributed throughout the space in a somewhat
complex pattern. Note that this pattern is not consistent
with traditional attention-weighting models (e.g. Kruschke,
1992), which elevate or attenuate entire perceptual dimen-
sions rather than specific feature values. As mentioned, this
pattern cannot be clearly established using a hard category
boundary, where boundary-crossing features are the only in-
formative ones; nor in a 1D perceptual space, where all fea-
tures lie along the (sole) informative dimension. The clear re-
lationship between MI and AD only becomes apparent with
statistically-defined category structure over at least two di-
mensions.

Dieciuc et al. (2017) have suggested that some feature
learning can be explained by relatively short-term realloca-
tion of attention. The current experiments cannot address
the time-course of the observed changes to perceptual dis-
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crimination, since discrimination was only tested in the im-
mediate aftermath of category training. Note however that
allocation of spatial attention cannot explain these results,
since the shape features tested were all global aspects of each
stimulus shape, and could not be localized to any one loca-
tion within it. The results might however reflect the reallo-
cation of feature-based attention (Maunsell & Treue, 2006).
But note that these shape features represented novel, com-
plex combinations of shape contour features, and thus could
not be evaluated simply by reallocating resources within an
existing feature space. Hence while these data do not directly
address the role of attention, it seems difficult to explain the
observed improvements in discrimination by reallocation of
feature-based attention alone. Future experiments evaluating
the durability of these discrimination changes would be very
valuable.

Conclusion

The results reported here suggest that feature learning is
rationally tuned to the statistical structure of the environment
(Lake et al., 2009; Maye et al., 2002; Feldman et al., 2009;
Soto & Ashby, 2015; Bates & Jacobs, in press), and support
a principled information-theoretic quantification of the way
representational resources are allocated. More specifically,

the new finding supports previous arguments (Harnad, 1993;
Schyns et al., 1998) that CP reflects the process by which
the brain constructs a “vocabulary” of features suitable for
representing the world.

Important questions for future studies include how to ap-
ply the MI measure to unsupervised categorization, in which
the category variable C is not directly available to the sub-
ject. In unsupervised learning, which is ubiquitous in ev-
eryday cognition, MI might be computed between features
and an estimated latent category variable (Lake, Salakhut-
dinov, & Tenenbaum, 2015). Another important question
is whether the relationship between AD and MI extends to
more complex conceptual structures such as multimodal cat-
egories (Briscoe & Feldman, 2011), in which the MI “map”
can become much more complex.
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