Background

Multiple ways to convey the same thought in English
- Active sentence: The pig was kissing the sheep.
- Passive sentence: The sheep was kissed by the pig.
- Temporary syntactic ambiguity “The pig was kiss” is resolved as sentence unfolds

Stromswold et al. (under review)
- Linguistically-trained adult said verb stems longer in passives than in actives (mean difference ~ 33 ms)
- Adults could predict syntactic structure before hearing verb ending –ed or –ing

Rehrig et al. (2015)
- Naive adult English speakers also lengthen passive verbs
- Passive verb stem lengthening is a robust phenomenon

Materials & Methods

Stimuli
- Audio recordings of participant from Rehrig et al.’s production study
 - 32 Actives: The _____ was _____ing the _____.
 - 32 Passives: The _____ was _____ed by the _____.

Adult Study: 7 participants
- Comprehension Gating Task: listen to truncated sentences and guess how they end “The pig was kiss”
 - The pig was kissing the sheep.
 - The pig was kissed by the sheep.
- Production Task: read sentences aloud

Child Study: 5 children ages 3, 3, 4, 4, and 10
- Comprehension Task: listen to complete sentences and select the matching picture
 - “The pig was kissing the sheep”
- Production Task (elicited imitation): repeat auditorily presented sentences
 - Recorded at 44.1 KHz
 - Production data was manually segmented in Praat to determine durations

Questions
- Is there a relationship between how people produce and process sentences?
 - Is there a relationship between degree of lengthening and comprehension?
 - Do children who lengthen verb stems more comprehend passives more easily?
 - Do children use the same acoustic cues as adults to process sentences?

Results

Adult Findings

- 7 subjects
- Main effect of syntax: Duration of active verb stems > passive verb stems \(F(1, 46) = 59.57, p < .0005 \)
- Adults were better at guessing short active verb stems and long passive verb stems \(F(1, 13) = 18.25, p < .001 \)
 - Correct active stems < incorrect active stems \(F(1, 286) = 3.14, p = .077 \)
 - Correct passive stems > incorrect passive stems \(F(1, 286) = 4.825, p = .029 \)
- Degree of lengthening/shortening of particular verb stems was correlated with ability to predict syntactic structure for that sentence \((r(448) = .38, p < .0005) \)

Child Findings

- 5 subjects ages 3, 3, 4, 4, and 10
- Four year old’s production:
 - Passive verb stems 44 ms > than active stems \(F(1, 28) = 2.38, p = .087 \) by one-tailed test
- Accuracy by age:
 - 3 and 4 years: 75% accurate on actives and 53% accurate on passives.
 - 10 year old: 100% accurate on actives and passives.

Discussion

- All adults (7) and children (1) lengthened passive verb stems.
- Adults were accurate on short active verb stems and long passive verb stems.
- Stimulus verb stem length did not affect children’s accuracy.
- Children’s accuracy was affected by their age:
 - 3 and 4 year olds were 75% accurate on actives and 53% accurate on passives.
 - The ten year old was 100% accurate on actives and passives.

Implications
- Adults used verb stem length to predict syntactic structure.
- Too few child participants to draw conclusions
 - Children tested were not sensitive to verb stem length.
 - Children tested have not yet developed the cognitive ability to use acoustic cues to predict syntactic structure.
 - Children may produce acoustic cues before they can use them.

Future Directions

- Test children within the 4-10 age range.
- Use different methods to collect production data from children.
- When do children begin to use verb stem duration in sentence comprehension?

References

Acknowledgments

This work was generously supported by the Aresty Foundation and The National Science Foundation (IGERT DGE 0549115). Thank you to Michelle Zhao, Nicolaus Schrum, Aldo Mayro, Katie Aveni, and Professor Paul de Lacy for their assistance in this project.