The Cambridge Handbook of Thinking and Reasoning

Edited by
Keith J. Holyoak
and
Robert G. Morrison
CHAPTER 23
Mathematical Cognition

C. R. Gallistel
Rochel Gelman

Mathematics is a system for representing and reasoning about quantities, with arithmetic as its foundation. Its deep interest for our understanding the psychological foundations of scientific thought comes from what Eugene Wigner called "the unreasonable efficacy of mathematics in the natural sciences." From a formalist perspective, arithmetic is a symbolic game, like tic-tac-toe. Its rules are more complicated, but not a great deal more complicated. Mathematics is the study of the properties of this game and of the systems that may be constructed on the foundation it provides. Why should this symbolic game be so powerful and resourceful when it comes to building models of the physical world? And on what psychological foundations does the human mastery of this game rest?

The first question is metaphysical – why is the world the way it is? We do not treat it, because it lies beyond the realm of experimental behavioral science. We review the answers to the second question suggested by experimental research on human and nonhuman animal cognition.

The general nature of the answer is that the foundations of mathematical cognition do not lie in language and the language faculty. The ability to estimate quantities and to reason arithmetically with those estimates exists in the brains of animals that have no language. The same or very similar nonverbal mechanisms appear to operate in parallel with verbal estimation and reasoning in adult humans. They also operate to some extent before children learn to speak and before they have had any tutoring in the elements of arithmetic. These findings suggest that the verbal expression of number and of arithmetic thinking is based on a nonverbal system for estimating and reasoning about discrete and continuous quantity, which we share with many nonverbal animals. A reasonable supposition is that the neural substrate for this system arose far back in the evolution of brains precisely because of the puzzle to which Wigner called attention: Arithmetic reasoning captures deeply important properties of the world, which the animal brain must represent in order to act effectively in it.

The recognition that there is a nonverbal system of arithmetic reasoning in human and many nonhuman animals is recent,
but it influences most contemporary experimental work on mathematical cognition. This review is organized around the questions: (1) What are the properties of this nonverbal system? (2) How is it related to the verbal system and written numerical systems?

What Is a Number?

Arithmetic is one of the few domains of human thought that has been extensively formalized. This formalization did not begin in earnest until the middle of the nineteenth century (Boyer & Merzbach, 1989). In the process of formalizing the arithmetic foundations of mathematics, mathematicians changed their minds about what a number is. Before formalization, an intuitive understanding of what a number is could be done with it. Once the formal "games" about number were made explicit, anything that played the rules was a number.

This formalist viewpoint is crucial to an understanding of issues in the current scientific literature on mathematical cognition. Many of them turn on questions of how we are to recognize and understand the properties of mental magnitudes. Mental magnitude refers to an inferred (but, one supposes, potentially observable and measurable) entity in the head that represents either numerosity (for example, the number of oranges in a case) or another magnitude (for example, the length, width, height, and weight of the case) and that has the formal properties of a real number.

For a mental magnitude to represent an objective magnitude, it must be causally related to that objective magnitude. It must also be shown that it is a player in a mental game (a functionally cohesive collection of brain processes) that operates according to at least some of the rules of arithmetic. When putative mental numbers do not validly enter into, at a minimum, mental addition, mental subtraction, and mental ordering, then they do not function as numbers.

Kinds of Numbers

The ancient Greeks had considerable success axiomatizing geometry, but mathematicians did not axiomatize the system of numbers until the nineteenth century, after it had undergone a large, historically documented expansion. Before this expansion, it was too messy and incomplete to be axiomatized, because it lacked closure. A system of numbers is closed under a combinatorial operation if, when you apply the operation to any pair of numbers, the result is a number. Adding or multiplying two positive integers always produces a positive integer, so the positive integers are closed under addition and multiplication. They are also closed under the operation of ordering. For any pair of numbers, a ≥ b if a is greater or equal to than b, and 0 if not. These three operations—addition, multiplication, and ordering—are the core operations of arithmetic. They and their inverses make the system what it is.

The problem comes from the inverse operations of subtraction and division. When you subtract a bigger number from a smaller, the result is not a positive integer. Should one regard the result as a number? Until well into the nineteenth century, many professional mathematicians did not. Thus, subtracting a bigger number from a smaller number was not a legitimate mathematical operation. This was inconvenient, because it meant that in the course of algebraic reasoning (reasoning about unspecified numbers), one might unwittingly do something that was illegitimate. This purely practical consideration strongly motivated the admission of the negative numbers and zero to the set of numbers acknowledged to be legitimate.

When one divides one integer by another, the result, called a rational number, or, more colloquially, a fraction, is rarely an integer. From the earliest times from which we have written records, people who worked with written numbers included at least some rational numbers among the numbers, but,
like school children to this day, they had extraordinary difficulties in figuring out how to do arithmetic with rational numbers in general. What is the sum of $\frac{1}{3}$ and $11/17$? That was a hard question in ancient Egypt and remains so today in classrooms all around the world.

The common notation for a fraction specifies a number not by giving it a unique name like "two" but rather by specifying a way of generating it (divide the number "one" by the number "two"). The practice of specifying a number by giving an arithmetic procedure that will generate it to whatever level of precision is required has grown stronger over the millennia. It is the key to a rigorous handling of both irrational and complex numbers and to the way in which digital computers operate with real numbers. But it is disconcerting, for several reasons. First, there are an infinity of different notations for the same number: $\frac{1}{2}$, $\frac{2}{4}$, $\frac{3}{6}$, and so on, all specifying the same number. Moreover, for most rational numbers, there is no complete decimal representation. Carrying out the division gives a repeating decimal. In short, you cannot write down a symbol for most rational numbers that is both complete and unique.

Finally, when fractions are allowed to be numbers, the discrete ordering of the numbers is lost. It no longer is possible to specify the next number in the sequence, because there are an infinite number of rational numbers between any two rational numbers. For all these reasons, admitting fractions to the system of numbers makes the system more difficult to work with in the concrete, albeit more powerful in the abstract, because the system of rational numbers is, with one exception, closed under division.

Allowing negative numbers and fractions to be numbers also creates problems with what otherwise seem to be sound principles for reasoning about numbers. For example, it seems to be sound to say that dividing the bigger of two numbers by the smaller gives a number that is bigger than the number one gets if one divides the smaller by the bigger. What then are we to make of the "fact" that $1/ -1 = -1/1 = -1$?

Clearly, caution and clear thinking are going to be necessary if we want to treat as numbers entities that you do not get by counting. But, humans do want to do this, and they have wanted to since the beginning of recorded history. We measure quantities like lengths, weights, and volumes in order to represent them with numbers. What the measuring does — if it is done well — is give us "the right number" or at least one usable for our purposes. Measuring and the resulting representation of continuous quantities by numbers go back to the earliest written records. Indeed, it is often argued that writing evolved from a system for recording the results of measurements made in the course of commerce (bartering, buying, and selling), political economy (taxation), surveying, and construction (Menninger, 1969).

The ancient Greeks believed that, in principle, all measurable magnitudes could be represented by rational numbers. Everything was a matter of proportion, and any proportion could be expressed as the ratio of two integers. They were also the first to try to formalize mathematical thinking. In doing so, they discovered, to their horror, that fractions did not suffice to represent all possible proportions. They discovered that the proportion between the side of a square and its diagonal could not be represented by a fraction. The Pythagorean formula for calculating the diagonal of a square says that the diagonal is equal to the square root of the sum of the squares of the sides. In this case, the diagonal is equal to $\sqrt{1^2 + 1^2} = \sqrt{2}$. The Greeks proved that there is no fraction that, when multiplied by itself, is equal to 2. If only integers and fractions are numbers, then the length of the diagonal of the unit square cannot be represented by a number. Put another way, you can measure the side of the square or you can measure its diagonal, but you cannot measure them both exactly within the same measuring system — unless you are willing to include among the numbers in that system numbers that are not integers (cannot be counted) and are not even the ratio of two integers. You must include what the Greeks called the irrational numbers. But if you do include the irrational
numbers, how do you go about specifying them in the general case?

Many irrationals can be specified by the operation of extracting roots, which is the inverse of the operation of raising a number to a power. Raising any positive integer to the power of any other always produces a positive integer. Thus, the system of positive integers is closed under raising to a power. The problem, as usual, comes from the inverse operation – extracting roots. For most pairs of integers, \(a \) and \(b \), the \(a \)th root of \(b \) is not a positive integer, nor even a rational number; it is an irrational number. The need within algebra to have an arithmetic that was closed under the extraction of roots was a powerful motivation for mathematicians to admit both irrational numbers and complex numbers to the set of numbers. By admitting irrational numbers, they created the system of so-called real numbers, which was essential to calculus. To this day, there are professional mathematicians who question the legitimacy of irrational numbers. Nonetheless, the real numbers, which include the irrationals (see Figure 23.1), are taken for granted by all but a very few contemporary mathematicians.

The notion of a real number and that of a magnitude (for example, the length of a line) are formally identical. This means, among other things, that for every line segment, there is a real number that uniquely represents the length of that segment (in a given system of measurement) and conversely, for every real number, there is a line segment that represents the magnitude of that number. Therefore, in what follows, when we mention a mental magnitude, we mean an entity in the mind (brain) that functions within a system with the formal properties of the real number system. Like the real number system, we assume that this system is a closed system: All of its combinatorial operations, when applied to any pair of mental magnitudes, generate another mental magnitude.

As this brief sketch indicates, the system of numbers recognized by almost all contemporary professional mathematicians as "the number system" – the ever more inclusive hierarchy of kinds of numbers shown in Figure 23.1 – has grown up over historical time with much of the growth culminating only in the preceding two centuries. The psychological question is, "What is it in the minds of humans (and perhaps also nonhuman animals) that has been driving this process?" And how and under what circumstances does this mental machinery enable educated modern humans to master the basics of formal mathematics, when, and to the extent that they do so?

Numerical Estimation and Reasoning in Animals

The development of verbalized and written reasoning about number that culminated in a formalized system of real numbers isomorphic to continuous magnitudes was driven by the fact that humans apply numerical reasoning to continuous quantity just as much as they do to discrete quantity. In considering the literature on numerical estimation
and reasoning in animals, we begin by reviewing the evidence that they estimate and reason arithmetically about the quintessentially continuous quantity time.

Common laboratory animals, such as the pigeon, the rat, and the monkey, measure and remember continuous quantities, such as duration, as has been shown in a variety of experimental paradigms. One of these is the so-called peak procedure. In this procedure, a trial begins with the onset of a stimulus signaling the possible availability of food at the end of a fixed interval, called the feeding latency. Responses made at or after the interval has elapsed trigger the delivery of food. Responses prior to that time have no consequences. On twenty to fifty percent of the trials, food is not delivered. On these trials, the key remains illuminated, the lever remains extended, or the hopper remains illuminated for between four and six times longer than the feeding latency. On these trials, called probe trials, responding after the feeding latency has past is pointless.

Peak-procedure data come from these unrewarded trials. On such trials, the subject abruptly begins to respond some time before the expected end of the feeding latency and continues to peck or press or poke for some time after it has passed before abruptly stopping. The interval during which the subject responds brackets its subjective estimate of the feeding latency. Representative data are shown in Figure 23.2.

Figure 23.2A shows seemingly smooth increases and decreases in the probability that the mouse is making an anticipatory response (poking its head into the feeding hopper in anticipation of food delivery) on either side of the feeding latency. The smoothness is an averaging artifact. On any one trial, the onset and offset of anticipatory responding is abrupt, but the temporal locus of these onsets and offsets varies from trial to trial (Church, Meck, & Gibbon, 1994). The peak curves in Figure 23.2, like peak curves in general, are the cumulative start distributions minus the cumulative stop distributions, where start and stop refer to the onset and offset of sustained food anticipatory behavior.

When the data in Figure 23.2A are replotted against the proportion of the feeding latency elapsed, rather than against the latency itself, the curves superpose (Figure 23.2B). Thus, both the location of the distributions relative to the target latency and the trial-to-trial variability in the onsets and offsets of responding are proportional to the remembered latency. Put another way,
the probabilities that the subject will have begun to respond or will have stopped responding are determined by the proportion of the remembered feeding latency that has elapsed. This property of remembered durations is called scalar variability.

Rats, pigeons, and monkeys also count and remember numerosities (Brannon & Roitman, 2003; Church & Meck, 1984; Dehaene, 1997; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Gallistel, 1990; Gallistel & Gelman, 2000). One of the early protocols for assessing counting and numerical memory was developed by Mowrer (1958) and later used by Platt and Johnson (1971). The subject must press a lever some number of times (the target number) to arm the infrared beam at the entrance to a feeding alcove. When the beam is armed, interrupting it releases food. Pressing too many times before trying the alcove incurs no penalty beyond that of having made super-numerary presses. Trying the alcove prematurely incurs a 10-second time-out, which the subject must endure before returning to the lever to complete the requisite number of presses. Data from such an experiment are shown in Figure 23.3. They look strikingly like the temporal data. The number of presses at which subjects are maximally likely to break off pressing and try the alcove peaks at or slightly beyond the required number for required numbers ranging from four to twenty four. As the remembered target number gets larger, the variability in the break-off number also gets proportionately greater. Thus, behavior based on number also exhibits scalar variability.

The fact that behavior based on remembered numerosity exhibits scalar variability just like the scalar variability seen in behavior based on the remembered magnitude of continuous quantities such as duration suggests that numerosity is represented in the brains of nonverbal vertebrates by mental magnitudes; that is, by entities with the formal properties of the real numbers, rather than by discrete symbols such as words or bit patterns. When a device such as an analog computer represents numerosities by different voltage levels, noise in the voltages leads to confusions between nearby numbers. If by contrast, a device represents countable quantity by countable (that is, discrete) symbols, as do digital computers and written number systems, then one does not expect to see the kind of variability seen in Figure 23.2 and 23.3. The bit-pattern symbol for fifteen is 01111, for example, and for sixteen it is 10000. Although the numbers are adjacent in the ordering of the integers, the discrete binary symbols for them differ in all five bits. Jitter in the bits (uncertainty about whether a given bit was 0 or 1) would make fourteen (01110), thirteen (01101), eleven (01101), and seven (00111) all equally and maximally likely to be confused with fifteen, because the confusion arises in each case from the misreading of one bit. These dispersed numbers should be confused with
Numerosity and Duration Are Represented by Comparable Mental Magnitudes

Meck and Church (1983) pointed out that the mental accumulator model that Gibbon (1977) had proposed to explain the generation of mental magnitudes representing durations could be modified to make it generate mental magnitudes representing numerosities. Gibbon had proposed that while a duration was being timed a stream of impulses fed an accumulator, so that the accumulation grew in proportion to the duration of the stream. When the stream ended (when timing ceased), the resulting accumulation was read into memory, where it represented the duration of the interval. Meck and Church postulated that to get magnitudes representing numerosity, the equivalent of a pulseformer was inserted into the stream of impulses, so that for each count there was a discrete increment in the contents of the accumulator, as happens when a cup of liquid is poured into a graduated cylinder (Figure 23.4). At the end of the count, the resulting accumulation is read into memory, where it represents the numerosity.

The model in Figure 23.4 is the well-known accumulator model for nonverbal counting by the successive incrementation of mental magnitudes. It is also the origin of the hypothesis that the mental magnitudes representing duration and the mental magnitudes representing numerosity are essentially the same, differing only in the mapping process that generates them and, therefore, in what it is they refer to. Put another way, both numerosity and duration are represented mentally by real numbers. Meck and Church (1983) compared the psychophysics of number and time representation in the rat and concluded that the coefficient of variation, the ratio between the standard deviation and the mean, was the same, which is further evidence for the hypothesis that the same system of real numbers is used in both cases.

The model in Figure 23.4 was originally proposed to explain behavior based on the numerosity of a set of serial events (for example, the number of responses made), but it may be generalized to the case in which the items to be counted are presented all at once—for example, as a to-be-enumerated visual array. In that case, each item in the array can be assigned a unit magnitude, and the unit magnitudes can then be summed.
(accumulated) across space, rather than over time. Dehaene and Changeux (1993) developed a neural net model based on this idea. In their model, the activity aroused by each item in the array is reduced to a unit amount of activity, so that it is no longer proportional to the size, contour, and so on, of the item. The units of activity corresponding to the entities in the array are summed across the visual field to yield a mental magnitude representing the numerosity of the array.

Nonhuman Animals Reason Arithmetically

We have repeatedly referred to the real number system because numbers (or magnitudes) are truly that only if they are arithmetically manipulated. Being causally connected to something that can be represented numerically does not make an entity in the brain or anywhere else a number. It also must be processed suitably. The defining features of a numerical representation are: (1) There is a causal mapping from discrete and continuous quantities in the world to the numbers. (2) The numbers are arithmetically processed. (3) The mapping is usefully (validly) invertible: The numbers obtained through arithmetic processing correctly refer through the inverse mapping back to the represented reality.

There is a considerable experimental literature demonstrating that laboratory animals reason arithmetically with mental magnitudes representing numerosity and duration. They add, subtract, divide, and order subjective durations and subjective numerosities; they divide subjective numerosities by subjective durations to obtain subjective rates of reward; and they multiply subjective rates of reward by the subjective magnitudes of the rewards to obtain subjective incomes. Moreover, the mapping between real magnitudes and their subjective counterparts is such that their mental operations on subjective quantities enable these animals to behave effectively. Here we summarize a few of the relevant studies. (For reviews, see Boysen & Hallberg, 2000; Brannon & Rottman, 2003; Dehaene, 1997; Gallistel, 1990; Spelke & Dehaene, 1999).

Adding Numerosities

Boysen and Berntson (1989) taught chimpanzees to pick the Arabic numeral corresponding to the number of items they observed. In the last of a series of tests of this ability, they had their subjects go around a room and observe either caches of actual oranges in two different locations or Arabic numerals that substituted for the caches themselves. When they returned from a trip, the chimps picked the Arabic numeral corresponding to the sum of the two numerosities they had seen, whether the numerosities had been directly observed (hence, possibly counted) or symbolically represented (hence not counted). In the latter case, the magnitudes corresponding to the numerals observed were presumably retrieved from a memory map relating the arbitrary symbols for number (the Arabic numerals) to the mental magnitudes that naturally represent those numbers. Once retrieved, they could be added very much like the magnitudes generated by the nonverbal counting of the caches. (For further evidence that nonverbal vertebrates sum numerical magnitudes, see Beran, 2001; Church & Meck, 1984; Hauser, 2001, and citations therein; Olthof, Iden, & Roberts, 1997; Olthof & Roberts, 2000; Rumbaugh, Savage-Rumbaugh, & Hegel, 1987.)

Subtracting Durations and Numerosities

On each trial of the time-left procedure (Gibbon & Church, 1981), subjects are offered an ongoing choice between a steadily diminishing delay on the one hand (the time-left option) and a fixed delay on the other hand (the standard option). At an unpredictable point in the course of a trial, the opportunity to choose ends. Before it gets its reward, the subject must then endure the delay associated with the option it was exercising at that moment. If it was responding at the so-called standard station, it must endure the standard delay; if it was responding at the time-left station, it must endure
the time left. At the beginning of a trial, the time left is much longer than the standard delay, but it grows shorter as the trial goes on, because the time so far elapsed in a trial is subtracted from the initial value to yield the time left. When the subjective time left is less than the subjective standard, subjects switch from the standard option to the time-left option. The subjective time left is the subjective duration of a remembered initial duration (subjective initial duration) minus the subjective duration of the interval elapsed since the beginning of the trial. In this experiment, therefore, subjects' behavior depends on the subjective ordering of a subjective difference and a subjective standard (two of the basic arithmetic operations).

In the number-left procedure (Brannon, et al., 2001), pigeons peck a center key to generate flashes and to activate two choice keys. The flashes are generated on a variable ratio schedule, which means that the number of pecks required to generate each flash varies randomly between one and eight. When the choice keys are activated, the pigeons can get a reward by pecking either of them, but only after their pecking generates the requisite number of flashes. For one of the choice keys, the so-called standard key, the requisite number is fixed and independent of the number of flashes already generated. For the other choice, the number-left key, the requisite number is the difference between a fixed starting number and the tally of flashes already generated by pecking the center key. The flashes generated by pecking a choice key are also delivered on a variable ratio schedule.

The use of variable ratio schedules for flash generation partially dissociates time and number. The number of pecks required to generate any given number of flashes—and, hence, the amount of time spent pecking—varies greatly from trial to trial. This makes possible an analysis to determine whether subjects' choices are controlled by the time spent pecking the center key or by the number of flashes generated. The analysis shows that it was number, not duration, that controlled the pigeons' choices.

In this experiment, subjects chose the number-left key when the subjective number left was less than some fraction of the subjective number of flashes required on the standard key. Their behavior therefore was controlled by the subjective ordering of a subjective numerical difference and a subjective numerical standard. For an example of spontaneous subtraction in monkeys, see Sulsowski and Hauser (2001).

There also is evidence that the mental magnitudes representing duration and rates are signed—there are both positive and negative mental magnitudes (Gallistel & Gibbon, 2000; Savastano & Miller, 1998). In other words, there is evidence for subtraction and for the hypothesis that the system for arithmetic reasoning with mental magnitudes is closed under subtraction.

Dividing Numerosity by Duration

When vertebrates, from fish to humans, are free to forage in two different nearby locations, moving back and forth repeatedly between them, the ratio of the expected durations of the stays in the two locations matches the ratios of the numbers of rewards obtained per unit of time (Herrnstein, 1961). Until recently, it had been assumed that this matching behavior depended on the law of effect. When subjects do not match, they get more reward per unit of time invested in one patch than per unit of time invested in the other. Only when they match do they get equal returns on their investments. Matching therefore could be explained on the assumption that subjects try different ratios of investments (different ratios of expected stay durations) until they discover the ratio that equates the returns (Herrnstein & Vaughan, 1980).

Gallistel et al. (2001) showed that rats adjust to changes in the scheduled rates of reward as fast as it is in principle possible to do so; they are ideal detectors of such changes. They could not adjust so rapidly if they were discovering by trial and error the ratio of expected stay durations that equated their returns. The importance of this in the present context
is that a rate is the number of events — a discrete or countable quantity, which is the kind of thing naturally represented by positive integers — divided by a continuous or (uncountable) quantity — the duration of the given interval, which is the kind of thing that can be represented only by a real number.

Gallistel and Gibbon (2000) review the evidence that both Pavlovian and instrumental conditioning depend on subjects’ estimating rates of reward. They argue that rate of reward is the fundamental variable in conditioned behavior. The importance of this in the present context is twofold. First, it is evidence that subjects divide mental magnitudes. Second, it shows why it is essential that countable and uncountable quantity be represented by commensurable mental symbols — symbols that are part of the same system and can be combined arithmetically without regard to whether they represent countable or uncountable quantity. If countable quantity were represented by one system (say, a system of discretely ordered symbols, formally analogous to the list of counting words) and uncountable (continuous) quantity by a different system (a system of mental magnitudes), it would not be possible to estimate rates. The brain would have to divide mental apples by mental oranges.

Multiplying Rate by Magnitude

When the magnitudes of the rewards obtained in two different locations differ, then the ratio of the expected stay durations is determined by the ratio of the incomes obtained from the two locations (Catania, 1963; Harper, 1982; Keller & Gollub, 1977; Leon & Gallistel, 1988). The income from a location is the product of the rate and the reward magnitude. This result implies that when subjects multiply subjective rates by subjective magnitudes to obtain subjective incomes. The signature of multiplicative combination is that changing one variable by a given factor — for example, doubling the rate — changes the product by the same factor (doubles the income) regardless of the value of the other factor (the magnitude of the rewards). Leon and Gallistel (1988) showed that changing the ratio of the rates of rates by a given factor changed the ratio of the expected stay durations by that factor, regardless of the ratio of the reward magnitudes; thereby proving that subjective magnitudes combine multiplicatively with subjective rates to determine the ratio of expected durations.

Ordering Numerosities

Most of the paradigms that demonstrate mental addition, subtraction, multiplication, and division also demonstrate the ordering of mental magnitudes, because the subject’s choice depends on this ordering. Inn and Terrace (2000) demonstrated directly that monkeys order numerosities by presenting simultaneously several arrays of elements in which the subject was required to choose the array containing the greater numerosity. The array containing the greater numerosity was rewarded, and the array containing the lesser numerosity was not.

The most interesting feature of Braithwaite’s results was that they were impossible to teach subjects to touch the rays in an order that did not conform to the order of the numerosities (either ascending or descending). This implies that the ordering of numerosities is highly salient to monkeys. It cannot ignore their natural ordering to learn an unnatural one. It also suggests that the natural ordering is not itself learned but is inherent in the monkey’s representational system of numerosity. What is learned is to respond on the basis of numerical order, not the order itself.

In summary, research with vertebrates some of which have not shared a com
Humans Also Represent Numerosity with Mental Magnitudes

The Symbolic Size and Distance Effects

It would be odd if humans did not share with their remote vertebrate cousins (pigeons) and near vertebrate cousins (chimpanzees) the mental machinery for representing countable and uncountable quantity by means of a system of real numbers. That humans do represent integers with mental magnitudes was first suggested by Mayer and Landauer (1967; 1973) when they discovered what has come to be called the symbolic distance effect (Figure 23.5). When subjects are asked to judge the numerical order of Arabic numerals as rapidly as possible, their reaction time is determined by the relative numerical distance: The greater the distance between the two numbers, the more quickly their order may be judged. Subsequently, Parkman (1971) further showed that the greater the numerical value of the smaller digit, the longer it takes to judge their order (the size effect). The two effects together may be summarized under a single law, namely that the time to judge the numerical order of two numerals is a function of the ratio of the numerical magnitudes they represent. Weber’s law that the ability of two magnitudes to be discriminated is a function of their ratio therefore applies to symbolically represented numerical magnitude.

The size and distance effects in human judgments of the ordering of discrete and continuous quantities are robust. They are observed when the numerosities being compared are actually instantiated (by visual arrays of dots) and when they are represented symbolically by Arabic numerals (Buckley & Gillman, 1974). The symbolic distance and size effects are observed in the single-digit range and in the double-digit range (Dehaene, Dupoux, & Mehler, 1990; Hinrichs, Yurko, & Hu, 1981). That this effect of numerical magnitude on the time to make an order judgment should appear for symbolically represented numerosities between 1

Figure 23.5. The symbolic and nonsymbolic size and distance effects on the human reaction time while judging numerical order in the range from 1 to 9. In three of the conditions, the numerosities to be judged were instantiated by two dot arrays (nonsymbolic numerical ordering). The dots within each array were in either a regular configuration, an irregular configuration that did not vary upon repeated presentation, or in randomly varying configurations. In the fourth condition, the numerosities were represented symbolically by Arabic numerals. The top panel plots mean reaction times as a function of the numerical difference. The bottom plots it as a function of the size of the smaller comparand. Replootted from Figures 23.1 and 23.2 in Buckley & Gillman, 1974.
Figure 23.6. The reaction time and accuracy functions for monkey (Rhesus macaque) and human subjects in touching the more numerous of two random dot visual arrays presented side by side on a touch-screen video monitor. Reproduced from Brannon & Terrace, 2002 with permission.

and 100 is decidedly counterintuitive. If introspection were any guide to what one’s brain was doing, one would think that the facts about which numbers are greater than which are stored in a table of some kind and simply looked up. In that case, why would it take longer to look up the ordering of 2 and 3 (or 65 and 62) than 2 and 5 (or 65 and 47)? It does, however, and this suggests that the comparison that underlies these judgments operates with noisy mental magnitudes. According to this hypothesis the brain maps the numerals to the noisy mental magnitudes that would be generated by the nonverbal numerical estimation system if it enumerated the corresponding numerosity. It then compares those two noisy mental magnitudes to decide which numeral represents the bigger numerosity.

On this hypothesis, the comparison that mediates the verbal judgment of the numerical ordering of two Arabic numerals uses the same mental magnitudes and the same comparison mechanism as that used by the nonverbal numerical reasoning system that we are assumed to share with many nonverbal animals. Consistent with this hypothesis is Brannon and Terrace’s (2002) finding that reaction time functions from humans and monkeys for judgments of the numerical ordering of pairs of visually presented dot arrays are almost exactly the same (Figure 23.6).

Buckley and Gillman (1974) modeled the underlying comparison process. In their model, numbers are represented in the brain by noisy signals (mental magnitudes) with overlapping distributions. The closer two numerosities are in the ordering of numerosities, the more their corresponding signal distributions overlap. When the subject judges the ordering of two numerosities, the brain subtracts the signal representing the one numerosity from the signal representing the other, and puts the signed difference in an accumulator – a mechanism that adds up inputs over, in this case, time. The accumulator for the ordering operation has fixed positive and negative thresholds. When its positive threshold is exceeded, it reports the one number to be greater than the other and vice versa when its negative threshold is exceeded. If neither accumulator threshold is exceeded, the comparator resamples the two signals, computes a second difference, based on the two new samples, and adds it to the accumulator. The resampling explains why it takes longer (on average) to
make the comparison when the numerosities being compared are closer. The closer they are, the more their corresponding signal distributions overlap. The more these distributions overlap, the more samples will have to be made and added together (accumulated) before (on average) a decision threshold is reached.

Nonverbal Counting in Humans

Given the evidence from the symbolic size and distance effects that humans represent number with mental magnitudes, it seems likely that they share with the nonverbal animals in the vertebrate clade a nonverbal counting mechanism that maps from numerosities to the mental magnitudes that represent them. If so, then it should be possible to demonstrate nonverbal counting in humans when verbal counting is suppressed. Whalen, Gallistel, and Gelman (1999) presented subjects with Arabic numerals on a computer screen and asked them to press a key as fast as they could without counting until it felt like they had pressed the number signified by the numeral. The results from humans looked very much like the results from pigeons and rats. The mean number of presses increased in proportion to the target number and the standard deviations of the distributions of presses increased in proportion to their mean, so that the coefficient of variation was constant.

This result suggests, first, that subjects could count nonverbally, and, second, that they could compare the mental magnitude thus generated to a magnitude obtained using a learned mapping from numerals to mental magnitudes. Finally, it implies that the mapping from numerals to mental magnitudes is such that the mental magnitude given by this mapping approximates the mental magnitude generated by counting the numerosity signified by a given numeral.

In a second task, subjects observed a dot flashing very rapidly but at irregular intervals. The rate of flashing (eight per second) was twice as fast as estimates of the maximum speed of verbal counting (Mandler & Shebo, 1982). Subjects were asked not to count but to say about how many times they thought the dot had flashed. As in the first experiment, the mean number estimated increased in proportion to the number of flashes and the standard deviation of the estimates increased in proportion to the mean estimate. This implies that the mapping between the mental magnitudes generated by nonverbal counting and the verbal symbols for numerosities is bidirectional; it can go from a symbol to a mental magnitude that is comparable to the one that would be generated by nonverbal counting, and it can go from the mental magnitude generated by a nonverbal count to a roughly corresponding verbal symbol. In both cases, the variability in the mapping is scalar.

Whalen et al. (1999) gave several reasons for believing that their subjects did not count subvocally. We will not review them here, because a subsequent experiment speaks more directly to this issue (Cordes et al., 2001).

Cordes et al. (2001) suppressed articulation by having their subjects repeat a common phrase (“Mary had a little lamb”) while they attempted to press a target number of times, or by having subjects say “the” coincident with each press. In control experiments, subjects were asked to count their presses out loud. In all conditions, subjects were asked to press as fast as possible.

The variability data from the condition under which subjects were required to say "the" coincident with each press are shown in Figure 23.7 (filled squares). As in Whalen et al. (1999), the coefficient of variation was constant (scalar variability). The best-fitting line has a slope that does not differ significantly from zero. The contrasting results from the control conditions, in which subjects counted out loud, are the open squares. Here, the slope – on this log-log plot – does deviate very significantly from zero. In verbal counting, one would expect counting errors – double counts and skips – to be the most common source of variability. On the assumption that the probability of a counting error is approximately the same at successive steps in a count, the resulting variability in final counts should be binomial
rather than scalar. It should increase in proportion to the square root of the target value, rather than in proportion to the target value. If the variability is binomial rather than scalar, then when the coefficient of variation is plotted against the target number on a log-log plot, it should form a straight line with a slope of \(-0.5\). This, in fact, is what was observed in the out-loud counting conditions: the variability was much less than in the nonverbal counting conditions and, more importantly, it was binomial rather than scalar. The mean slope of the subject-by-subject regression lines in the two control conditions was significantly less than zero and not significantly different from \(-0.5\). The contrasting patterns of variability in the counting-out-loud and nonverbal counting conditions strengthen the evidence against the hypothesis that subjects in the nonverbal counting conditions were counting subvocally.

In sum, nonverbal counting may be demonstrated in humans, and it looks just like nonverbal counting in nonhumans. Moreover, mental magnitudes (real numbers) comparable to those generated by nonverbal counting appear to mediate judgments of the numerical ordering of symbolically presented integers. This suggests that the nonverbal counting system is what underlies and gives meaning to the linguistic representation of numerosity.

Nonverbal Arithmetic Reasoning in Humans

In humans, as in other animals, nonverbal counting would be pointless if they did not reason arithmetically with the resulting mental magnitudes. Recent experiments give evidence that they can.

Barth (2001; see also Barth et al., under review 2004) tested adults' performance on tasks that required the addition, subtraction, multiplication, and division of nonverbally estimated numerosities, under conditions in which verbally mediated arithmetic was unlikely. Subjects were given instances of two numerosities in rapid sequence, each instance presented too quickly to be countable verbally. Then, they were given an instance of a third numerosity, and they indicated by pressing one of two buttons whether the sum, or difference, or product, or quotient of the first two numerosities was greater or less than the third.

The numerosities were presented either as dot arrays (with dot density and area covered controlled) or as tone sequences. In some conditions, presentation modalities
Figure 23.8. The accuracy of order judgments for two nonverbally estimated numerosities. The estimates of numerosity were based on direct instantiations in the first condition (N₁ < N₂). In the other conditions, one of them was derived from the composition of two other estimates. Data replotted from Barth, 2001, p. 109.

...were mixed, so, for example, subjects compared the sum of a tone sequence and a dot array to either another tone sequence or another dot array.

In Barth's results, there was no effect of comparand magnitude on reaction time or accuracy, only an effect of their ratio. That is, it did not matter how big the two numerosities were; only the proportion of the smaller to the larger affected reaction time and accuracy. The same proved to be true in Barth's experiments involving mental magnitudes derived by arithmetic composition. This enables a comparison between the case in which the comparands are both given directly and the case in which one comparand is the estimated sum or difference of two estimated numerosities. As Figure 23.8 shows, the accuracy of comparisons involving a sum was only slightly less at each ratio of the comparands than the accuracy of a comparison between directly given comparands.

At a given comparand ratio, the accuracy of comparisons involving differences was less than the accuracy of a comparison between directly given comparands (Figure 23.8). This could hardly be otherwise. For addition, the sum increases as the magnitude of the pair of operands increases, but for subtraction, it does not; the difference between a billion and a billion and one is only one. The uncertainty (estimation noise) in the operands must propagate to the result of the operation, so the uncertainty about the true value of a difference must depend in no small measure on the magnitude of the operands from which it derived. If one looks only at the ratio of the difference to the other comparand, one fails to take account of the presumably inescapable impact of operand magnitude on the noise in the difference.

Barth's experiments establish by direct test the human ability to combine noisy nonverbal estimates of numerosity in accord with the combinatorial operations that define the system of arithmetic. In her data (Figure 23.8), as the proportion between the smaller and larger comparand increases toward unity, the accuracy of the comparisons degrades in a roughly parallel fashion regardless of the derivation of the first comparand. This suggests that the scalar variability in the nonverbal estimates of numerosity propagates to the mental magnitudes produced by the composition of those estimates.

Barth's data, however, do not directly demonstrate the variability in the results of composition nor allow one to estimate the quantitative relation between the noise in the operands and the noise in the result. Cordes et al. (submitted 2004) used the previously described key-tapping paradigm to demonstrate the nonverbal addition and subtraction of nonverbal numerical estimates and the quantitative relation between the variability in the estimates of the sums and differences and the variability in the estimates of the operands.

In the baseline condition of the Cordes et al. (submitted 2004) experiment, subjects saw a sequence of rapid, arrhythmic, variable-duration dot flashes on a computer screen at the conclusion of which they attempted to make an equivalent number of taps on one button of a two-button response box, tapping as rapidly as they could while saying the out loud coincident with each tap. In the compositional conditions, subjects saw one sequence on the left side of the screen, a second sequence on the right side, and were asked to tap out either the sum or...
the difference. In the subtraction condition, they pressed the button on the side they believed to have had the fewer flashes as many times as they felt were required to make up the difference.

Sample results are shown in Figure 23.9. The numbers of responses subjects made, in all cases, were approximately linear functions of the numbers they were estimating, demonstrating the subjects' ability to add and subtract the mental magnitudes representing numerosities. In the baseline condition, the variability in the numbers tapped out was an approximately scalar function of the target number, although there was some additive and binomial variability.

The variability in the addition data was also, to a first approximation, a scalar function of the objective sum. Not surprisingly, however, the variability in the subtraction data was not. In addition, answer magnitude covaries with operand magnitude: The greater the magnitude of the operands, the greater the magnitude of their sum. In subtraction, answer magnitude is poorly correlated with operand magnitude because large-magnitude operands often produce small differences. Insofar as the scalar variability in the estimates of operand magnitudes propagates to the variability in the results of the operations, there will be large variability in these small differences.

Cordes et al. (submitted 2004) fit regression models with additive, binomial, and scalar variance parameters to the baseline data, and to the addition and subtraction data. These fits enabled them to assess the extent to which the magnitude of the pair of operands predicted the variability in their sum and difference. On the assumption that there is no covariance in the operands, the variance in the results of both subtraction and addition should be equal to the sum of the variances for the two operands. When Cordes et al. plotted predicted variability against directly estimated variability (Figure 23.9D), they found that the subtraction data did conform approximately to expectations but that the addition data clearly fell above the line. In other words, the variability in results of subtraction was approximately what was expected from the sum of the estimated variances in the operands, but the variability in the addition results was greater than expected.

Retrieving Number Facts

There is an extensive literature on reaction times and error rates in adults doing single-digit arithmetic (Ashcraft, 1992; Campbell, 1999; Campbell & Fugelsang, 2001; Campbell & Guter, 2002; Campbell, 2005; Campbell & Fugelsang, 2001; Noel, 2001). It resists easy summary. However, magnitude effects analogous to those found for order judgments are a salient and robust finding: The bigger the numerosities represented by a pair of digits, the longer it takes to recall their sum or product and the greater the likelihood of an erroneous recall. The same is true in children (Campbell & Graham, 1985). For both sets of number facts, there is a notable exception to this generalization. The sums and products of ties (for example, 4 + 4 or 9 x 9) are recalled much faster than is predicted by the regressions for non-ties, although ties, too, show a magnitude effect (Miller, Perlmutter, & Keating, 1984).

There is a striking similarity in the effect of operand magnitude on the reaction times for both addition and multiplication. The slopes of the regression lines (reaction time versus the sum or product of the numbers involved) are not statistically different (Geary, Widman, & Little, 1986). More importantly, Miller, Perlmutter, & Keating (1984) found that the best predictor of reaction times for digit multiplication problems was the reaction times for digit addition problems, and vice versa. In other words, the reaction-time data for these two different sets of facts, which are mastered at different ages, show very similar microstructure.

These findings suggest a critical role for mental magnitudes in the retrieval of the basic number facts (the addition and multiplication tables) upon which verbally mediated computation strategies depend. Whalen's (1997) diamond arithmetic
experiment showed that these effects depend primarily on the magnitude of the operands, not on the magnitude of the answers, nor on the frequency with which different facts are retrieved (although these may also contribute). Whalen (1977) taught subjects a new arithmetic operation of his own devising, the diamond operation. It was such that there was no correlation between operand magnitude and answer magnitude. Subjects received equal practice on each fact, so explanations in terms of differential practice did not apply. When subjects had achieved a high level of proficiency at retrieving the diamond facts, Whalen measured their reaction times. He obtained the same pattern of results seen in the retrieval of the facts of addition and multiplication.

Two Issues

What is the Form of Mapping from Magnitudes to Mental Magnitudes?

Weber's law, that the discriminability of two magnitudes (two sound intensities or two light intensities) is a function of their ratio, is the oldest and best established quantitative law in experimental psychology. Its implications for the question of the quantitative relation between directly measurable magnitudes (hereafter called objective magnitudes) and the mental magnitudes by which they are represented (hereafter called subjective magnitudes) have been the subject of analysis and debate for more than a century. This line of investigation led to work on
the mathematical foundations of measurement, work concerning the question of what it means to measure something (Krantz et al., 1971; Krantz, 1972; Luce, 1990; Stevens, 1951, 1970). The key insight from work on the foundations of measurement is that the quantitative form of the mapping from things to their numerical representatives cannot be separated from the question of the arithmetic operations that are validly performed on the results of that mapping. The question of the form of the mapping is meaningful only at the point at which the numbers (magnitudes) produced by the mapping enter into arithmetic operations.

The discussion began when Fechner used Weber's results to argue that subjective magnitudes (for example, loudness and brightness) are logarithmically related to the corresponding objective magnitudes (sound and light intensity). Fechner's reasoning is echoed to the present day by authors who assume that Weber's law implies logarithmic compression in the mapping from objective numerosity to subjective numerosity. These conjectures are uninformed by the literature on the measurement of subjective quantities spawned by Fechner's assumption. In deriving logarithmic compression from Weber's law, Fechner assumed that equally discriminable differences in objective magnitude correspond to equal differences in subjective magnitude. When you directly ask subjects whether they think just discriminable differences in, for example, loudness, represent equal differences, however, they do not; they think a just discriminable difference between two loud sounds is greater than the just discriminable difference between two soft sounds (Stevens, 1951).

The reader will recognize that Barth performed both experiments - the discrimination experiment (Weber's experiment) and the difference judging experiment - but with numerosities instead of noises. In the discrimination experiment, she found that Weber's law applied: Two pairs of nonverbally estimated numerosities can be correctly ordered 75% of the time when \(N_2/N_1 = N_1/N_2 = .83 \), where \(N \) now refers to the (objective) numerosity of a set (Figure 23.8).

From Moyer and Landauer (1967) to the present (Dehaene, 2002), this has been taken to imply that subjective numerosity is a logarithmic function of objective numerosity. If that were so, and if subjects estimated the arithmetic differences between objective magnitudes from the arithmetic differences in the corresponding subjective magnitudes, then the Barth (2001) and Cordes et al. (submitted 2004) subtraction experiments would have failed, and so would the experiments demonstrating subtraction of time and number in nonverbal animals, because the arithmetic difference between the logarithms of two magnitudes represents their quotient, not their arithmetic difference.

In short, when subjects respond appropriately to the arithmetic difference between two numerical magnitudes, their behavior is not based on the arithmetic difference between mental (subjective) magnitudes that are proportional to the logarithms of the objective magnitudes. That much is clear. Either (Model 1): The behavior is based on the arithmetic difference in mental magnitudes that are proportional to the objective magnitudes (a proportional rather than logarithmic mapping). Or (Model 2): Dehaene (2001) has suggested that mental magnitudes are proportional to the logarithms of objective magnitudes and that, to obtain from them the mental magnitude corresponding to the objective difference, the brain uses a look-up table, a procedure analogous to the procedure that Whalen's (1997) subjects used to retrieve the facts of diamond arithmetic. In this model, the arithmetic difference between two mental magnitudes is irrelevant; the two magnitudes serve only to specify where to enter the look-up table - where in memory the answer is to be found.

In summary, there are two intimately interrelated unknowns concerning the mapping from objective to subjective magnitudes - the form of the mapping and the formal character of the operations on the results of the mapping. Given the experimental evidence showing valid arithmetic processing, knowing either would fix the other.
In the absence of firm knowledge about which, can behavioral experimental evidence decide between the alternative models? Perhaps not definitively, but there are relevant considerations. The Cordes et al. (submitted 2004) experiment estimates the noise in the results of the mental subtraction operation at and around zero difference (Figure 23.10C). There is nothing unusual about the noise around answers of approximately zero. It is unclear what assumptions about noise would enable a logarithmic mapping model to explain this. The logarithm of a quantity goes to minus infinity as the quantity approaches zero, and there are no logarithms for negative quantities. On the assumption that realizable mental magnitudes, like realizable nonmental magnitudes, cannot be infinite, the model has to treat zero as a special case. How the treatment of that special case could exhibit noise characteristics of a piece with the noise well away from zero is unclear.

It is also unclear how the logarithmic-mapping-plus-table-lookup model can deal with the fact that the sign of a difference is not predictable a priori. In this model, a bigger magnitude (number) cannot be subtracted from a smaller, because the resulting negative number does not have a logarithm; there is no way to represent a negative magnitude in a scheme in which magnitudes are represented by their logarithms. Thus, this model is not closed under subtraction.

Is There a Distinct Representation for Small Numbers?

When instantiated as arrays of randomly arranged small dots, presented for a fraction of a second, small numerosities can be estimated more quickly than large ones, but only up to about six. Thereafter, the estimates increase more or less linearly with the number of dots, but the reaction time is flat (Figure 23.10).

Subjects' confidence in their estimates also falls off precipitously after six (Kaufman et al., 1940; Taves, 1941). This led Taves to argue that the processes by which subjects arrive at estimates for numerosities of five or fewer are distinct from the processes by which they arrive at estimates for numerosities of seven or more. Kaufman et al. (1949) coined the term *subitizing* to describe the process that operates in the range below six.

When the dot array to be enumerated is displayed until the subject responds, rather than very briefly by a tachistoscope, the reaction time function is superimposable on the one shown in Figure 23.10, up to and including numerosity six. It does not level off at six, however; rather, it continues with the same slope (about 325 ms/dot) indefinitely (Jensen, Reese, & Reese, 1950). This slope represents the time it takes to count subvocally. The discontinuity at six therefore represents the point at which a nonverbal numerosity-estimating mechanism or
process takes over from the process of verbal counting, because, presumably, it is not possible to count verbally more than six items under tachistoscopic conditions.

The nonverbal numerosity-estimating process is probably the basis for the demonstrated capacity of humans to compare (order) large numerosities instantiated either visually or auditorily (Barth, Kanwisher, & Spelke, 2003). The reaction times and accuracies for these comparisons show the Weber law characteristic, which is a signature of the process that represents numerosities by mental magnitudes rather than by discrete wordlike symbols (Cordes et al., 2001). The assumption that the representation is by mental magnitudes regardless of the mode of presentation is consistent with the finding that there is no cost to cross-modal comparisons of large numerosities; these comparisons take no longer and are no more inaccurate than comparisons within presentation modes (Barth et al., 2003).

There is controversy about the implications of the reaction time function within the subitizing range below six. In this range, there is approximately a 30-ms increment in going from one to two dots, an 80-ms increment in going from two to three, and a 200-ms increment in going from three to four. These are large increments. The net increment from one to four is about 300 ms, half the total latency to respond to a one-item array (Jensen, Reese, & Reese 1950; Kaufman et al., 1949; Mandler & Shebo, 1982). Moreover, the increments increase at each step. In particular, the step from two to three is significantly greater than the step from one to two in almost every data set.

It is often claimed that there is a discontinuity in the reaction time function within the subitizing range (Davis & Pérusse, 1988; Klahr & Wallace, 1973; Piazza et al., 2003; Simon, 1999; Strauss & Curtis, 1984; Woodworth & Schlosberg, 1954); but it also often has been pointed out that there is no empirical support for this claim (Balakrishnan & Ashby, 1992). Because the reaction time function is neither flat nor linear in the range from one to three, it offers no support for the common theory that very small numbers are directly perceived, as was first pointed out by the authors who coined the term subitizing (Kaufman, et al., 1949).

Gallistel and Gelman (1992) and Dehaene and Cohen (1994) suggested that, in the subitizing range, there is a transition from a strategy based on mapping from nonverbally estimated mental magnitudes to a strategy based on verbal counting. This hypothesis has recently received important support from a paper by Whalen and West (2001). By strongly encouraging rapid, approximate estimates and taking measures to make verbal counting more difficult, Whalen & West (2001) obtained a reaction time function with a slope of 47 ms per item, from one to sixteen items.

The coefficient of variation in the estimated numbers was constant from 1 to 16, at about 14.5%, which is close to the value of 16% in the animal timing literature (Gallistel, King, & McDonald, 2004). The Whalen et al. data therefore show scalar variability in rapid number estimates all the way down to estimates of one and two, as do the data of Cordes et al. (2001). Whalen & West (2001) show that with this level of noise in the mental magnitudes being mapped to number words, the expected percent errors in the resulting verbal estimates of numerosity are close to zero in the range one to three and increase rapidly thereafter — in close accord with the experimentally observed percent errors in their speeded condition (Figure 23.11). This explains why subjects in experiments in which it is not strongly discouraged switch to subvocal verbal counting somewhere between four and six, and why their confidence in their speeded estimates falls off rapidly after six (Kaufman et al., 1949; Taves, 1941).

Whalen et al. (under review) attribute the constant slope of 47 ms/item in the speeded reaction time function to a serial nonverbal counting process. In short, the reaction time function does not support the hypothesis that there are percepts of twoness and threeness, constituting a representation of small numerosities incommensurable with the mental magnitudes that represent other numerosities.
broad agreement on this conclusion within the literature on numerical cognition because of the abundant evidence for Weber-law characteristics in symbolic numerical behavior. The literature on the deficits in numerical reasoning seen in brain-injured patients is broadly consistent with this same conclusion (Dehaene, 1997; Noel, 2001).

It also seems plausible that the nonverbal system of numerical reasoning mediates verbally expressed numerical reasoning. It seems plausible, for example, that adults believe that $(2 + 1) > 2$ and four minus two is less than four because that is the behavior of the mental magnitudes to which they (unconsciously) refer those symbols to endow them with meaning and reference to the world.

Empiricists offer as an alternative the hypothesis that adults believe these symbolic propositions because they have repeatedly observed that the properties of the world to which the words or symbols refer behave in this way. Adults know, for example, that the word two refers to every set that can be placed in one–one correspondence with some foundational set of two and likewise, mutatis mutandis, for the word one, and that the phrase plus refers to the uniting of sets, and that the phrase greater than refers to the relation between a set and its proper subsets, and so on. From an empiricist’s perspective, the words have these real world references only by virtue of the experiences adults have had, which are ubiquitous and universal.

Nativists or rationalists respond that reference to the world by verbal expressions is mediated by preverbal world-referring symbolic systems in the mind of the hearer and that the ubiquity and universality of the experiences that are supposed to have created world-reference for these expressions are grounds for supposing that symbolic systems with these properties are part of the innate furniture of the mind. We will not pursue this old debate further, except to note the possible relevance of the experiments previously reviewed demonstrating that nonverbal animals reason arithmetically about both numerosities (integer quantities) and magnitudes (continuous quantities).
We turn instead to the experimental literature on numerical competence in very young children. It is difficult to demonstrate conclusively behavior based on numerosity in infants because it is hard not to confound variation in one or more continuous quantities with variation in numerosity, and infants often respond on the basis of continuous dimensions of the stimulus (Clearfield & Mix, 1999; Feigenson, Carey, & Spelke, 2002; see Mix, Huttenlocher, & Levine, 2002, for review). Nonetheless, there are studies that appear to demonstrate sensitivity to numerical order in infants (Brannon, 2002). Moreover, the ability of infants to discriminate sets on the basis of numerosity extends to pairs as large as eight versus sixteen (Lipton & Spelke, 2003; Xu & Spelke, 2000). As a result, there is reason to suppose that preverbal children share with nonverbal animals a nonverbal representation of numerosity.

The assumption that preverbal children represent numerosities by a system of mental magnitudes homologous to the system found in nonverbal animals is the foundation of the account of the development of verbal numerical competence suggested by Gelman and her collaborators (Gelman & Brenneman, 1994; Gelman & Corbitt, 1991; Gelman & Williams, 1998). They argue that the development of verbal numerical competence begins with learning to count, which is guided from the outset by the child’s recognition that verbal counting is homomorphic to nonverbal counting. In nonverbal counting, the pouring of successive cups into the accumulator (the addition of successive unit magnitudes to a running sum) creates a one-to-one correspondence between the items in the enumerated set and a sequence of mental magnitudes. Although the mental magnitudes thus created have the formal properties of real numbers, the process that creates them generates a discretely ordered sequence of mental magnitudes, an ordering in which each magnitude has a next magnitude. The final magnitude represents the numerosity of the set. Verbal counting does the same thing; it assigns successive words from an ordered list to successive items in the set being enumerated, with the final word representing the cardinality of the set.

Gelman and her collaborators argue that the principles that govern nonverbal counting inform the child’s counting behavior from its inception (Gelman & Gallistel, 1978). Children recognize that number words reference numerosities because they implicitly recognize that they are generated by a process homomorphic to the nonverbal counting of serially considered sets. Number words have meaning for the child, as for the adult, because it recognizes at an early age that they map to the mental magnitudes by which the nonverbal mind represents numerosities. On this account, the child’s mind tries to apply from the outset the Gelman and Gallistel counting principles (Gelman & Gallistel, 1978) — that counting must involve a one-to-one assignment of words to items in the set, that the words must be taken from a stably ordered list, and that the last word represents the cardinality of the set. It takes a long time to learn the list and to implement the verbal counting procedure flawlessly, because list learning is hard, because the implementation of the procedure is challenging (Gelman & Greano, 1989), and because the child is often confused about what the experimenter wants.

Critical to Gelman’s account is evidence that during the period when they are learning to count children already understand that the last count word represents a property of the set about which it is appropriate to reason arithmetically. Without such evidence, there is no ground for believing that the child has a truly numerical representation. Evidence on this crucial point comes from the so-called magic experiments (Brannon & Van de Walle, 2001; Bullock & Gelman, 1977; Gelman, 1972, 1977, 1993). These experiments drew children into a game in which a winner and loser plate could be distinguished on the basis of the number of toy mice they contained. The task engaged children’s attention and caused them to justify their judgments as to whether an uncovered plate was or was not the winner. Children as young as two and a half years indicated that the numerosity was the decisive dimension, and they spontaneously counted to justify their judgment that the plate with the correct numerosity was the
winner. On magic trials, a mouse was sup-

eritionally added or subtracted from the

winner plate during the shuffling, so that it

had the same numerosity as the loser plate.

Now, both plates when uncovered were re-

vealed to be loser plates. In talking about

what surprised them, children indicated that

something must have been added or sub-

tracted, and they counted to justify them-

selves. This is strong evidence that chi-

ldren as young as two and one half years of

age understand that counting gives a repre-

sentation of numerosity about which it is

appropriate to reason arithmetically. This

is well before they become good counters

(Fuson, 1988; Gelman & Gallistel, 1978;

Hartnett & Gelman, 1998). Surprised two-

and-half-year-olds made frequent use of

number words. They used them in idiosyn-

cratic ways, but ways that nonetheless con-

formed to the counting principles (Gelman,

1995), including the cardinality principle.

A second account of the development of
counting and numerical understanding
grows, first, out of the conviction of many
researchers that, although two-year-olds
count, albeit badly, they do not understand
what they are doing (Carey, 2001a, 2001b;
Fuson, 1988; Mix, Huttenlocher, & Levine
2002; Wynn, 1992b). It rests, secondly, on evidence suggesting that in the
spontaneous processing of numerosities by
infants and monkeys, there is a discontinuity
between numbers of four or less and big-
ger numbers. In some experiments, the in-

fant and monkey subjects discriminate all

numerosity pairs in the range one to four

but fail to discriminate pairs that include a

numerosity outside that range (e.g., <3,6>),
even when, as in the example, their ratio

is greater than the ratio between discrimi-
nable pairs of four or less (Feigenson, Carey,
& Hauser, 2002; Ullman, et al., 1999; Ullman,

How to reconcile these latter findings
with the finding that infants do discriminate
the pair <5,6> (Lipton & Spelke, 2003; Xu
& Spelke, 2000) is unclear. Similarly, it is
unclear how to reconcile the monkey find-
ings with the literature showing the discrim-
ination of numerosities small and large in

nonverbal animals. Particularly to be borne

in mind in this connection is the finding

that monkeys cannot be taught to order nu-

merosities in other than a numerical order

(Brannon & Terrace, 2000), even though

they can be taught to order things other than

 numerosities in an arbitrary, experimenter-

imposed order (Terrace, Son, & Brannon,

2003). This implies that numerical order is

spontaneously salient to a monkey.

The account offered by Carey (Carey,

2001a, 2001b) begins with the assumption

that convincing cases of infant number dis-

crimination involving numbers less than four

may depend on the object tracking system.

In Wynn's (1992a) experiment, for ex-

ample, the infants saw an object appear to join

or leave one or two objects behind an oc-

cluding screen. They were surprised when

the screen was removed to reveal a number

of objects different from the number that

ought to have been there. This surprise may

have arisen only from the infant's belief in

object permanence.

When an infant sees an object move be-

hind an occluding screen, the subsequent

removal of which fails to reveal an object, the

infant is surprised (Baillargeon, 1995; Ba-

llargeon, Spelke, & Wasserman, 1985). The

child's surprise presumably is mediated by

a system for tracking objects, such as the

object file system suggested by Kahneman,

Treisman, and Gibbs (1992) or the FINST

system suggested by Pylyshyn and Storm

(1988). This system maintains a marker (ob-

ject file or FINST) for each object it is track-

ing, but it can only track about four objects

(Scholl & Pylyshyn, 1999). As a result, in-

fants in experiments like Wynn's are sur-

prised for the same reason as in original

object-permanence experiments: An object

is missing. The infant has an active mental

marker or pointer that no longer points to

an object. Alternatively, there is an object

for which it has no marker.

Carey argues that sets of object files are

the foundations on which the understanding

of integers rests. The initial meaning of the

words one, two, three, and four does not come

from the corresponding mental magnitudes;

rather, it comes from sets of object files. The

child comes to recognize the ordering of the

referents of one, two, three, and four because
a set of two active object files has as a proper subset a set of one object file, and so on. The child comes to recognize that addition applies to the things referred to by these words because the union of two sets of object files yields another set of object files (provided the union does not create a set greater than four). This is the foundation of the child’s belief in the successor principle: Every integer has a unique successor.

This account seems to ignore the basic function of a set of, for example, two object files (FINSTTs, pointers), which is to point to two particular objects. If two referred to a particular set of two object files, it presumably would be usable only in connection with the two objects it pointed to. It would be a name for that pair of objects, not for all sets that share with that set the property of twoness.

A particular set of pointers cannot substitute for (is not equal to) another such set without loss of function, because its function is to point to one pair of objects, whereas the function of another such set is to point to a different pair. There is no reason to believe that there is any such thing as a general set of two pointers - a set that does not point to any particular set of two objects, but represents all the sets that do so point. Any set of two object files is an instance of a set with the twoness property (a token of twoness), but it can no more represent twoness than a name that picks out one particular dog (e.g., Rover) can represent the concept of a dog. A precondition of Rover’s serving the latter function is that it not serve the former. By contrast, any instance of the numeral 2 can be substituted for any other without loss of function, and so can a pair of hash marks.

A second problem with this account is that it is unclear how a system so lacking in closure could be the basis for inferring a system, the function of which depends so strongly on closure. The Carey suggestion is motivated by findings that the maximum numerosity of a set of active object files is at most four. There are only nine numerically distinct unordered pairs of sets of four or less (<2,3>, <2,4>, <3,3>, and <3,4>). Five of the nine pairs, when compounded (united) yield a set too numerous to be a set of object files. From this foundation, the mind of the child is said to infer that the numbers may be extended indefinitely by addition. One wants to know what the inference rule is that ignores the many negative instances in the base data set.

Conclusions and Future Directions

There is a widespread consensus, backed by a large and diverse experimental literature, that adult humans share with nonverbal animals a nonverbal system for representing discrete and continuous quantity that has the formal properties of continuous magnitudes. Mental magnitudes represent quantities in the same sense that, given a proper measurement scheme, real numbers represent line lengths. That is, the brains of nonverbal animals perform arithmetic operations with mental magnitudes; they add, subtract, multiply, divide, and order them. The processes or mechanisms that map numerosities (discrete quantities) and magnitudes (continuous quantities) into mental magnitudes, and the operations that the brain performs on them, are together such that the results of the operations are approximately valid, albeit imprecise; the results of computations on mental magnitudes map appropriately back onto the world of discrete and continuous quantity.

Scalar variability is a signature of the mental magnitude system. Scalar variability and Weber’s law are different sides of the same coin: Models that generate scalar variability also yield Weber’s law. There are two such models. One assumes that the mapping from objective quantity to subjective quantity (mental magnitude) is logarithmic; the other assumes that it is scalar. Both assume noise. That is, they assume that the signal corresponding to a given objective quantity varies from occasion to occasion in a manner described by a Gaussian probability density function. The variation is on the order
of 15% in both animal timing and human
spontaneous number estimation.

The first model (logarithmic mapping) as-
sumes that scalar behavioral variability re-
ffects a constant level of noise in the sig-
nal distributions. This yields proportional
(scalar) variability, because constant log-
arithmic intervals correspond to constant
proportions in the corresponding nonlog-
arithmic magnitudes. The second model
(scalar mapping) assumes scalar variability
in the underlying signal distributions. The
overlap in the two signal distributions is a
function only of the ratio between the rep-
resented numerosities in both models, which
is why they both predict Weber's law.

Both models assume there is only one
mapping from objective quantities to sub-
jective quantities (mental magnitudes), but
there is no compelling reason to accept this
assumption. The question of the quantita-
tive form of the mapping makes sense only
at the point at which the mental magni-
tudes enter into combinatorial operations.
The form may differ for different combina-
torial operations. In the future, the analysis
of variability in the answers from nonverbal
arithmetic may decide between the models.
An important component of future models,
therefore, must be the specification of how
variability propagates from the operands to
the answers.

The system of mental magnitudes plays
many important roles in verbalized adult
number behavior. For example, it mediates
judgments of numerical order and the re-
trieval of the verbal number facts (addition
and multiplication tables) upon which ver-
balized and written calculation procedures
depend. It also mediates the finding of num-
ber words to represent large numerosities,
presented too briefly to be verbally counted,
and, more controversially, the rapid retrieval
of number words to represent numerosities
in the subitizing range (one through six).

Any account of the development of verbal
numerical competence must explain how
subjects learn the bidirectional mapping be-
tween number words and mental magni-
tudes, without which mental magnitudes
could not play the roles just described. One

account of the development of verbal nu-
merical competence assumes that it is di-
rected from the outset by the mental mag-
nitude system. The homomorphism between
serial nonverbal counting and verbal count-
ing is what causes the child to appreciate the
denumerative function of the count words.
The child attends to these words because of
the homomorphism. Learning their mean-
ing is the process of learning their mapping
to the mental magnitudes. Another account
assumes that the count words from one to
four are initially understood to refer to sets
of object files – mental pointers that pick
out particular objects. On this account, the
learning of the mapping to mental magni-
tudes comes later, after the child has exten-
sive counting experience.

Acknowledgments

Some of the research by the authors reported
in this chapter was supported by NSF Grants
SBR-92209741 and NSF DFS-9220974 to Gel-
man, NIH Grant MH 63866 to Gallistel, and
NSF No.SPR9720492 to both Gelman and
Gallistel.

Notes

1. Technically, not really true, because Cantor
discovered a way to assign a unique positive
integer to every rational number. The integers
his procedure assigns, however, are useless for
computational purposes.

2. Fortran and C programmers, who have made
the mistake of dividing an integer variable by
a floating point variable will know whereof
we speak.

3. The magnitude of a pair of numbers is the
square root of the sum of their squares.

References

review of data and theory. *Cognition*, 44(1-2),
75-106.

Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (under review 2003). Nonsymbolic arithmetic in adults and young children.

