Acoustic Cues for Active and Passive Structure Vary for Different Verbs

Eleonora Beier (ejbeier@gmail.com)\(^1\), Gwendolyn Rehrig\(^2\), Karin Stromswold \(^2\)

\(^1\)Bard College, \(^2\)Rutgers, The State University of New Jersey - New Brunswick

Background
Temporary ambiguity in active/passive sentences:
- The pig was **kiss-ing** the sheep
- The pig was **kiss-ed** by the sheep

Eye-tracking data (Stromswold et al., under review):
- Adults distinguish between active/passive at verb stem (push-) before syntactic disambiguation.

Sentence production data (Rehrig et al., 2015):
- Lengthening of passive verb stems compared to active stems.
- Acoustic cue of incoming syntactic structure?

Questions
Is lengthening of passive verb stem:
- Present for all verbs?
- Stronger for some kinds of verbs?

Method

Stimuli:
- 32 active and 32 passive sentences containing:
 - 20 nouns: animals
 - 16 verbs: actional, high frequency, reversible, -ed passive

Verb Classifications:
- **Stop/Non-stop** Verb Stem Coda (excluding tickle and pat)
 - 5 Stop coda verbs: kick, lick, poke, trap, scrub
 - 9 Non-stop coda verbs: chase, comb, kiss, pinch, punch, push, touch, shove, wash
- **Voiced/Unvoiced** Verb Stem Coda (excluding tickle and pat)
 - 3 Voiced coda verbs: comb, scrub, shove
 - 11 Unvoiced coda verbs: chase, kick, kiss, lick, pinch, poke, punch, push, touch, trap, wash

Participants: 7 native English-speaking adult monolinguals

Procedure:
- Participants read sentences
- High quality recordings done in sound-attenuated booth
- 6 coders used PRAAT to mark morpheme boundaries (inter-rater concordances, p<.0001)

Results

All 16 verbs: Item and Subject ANOVAs
- Passives 51 ms longer than actives, \(p < .0005\)

Voiced/Unvoiced Verb Stem Coda Effects
- Blue: Voiced
- Red: Unvoiced

\[\text{Verb stem duration (ms)} \]

\[
\begin{align*}
\text{Active} & \quad 200 & \quad 250 & \quad 300 & \quad 350 & \quad 400 \\
\text{ Passive} & \quad 170 & \quad 220 & \quad 270 & \quad 320 & \quad 370 \\
\end{align*}
\]

- 2 (active, passive) x 2 (voiced, unvoiced) ANOVA
 - Passives 73 ms longer than actives, \(p < .0005\)
 - Voiced codas 53 ms longer than unvoiced codas, \(p < .0005\)
 - Interaction: active/passive difference greater for voiced codas, \(p < .0005\)

Stop/Non-stop Verb Stem Coda Effects
- Blue: Stop
- Red: Non-Stop

\[
\begin{align*}
\text{Active} & \quad 150 & \quad 200 & \quad 250 & \quad 300 & \quad 350 & \quad 400 \\
\text{ Passive} & \quad 120 & \quad 170 & \quad 220 & \quad 270 & \quad 320 & \quad 370 \\
\end{align*}
\]

- 2 (active, passive) x 2 (stop, non-stop) ANOVA
 - Passives 55 ms longer than actives, \(p < .0005\)
 - Non-stop codas 11 ms longer than stop codas, \(p = 0.10\)
 - Interaction: active/passive difference greater for non-stop codas, \(p = .009\)

T-Tests Results

Paired t-tests: active/passive effect for each verb
- Voice compared to unvoice:
- Passive greater than active

Discussion
- Passive lengthening effect found for all 16 verbs
- Passive verb stem lengthening greater for verb stems with voiced than unvoiced codas
- Passive verb stem lengthening greater for verb stems with non-stop than stop codas

Conclusions
- Passive verb stem lengthening is robust
- May be a useful cue for listeners to predict upcoming syntax

Future Directions
Are listeners better at predicting syntactic structure for verbs with greater passive stem lengthening

References

Acknowledgments

This work was supported by the Aresty and the National Science Foundation Research Experience for Undergraduates (REU CNS-1102735; IGERT DGE-0549115)