LEC 01

Perception informs an organism what is in its environment, and where it is. Evolutionarily significant actions: hunting/gathering food; fleeing from predators, finding mates, navigating the environment.

Relationship between the physical world and the perceptual world

1. Naive realism -- The world is simply as it appears. Hence no real mystery about perception.
 Problems:
 - Sensitivity to a small fraction of physical energy
 - Different animals perceive the world in very different ways
 - Multistability

2. Subjective idealism -- The world exists only as a result of perception (George Berkeley). Philosophers' brain-in-a-vat problem.
 Problems:
 - Generally leads to solipsism
 - Not scientifically useful

John Locke's observation with lukewarm water; Distinction between primary and secondary qualities

3. Perception is a function of:
 - available physical energy
 - sensitivities of our sense organs
 - processing of sensory information by the brain

LEC 02

Perception appears easy and immediate
("How do you see?" vs. how do you make a cup of coffee?)

Vision is a hard problem:
 1. Artificial intelligence: chess vs. visual object recognition
 2. Over half of the primate cortex is involved in visual perception

What's the problem that vision must solve:
 Inputs: arrays of light intensities (2D and unstructured)
 Outputs: A representation of the 3D environment, 3D shapes of object, relative locations, material properties, identity.
The difference between input and output in human vision:
- Image angle vs. perceived 3D angle
- Image shape vs. perceived 3D shape
- Image size vs. perceived size
- Image color vs. perceived color

Distal stimulus / Scene ---> Proximal stimulus / Retinal image ---> Visual percept

Fundamental problem of perception: Every proximal stimulus is consistent with many different distal stimuli

Vision is an inverse problem:
- **Optics:** mapping from 3D scene to projected image
- **Inverse optics:** mapping from projected image to 3D scene

Problem: Each projected image is consistent with many different scene interpretations.

Perception involves construction by the mind/brain (governed by strict "rules")
Understanding perception involves understanding the "rules of construction."

- Adleson's checkerboard illusion
- Neon color spreading
- McGurk effect

LEC 03

How to approach the study of any complex system?
Approaching a black box:
- detailed internal circuitry vs. input-output relationships

Study a complex system at multiple levels of analysis:
1. Computational analysis (What problem is it solving?)
2. Representation and algorithm (What strategy is it using?)
3. Hardware implementation (electronic circuitry / mechanical parts)

The three levels in the example of a cash register

Multiple approaches to the study of perception
1. Theoretical / Computational
2. Psychological / Behavioral
3. Biological / Neuroscience
Theoretical approaches:
 Every visual input is consistent with many different interpretations.
 So, how does the brain "choose"?

 Different theoretical answers:
 - Built-in "hard-wired" knowledge (over evolution)
 - Principle of simplicity
 - The likelihood principle
 - The "no-coincidence" principle

Psychological approaches (behavioral reactions to stimuli)

1. Phenomenal / Naturalistic
 Problems with "phenomenal":
 - preverbal infants; animals
 - inconsistent usage of words
 - response bias
 - misreporting
 - unconscious prior expectations / motivations

 Problems with "naturalistic"
 - limited by environment
 - lack of control / systematic manipulation
 - repeatability

2. Experimental (design stimuli to systematically study specific factors)
 Matching experiments
 Detection experiments
 weakest detectable stimulus
 smallest detectable change
 Magnitude estimation
 Response time