One of the most important discoveries of the last thirty years is the extent to which the pattern of anaphoric interpretations is determined by the geometry of syntactic structure. As our understanding of these phenomena has steadily grown, the theory of syntax has often been driven by discoveries in this domain, and it is no accident that Chomsky's Binding Theory was a centerpiece of the principles and parameters approach of the 1980s. However, what remained accidental in Chomsky's theory, and in most of the theories that have followed it, is the apparently complementary distribution of forms that support anaphora for a given antecedent. This book argues not only that the complementary distribution in question is robust empirically, but that its existence is derived by a competitive theory of anaphora. It is demonstrated in detail that the competitive theory provides a far better explanation of anti-locality, anti-subject orientation and the range of apparently exceptional distributions that have been long been problematic for other approaches, such as Chomsky's Binding Theory and the influential predication-based theory of Reinhart and Reuland.

Based on a minimalist architecture, the competitive theory is instantiated in an efficient algorithm that compares the numerations of convergent derivations containing dependent interpretations held constant to determine if the most dependent form available has been employed. The development of this algorithm requires exploration of the key notions on which it is stated, such as dependent interpretation, availability, antecedency and the scale of dependent forms. Also explored in some detail are the theories of morphology, locality, convergence and numeration on which the algorithm depends.

The competitive theory is developed hand in hand with a theory of the typology of anaphors that leads to small, but detailed discussions of a variety of languages (including Germanic, Romance, Slavic, Indic and Dravidian languages as well as Greek, Hungarian, Chinese and Japanese). The morphology and lexical semantics of anaphors is studied in some detail as well and a theory of the varieties of locality is explored in depth.

The algorithm I defend is argued to be part of a family of competitive algorithms that pit convergent derivations against each other to pick the best representation for a given interpretation. Thus grammatical sentences can be ill-formed only for certain readings, or ungrammatical by degree, depending on which competitive algorithms do not treat the output as the optimal result. The competitive algorithms in question are not pragmatic, but part of formal grammar, yielding non-defeasible results which determine what a given output of the interpretive component can be taken to mean if it is to be used. This way of addressing the relation between form and meaning places certain limits on possible architectures for UG with interesting consequences for current frameworks.