The work reported here was supported by several funding sources, including

Abstract

University of California, Los Angeles

Psychology

Bey Mehdi, Wendy French & Catherine O. Priz

Reem German, George Mehdi, Laura Romeo

Language (ESL) instruction

Intermediate English as a Second

Interacting Science concepts into

University of California, Santa Barbara & Santa Cruz

Institute of the Linguistic Minority Research

learners and instructors have to make a concerted, in-depth change in conceptual understanding to convey concepts effectively.

In the classroom (as per the WSCC's 1999/2000 report on the need for reorientation of science education), many students are confused about scientific methods. This is because, in current school science courses, the focus seems to be only on the application of formulas and equations, without proper understanding of the underlying principles. The result is that students find it difficult to make sense of complicated scientific concepts.

In response to these challenges, educational institutions have been forced to reorient science education. This has led to a greater emphasis on conceptual understanding, helping students to grasp the underlying principles of scientific concepts rather than just memorizing formulas. The emphasis has been on developing critical thinking skills and problem-solving abilities, which are essential for understanding and applying scientific knowledge.

The introduction also highlights the need for a change in the way science is taught, particularly at the high school level. The current system often fails to engage students, leading to a lack of interest and motivation. Therefore, there is a need for innovative teaching methods that make learning science more interactive and engaging. This includes the use of real-world applications, hands-on experiments, and technology to enhance the learning experience.

In conclusion, the introduction emphasizes the importance of conceptual understanding in science education. It suggests that educators must focus on developing students' critical thinking skills and problem-solving abilities, rather than just teaching them to memorize formulas and equations. This will help students to better understand scientific concepts and apply them in real-world situations.
Elemental of the Problem

A UCA/ESL program that has been a problem in the school since its inception. The school has been unsuccessful in implementing the ESL program due to a lack of resources and inadequate planning. The program has been plagued by low student enrollment and lack of academic success. This has led to a lack of support from the community and the school district. The school has also been criticized for its ineffective teaching methods and outdated curriculum. As a result, the school has struggled to improve its academic performance and retain students.

Challenges for Changing Students

The school needs to implement a more effective ESL program that addresses the needs of its students. This includes providing additional resources, such as more teachers and support staff, to ensure that students receive the necessary support to succeed. The school also needs to develop a more engaging and interactive curriculum that is tailored to the needs of its students. This will require a commitment from the school administration and the community to support the program. The school also needs to work with local businesses and organizations to provide more opportunities for students to gain practical skills and experience.

Conclusion

In conclusion, the school needs to implement a more effective ESL program that addresses the needs of its students. This will require a commitment from the school administration and the community to support the program. By providing additional resources and developing a more engaging curriculum, the school can help its students succeed and achieve their goals.

References

example about the water cycle. The science concepts and vocabulary introduced in the interactive notebook and the teacher's resource manual were then reinforced in the following second grade science textbook. The key vocabulary and concepts were reinforced with the textbook and interactive notebook.

(7) A short, clear, and engaging explanation for each concept

(8) A variety of examples and real-world applications

(9) A mix of information and creative, engaging exercises

(10) A variety of assessments to evaluate understanding of the concepts and vocabulary.

In summary, the lesson was successful in introducing the core concepts and vocabulary, reinforcing the textbook, and providing the students with an engaging and interactive experience.

Each unit consisted of:

1. Weekly warm-up and engagement activities
2. Instructional lessons on the core concepts
3. Practice activities to reinforce understanding
4. Assessments to evaluate learning

The course concluded with a comprehensive review and preparation for the final exam.
The problems of assessment

The tests in the cooperative groups followed the grading and grading in 2 different methods of the groups. With each group's study schedule, they were expected to follow the schedule and meet the objectives. The test results, reflecting the work of the students, were provided during the class. The results of the tests were also discussed and provided feedback to the students. The feedback, which included the data and results of the tests, was indispensable. The feedback provided suggestions and helped to further their learning. Therefore, the feedback was essential in providing opportunities for improvement and was significant in the learning process.

The classroom environment

The classroom environment involves the interaction between students and teachers. The students are encouraged to participate actively in class discussions. The teachers provide feedback and support to the students during their learning process. In the classroom, the teacher creates an environment where students feel comfortable to express their ideas and opinions. This helps in enhancing their confidence and teamwork skills.

The camps of the critical components and the interactive model

Camps of the critical components and the interactive model focus on the interactive aspects of the curriculum. These components involve the use of interactive methods, such as role-playing, simulations, and group discussions. The interactive model aims to engage students actively in the learning process, thereby improving their understanding and retention of the material. The components are designed to foster collaboration and teamwork, which are essential skills in the 21st century.
The post test (80% of the correct answers are correct)

Table 1: Selected student answers to pre-test and post test

<table>
<thead>
<tr>
<th>Question</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. lit of heart beats</td>
<td>75%</td>
<td>90%</td>
</tr>
<tr>
<td>2. water in the beaker</td>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>3. temperature of air</td>
<td>55%</td>
<td>70%</td>
</tr>
</tbody>
</table>

What do students get from the unit?

Performance on specific pre-tests and post tests

The performance was higher in the pre-tests, where the students had more knowledge of the topics. In the post-tests, the students performed better, especially in the questions related to temperature and water. This suggests that the unit was effective in teaching these concepts. However, there is room for improvement in the questions related to the heart, where the students performed poorly.

In conclusion, the unit was successful in improving the students' knowledge of the topics covered. Further work is needed to improve their understanding of the heart and temperature.
Students who took the course followed the trend of students who took the course, as expected. However, students who took the course for the first time in the fall semester, and of those who took the course in the fall semester, had a higher rate of success than those who took the course in the spring semester. This is likely due to the increased engagement with the course material and the feedback provided during the course.

Figure 2: Length of Sentences

Length of Sentences

Figure 1: Length of Sentences

Length of Sentences

Figure 3: Core Vocabulary Usage

Core Vocabulary Usage

Figure 4: Pre-test to the Unit Test

Pre-test to the Unit Test

Figure 5: Length of Sentences

Length of Sentences
Students' tendency to write English sentences with core nouns in an intermediate English notebook sentence length for each level increased as a function of class experience. The level information in the curriculum is a function of class experience. We assessed whether the students' writing conformed to the criteria of the course (p < .001, 2-tailed).

We also asked whether the students' ability to write English sentences became more proficient as a function of class experience. The 2-tailed test revealed a reliable number of students wrote longer English sentences in core nouns at the end of the term (p < .001, 2-tailed).
We also asked whether a given student would recommend ISL, with

"impressed." (4) Because I have learned more about science than when I had

"impressed." We did many interesting experiments. ''(2) Because the teacher explained it in very well."

We believe that these kinds of answers were the form

Second, we believe that these kinds of answers were of the form

we have no idea of the changes of our description of the concept of the individual's conceptual framework. When the student was asked to explain how they were responsible for their

Figure 5. 1) Type of Relational Sentences in Students' Notebooks.
Discussion and Summary

It is widely recognized that learning science is not the same as teaching science. The challenges we faced before these conditions were met.

We agree with this assessment, although we recognize that many learning programs that are part of these educational initiatives will benefit students and teachers. It is clear that key concepts were not conveyed effectively. The problem's simplicity lies in the nature of the students in the classroom. We developed the curriculum that learning is learning about scientific language because of our hands-on hands-on experience. When students are taught to learn, they learn to learn. What matters is the depth of understanding, not just the breadth of knowledge.

We found the educational experience (Opener) that is in the classroom, not in the form of a lecture, is what students learn. Students learn to learn when they are taught to learn, not when they are told what to learn. The educational system needs to be transformed to enable student learning about scientific language.

The educational experience (Opener) that is in the classroom, not in the form of a lecture, is what students learn. Students learn to learn when they are taught to learn, not when they are told what to learn. The educational system needs to be transformed to enable student learning about scientific language.
The initial and revised ESL-science thematic units

Communication networks and their use in local university computer-based education program and link to local university's computer-based education program. The student enrolls in a small, computer-based introductory program for the ESL participant. The computer system provides voice lessons and can answer questions. The participants learn about the ESL, and the lesson materials are written for native English speakers. We also have explored ways to help the teachers and students in educational transformation.