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Abstract

We present an approach to function-based object recognition that reasons about
the functionality of an object’s intuitive parts. We extend the popular “recognition
by parts” shape recognition framework to support “recognition by functional parts”,
by combining a set of functional primitives and their relations with a set of abstract
volumetric shape primitives and their relations. Previous approaches have relied on
more global object features, often ignoring the problem of object segmentation and
thereby restricting themselves to range images of unoccluded scenes. We show how
these shape primitives and relations can be easily recovered from superquadric ellipsoids
which, in turn, can be recovered from either range or intensity images of occluded
scenes. Furthermore, the proposed framework supports both unexpected (bottom-up)
object recognition and expected (top-down) object recognition. We demonstrate the
approach on a simple domain by recognizing a restricted class of hand-tools from 2-D
images.

To appear in Computer Vision and Image Understanding, special issue on function-based
object recognition, September 1995.



1 Introduction

The problem of object recognition from sensory data is defined in the literature as the
association of visual input with a name or symbol. In the absence of distinguishing properties
such as color, texture, or motion, object recognition first requires the visual recovery of
shape, followed by the matching of the recovered shape to a database of known objects [18].
Although much research on the topic has been published, the community still lacks vision
systems that can recognize in real time a large number of objects (natural or man-made). Full
recovery has been difficult to achieve while matching suffers from combinatorial explosion.

Model-based recognition has been suggested as a remedy to these problems. Many such
3-D object recognition systems take a single object model and attempt to locate it in the
image, e.g., [16, 15, 35]. Furthermore, the object models are commonly CAD-like, captur-
ing the exact geometry of the object. Although very effective for certain robot vision tasks
in constrained environments, where a known target must be accurately localized for ma-
nipulation or inspection, these techniques are inadequate when addressing less constrained
environments like a robot vision system moving about a factory or house.

Consider, for example, a robot vision system whose goal is to move through a handicapped
person’s household, retrieving and manipulating everyday objects such as books, cups, chairs,
etc. How can we avoid having to provide the system with detailed CAD specifications of
each object that the system is to recognize? One way of making object models more flexible
is to parameterize geometric models, as proposed by Brooks in his ACRONYM system [4].
For example, the legs of a chair model could have lengths that fall in some specified range, or
the number of chair legs could be variable. Object recognition systems using parameterized
models have also been proposed by Huttenlocher [14] and by Lowe [17]. However, all three
of the above systems are very top-down, requiring not only knowledge of what object is in
the image, but in some cases a good initial guess as to the orientation of the object.

A different approach to the problem is to consider the recognition process in the context
of an agent interacting with its environment [24]. The recognition process is subordinate
to the agent’s intentions and behavior in its environment. Recognition is equivalent to the
process that checks if an object suits a particular purpose. If an object is perceived to fulfill a
function necessary to carry out a certain behavior or action, then it is recognized. Gibson’s
theory of affordances [12], i.e., properties that are defined with reference to an observer,
was a major step in this direction. Winston et al. [37] emphasized how much easier it is to
describe what objects are used for, rather than to describe what objects look like. They tried
to show how recognition could be performed using functional definitions, and how physical
models could be learned using functional definitions and specific acts of identification.

When we consider recognition from a functional point of view, we leave the concept of
shape-alone based recognition for a more general and flexible concept. For example, if we
wish to model four chairs, each having a different configuration of differently shaped parts but
all functioning as chairs, we would require four different object shape models. Alternatively,
recognition based on functionality would enable our agent to possess knowledge of the needed
function of a chair without explicitly specifying the possible shapes of a chair. The seminal
work of Stark and Bowyer et al. [27, 26, 28, 29, 30, 31, 32] has addressed function-based
object recognition, focusing on domains including chairs and dishes. In their work, they
define a set of functional primitives specific to each object class. For example, in their



system that recognizes chairs, they have functional primitives for support, sitting height,
stability, etc. From a CAD representation of an object, they can compute these primitives
and categorize the object. Although their system has been tested mainly with CAD data,
it has also been applied to complete range images of an object acquired through an Odetics
range scanner.

Despite the success of this approach, it has some limitations. To begin with, the ap-
proach assumes a 3-D representation of the image from which the functional primitives can
be computed. Furthermore, the approach assumes an image of an isolated object; object
occlusion in the image cannot be supported since there is no object segmentation performed
on the image data. It is important to note that the work of Stark and Bowyer takes a global
approach to functional recognition, making it sensitive to occlusion and partial views. Due
to the nature of their functional reasoning, it does not extend to function-based recognition
from 2-D imagery containing multiple occluded objects.! It should be noted, however, that
for certain tasks, such as the determination of object stability, such global representations
are sufficient.

In this paper, we present a theory of function-based recognition which is a natural ex-
tension of part-based shape recognition. Instead of focusing on global properties such as
stability, height, existence of large horizontal surfaces, etc., we will reason about the func-
tionality of an object’s parts. Moreover, those parts are the same parts that we recover from
the image for shape recognition. Thus, instead of reasoning about the functionality of a col-
lection of 3-D points or planar surfaces, we propose to reason about a more intuitive notion
of an object’s parts (Pentland [20]). Although we will not index using part shape, we can
use knowledge of part shape to help segment the image into parts. Given a set of recovered
volumetric parts, we can then reason both about the functionalities of individual parts and
the interactions between the parts. Such interactions can include relative orientation, size,
shape, or even motion!

Although the idea of reasoning about the function of an object’s parts has been proposed
by other researchers, there has been little concerabout in dealing with real image data. In
Winston et al. [37], the vision component was replaced by a linguistic interface which pro-
vided English descriptions of scene content. In Vaina and Jaulent’s compatibility model
[36], shape attributes of an object, e.g., length, relative part orientation, etc., were provided
as input; neither a shape description nor a recovery scheme was presented. In Brady et
al.’s Mechanics Mate [3], a mapping from Curvature Primal Sketch (CPS) and Smoothed
Local Symmetries (SLS) features in a 2-D image to a set of higher-order geometrical struc-
tures was proposed. These higher-order structures were then mapped to a set of functional
parts belonging to a set of handtools. The extension to 3-D shape was proposed but never
implemented.

Our goal in this work is not only to propose an object representation which integrates
function and shape, but addresses the problem of recovering shape and function from either
2-D or 3-D image data. We will outline an approach which first segments an image containing
multiple objects into a set of volumetric parts, supporting part recovery from incomplete
views of the object and supporting object occlusion. Following part grouping by object,

n recent work, Stark and Bowyer [29] reason about the functionality of objects that are partially visible
in range lmages.



the approach will infer the possible functionalities of individual parts and collections of
parts. The robot can check if the needed functionality for a certain action is consistent with
the recovered functionality. Comparing this approach to that of Stark and Bowyer for the
problem of searching the image for a “chair kind of support”, we would like to reason about
a set of chair legs, a seat, and a back, rather than a set of simple planar surfaces or 3-D
points.

The paper is organized as follows. First, we outline our theory of functionality for objects
in Section 2, and introduce a representation for volumetric parts from which we reason about
functionality. Section 3 discusses the recovery of the volumetric parts from both 3-D range
and 2-D intensity images. Next, in Section 4, we describe our recognition algorithm as
it applies to both expected (top-down) and unexpected (bottom-up) object recognition.
Finally, in Section 5, we demonstrate the technique applied to the domain of hand tools.

2 Representing Object Functionality

Our theory of function-based object recognition is a natural extension of part-based shape
recognition. That is, we reason about the functionality of an object’s parts and their inter-
relations. Figure 1 illustrates the concept. At the shape level, objects are constructions of
coarse volumetric primitives with spatial relations between the primitives. At the function
level, the shape primitives map to a set of functional primitives and the spatial relations
map to a set of functional relations. At the functional level, objects are not represented in
terms of shape, but in terms of a set of functional primitives and relations. In the following
sections, we describe this hierarchical representation in more detail. We begin by describing
the coarse shape representation and follow with the functional representation. Finally, we
illustrate the representation by means of an example.

2.1 Representing Shape
2.1.1 Shape Primitives

Our shape representation models objects as constructions of coarse volumetric shapes be-
longing to four classes: sticks, strips, plates, and blobs. The representation is an extension
to the generalized blob models (sticks, plates, and blobs) proposed by Mulgaonkar, Shapiro,
and Haralick [19]. Our four classes are distinguished by their relative dimensions. Letting
ay, as, and as represent length, width, and height, respectively, of a volumetric part, we can
define the four classes as follows:

Stick: a1 ~as < agVa, >~ asg < asV as ™~ az < as (1)
Strip : ay # as N\ as # az A\ ay # as (2)
Plate: a1 ~as>> asVas >~ as>> as Vag >~ az > ay (3)
Blob : a1 ™ as ™ as (4)

Intuitively, if all three dimensions are about the same, we have a blob. If two are about the
same and the third is very different, we have two cases: if the two are bigger than the third,
we have a plate, while if the two are smaller than the third, we have a stick. Finally, when
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Figure 1: Representing object functionality.

no two dimensions are about the same, we have a strip. For example, a knife blade is a strip,
because no two of its dimensions are similar.

Figure 2 shows examples of these four types of primitives. The ratios of the three dimen-
sions for the stick are 1:1:10; for the strip, 48:1:7; for the plate, 16:16:1; and for the blob,
1:1:1. Note that our taxonomy of primitives is qualitative; a cylinder, for example, can be a
stick or a plate. Variations of the basic primitives, such as tapering, pinch, curvature, and
so on, can also be considered in the context of functionality. It should also be noted that the
ratio of shape dimensions used to separate the four shape classes is specified as a function
of the object definition.

2.1.2 Spatial Relations

We can qualitatively describe the ways in which two shape primitives can be combined. For
example, we can attach two shapes end to end, end to side, or side to side, as proposed by
Biederman when building objects out of geons [2]. To further specify these attachments,
we adopt the convention of labeling each volumetric primitive’s attachment surfaces [9].
For example, a square plate has six attachment surfaces, while a cylindrical stick has three
attachment surfaces. For simplicity, we shall require any junction of two primitives to involve
exactly one attachment surface from each primitive. Figure 3 illustrates a simple object
composed of a blob and a stick; note that in this example, both objects are cylinders.

In addition to specifying the two attachment surfaces participating in the junction of
two primitives, we can also consider the angles at which they join. Furthermore, we can
classify the joints as perpendicular, oblique, tangential, etc. Another refinement would be to
qualitatively describe the position of the joint on each surface. For example, an attachment
can be near the middle, near the side, near the corner, or near the end of a surface. Figure 4



(a) (b)

Figure 2: Shape Primitives: (a) The four primitives modeled by superquadrics using Pent-
land’s Thingworld [20]. (b) Two blobs (can and vase), two sticks (pencil and pen), and a
plate (table).

illustrates six different concatenations of a strip and a stick. A stick has three attachment
surfaces, but when symmetry is taken into account it has only two distinguishable attachment
surfaces. Similarly, a strip has three distinguishable attachment surfaces. Therefore, there
are six ways of combining the two primitives in terms of attachment surfaces if we ignore
where on a surface an attachment is made as well as the angle of the attachment.

Finally, the spatial relations must encode the relative sizes of the spatial primitives. For
example, although a stick attached to a blob in a certain manner might constitute a hammer,
the blob’s size cannot be an order of magnitude larger than the stick’s. Consequently, for
each spatial relation between two spatial primitives, we specify a ratio of particular features.
For a blob, any dimension is chosen; for a stick, its length is chosen; for a plate, its surface
width (or length) dimension is chosen; and for a strip, its length is chosen. Thus, for example,
a relative size specification between a stick and a blob of 4:1 would indicate that the length
of the stick is 4 times the dimension of the blob. Tolerances would, of course, need to be
specified.

2.2 Representing Function

2.2.1 Functional Primitives

Functional primitives represent the building blocks of a functional representation of an object.
For example, the functional primitives defining a coffee cup would include a handle and a
container; a chair would include a seat, a base, and a back [27, 26]. In the remainder of
this paper, we will illustrate our approach to functional object recognition by focusing on a
class of manipulation tasks. Bearing in mind that a manipulation task involves an agent and
its environment, we will define a class of objects that have an end-effector (that part which
delivers the action) and a handle (that part which provides the interface between the agent



Figure 3: Concatenation: a blob and a stick.

and the end-effector). Examples of such objects might include simple hand tools like a screw
driver or a hammer, or other handled objects such as a cup, a frying pan, or a briefcase.

2.2.2 Functional Relations

A given set of parts might independently satisfy the needs for an end-effector or a handle.
However, they must be joined in a particular way so as to satisfy the needs of a particular
task. The set of functional relations linking the functional primitives describes the function
of the interaction between the functional primitives. Consider, for example, the functional
model for a hammer specifying an end-effector and a handle. The functional relation linking
the handle and end-effector specifies that the handle is used to swing the end-effector in a
direction which maximizes the force tangential to the swing arc while maximizing striking
stability.

2.3 The Relationship Between Shape and Function
2.3.1 Mapping Functional Primitives to Shape Primitives

In general, the mapping between shape primitives (and their relations) and a particular
functional primitive is many-to-one. For example, one, two, three or more chair legs may
satisfy the functional primitive of chair base, provided they satisfy constraints for height,
stability, and support.? Furthermore, a given set of recovered shapes may satisfy multiple
functional primitives. For example, a large flat surface may serve as a supporting surface or

ZA simple chair could be constructed by attaching a back support to a box. In this case, the chair could
be thought of as having a single chair leg consisting of the box (minus the top which serves as the seat).
The most general specification of the base of a chair, as articulated by Stark and Bowyer [26], would specify
only that the seat was supported at the proper height and that the structure was stable. The exact number,
type, and orientation of the shape primitives making up the base need not be specified. However, one might
argue that the collection of shapes comprising the base could be thought of as a single blob thereby providing
stability.



(a) (b) (c)

(d) (e) ()

Figure 4: Six different objects composed of a strip and a stick.

it may serve as a covering surface (roof). For simplicity, we will restrict ourselves to object
models with a one-to-one mapping between shape primitives and functional primitives.

Returning to the hammer example, the end-effector should be blob-like, ensuring that
the dimensions of the striking surface are roughly equal (rotationally symmetric to allow
striking error in any direction).® If the end-effector were stick-like, the distance between the
handle junction and the striking surface would be large, making it more difficult to locate
the nail. If the end-effector were plate-like, it would have insufficient momentum for driving
a nail. The handle, on the other hand, should be stick-like, small enough so that it can be
grasped by a human hand, and long enough to provide a high moment at its junction with
the end-effector.

It 1s important to note that in choosing a simple domain which affords a one-to-one
mapping between shape and function, we do not demonstrate the potential complexity of
the mapping between shape and function. This complexity can take two forms. The first
is the complexity in mapping between shape and shape, i.e., grouping shape primitives to
form larger shape primitives. For example, consider a patio chair with a seat made out
of multiple slats. The mapping between a flat surface and a chair seat is still one-to-one,
but the mapping between physically distinct parts (the slats) and the flat surface is many
to one. Such a grouping of parts on the basis of, for example, coplanarity, collinearity, or
cocurvilinearity, must be addressed and is beyond the scope of this paper.

The second type of mapping complexity that we do not address is the mapping between
multiple shape primitives and a single functional primitive. Returning to our chair leg

3The notion of a part being blob-like is invariant to minor tapering and bending deformations, so that
hammers with tapered or bent heads would still fall into this class.
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Figure 5: Functional model for a hammer.

example, a set of multiple legs on a chair may differ enough in shape and orientation to
defy their being grouped into a single shape primitive. However, the collection serves the
single function of chair base. By restricting our discussion to a one-to-one mapping between
shape primitives and functional primitives, we focus only on the concept of integrating both
functional and shape descriptions. In future work, we hope to explore this mapping beyond
the simple one-to-one mapping to include both the grouping of multiple shape primitives
into single shape primitives, as well as the mapping of multiple shape primitives to a single
functional primitive.

2.3.2 Mapping Functional Relations to Spatial Relations

The specification as to how the functional components defining an object are combined is
captured by a set of functional relations. These functional relations are then mapped to a
set of spatial relations linking the shape primitives. In the hammer example, the functional
relation maps to an attachment between the stick (handle) and the blob (end-effector) such
that the axis of the stick is orthogonal to the (principal) axis of the blob and is attached
to the centroid of the blob. The complete model for the hammer, including functional and
shape primitives, functional and shape relations, and the mapping between functional shapes
and relations to spatial shapes and relations is outlined in Figure 5.

3 Recovering Shape

In the last section, we described a set of functional primitives defined on a set of shapes
consisting of sticks, strips, plates, and blobs. Since these four shape classes are defined



according to their relative dimensions, we need to not only segment an input image into parts,
but recover 3-D (dimensional) information from those parts. In this section, we describe an
approach to recovering sticks, strips, plates, and blobs from an image. The approach consists
of recovering a superquadric from the image, providing explicit dimensions which we can then
use to classify our shape. Superquadrics offer a compact, coarse, volumetric description of
an object’s parts [20]. If finer shape modeling is required, deformable superquadrics can
be used to capture both global part shape (using a superquadric) and local shape (using a
deformable mesh) [33]. Since superquadrics capture more shape attributes than just the z,
y, and z dimensions of a part, they provide us with a foundation from which to recover a
richer vocabulary of qualitative shapes with which to reason about function. For example,
we may decide to distinguish among curved-axis vs. straight-axis shapes or tapering vs.
constant cross-sectional sweep rules [2].

Recently, several researchers have proposed various segmentation techniques to partition
image or range data, in order to automate the process of fitting superquadric volumetric
primitives to the data. Most of those approaches are applied to range data only [25, 10, 11,
13], while Pentland [21] describes a two-stage algorithm to fit superquadrics to image data.
In the first stage, he segments the image using a filtering operation to produce a large set
of potential object “parts”, followed by a quadratic optimization procedure that searches
among these part hypotheses to produce a maximum likelihood estimate of the image’s part
structure. In the second stage, he fits superquadrics to the segmented data using a least
squares algorithm. Pentland’s approach is only applicable in case of occluding boundary
data under simple orthographic projection, as is true of earlier work of Terzopolous et al.
[34], Terzopolous and Metaxas [33], and Pentland and Sclaroff [22], which address only the
problem of model fitting. In a related approach, Narayan and Jain [23] recover geons from
range imagery, and use superquad fitting to determine the axis of the geon.

The approach we take, due to Dickinson and Metaxas [6], is to use a qualitative segmenta-
tion of a 2-D image to provide strong constraints on the deformable model fitting procedure
described in [33]. In addition, the technique has been recently extended to deformable model
recovery from range data [7]. The result is a technique which allows us to recover certain
classes of superquadrics from image or range data, under orthographic, perspective, and
stereo projection [6]. Furthermore, the technique supports the recovery of occluded parts,
allowing us to reason about the functionalities of objects that are only partially visible. We
will not describe the above recovery methods in this paper; details can be found in [6, 7]. We
will, however, describe the geometry of a deformable superquadric and show how we classify
a superquadric as a stick, strip, plate, or blob.

3.1 Geometry of a Deformable Superquadric

Geometrically, the models that we can recover from either range or image data are closed
surfaces in space whose intrinsic (material) coordinates are u = (u,v), defined on a domain
. The positions of points on the model relative to an inertial frame of reference ® in space
are given by a vector-valued, time varying function of u:

x(u,t) = (z1(u,t), z9(u, t), z3(u, )", (5)

10
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Figure 6: Geometry of a deformable model.

where T is the transpose operator. We set up a noninertial, model-centered reference frame
¢, as shown in Fig. 6, and express these positions as

x = ¢+ Rp, (6)

where c(t) is the origin of ¢ at the center of the model and the orientation of ¢ is given
by the rotation matrix R(¢). Thus, p(u,t) denotes the canonical positions of points on the
model relative to the model frame. We further express p as the sum of a reference shape
s(u,t) and a displacement function d(u,?):

p=s-+d. (7)

The ensuing formulation can be carried out for any reference shape given as a param-
eterized function of u. Based on the shapes we want to recover (sticks, strips, plates, and
blobs with possible tapering and bending global deformations), we first consider the case of
superquadric ellipsoids [1], which are given by the following formula:

alcuel Cv62
e=a| aC,*S5,* |, (8)

OJSSUEI
where —7/2 < u < 7/2 and —7 < v < w, and where S,,° = sgn(sin w)|sin w|®, and C,° =

sgn(cos w)| cos w|®, respectively. Here, a > 0 is a scale parameter, 0 < ay,a2,a3 < 1 are
aspect ratio parameters, and €1, €5 > 0 are “squareness” parameters.

11



We then combine linear tapering along principal axes 1 and 2, and bending along principal
axis 3 of the superquadric e* into a single parameterized deformation T, and express the
reference shape as

(L 4 1) eg + by cos(—e3+b27rb3)

aazw aazw

s = T(e,tl,tg,b17b27b3) = (m + 1) €2 ) (9)

aaszw
€3

where —1 < ty,ts < 1 are the tapering parameters in principal axes 1 and 2, respectively, and
where b; defines the magnitude of the bending and can be positive or negative, —1 < by <1
defines the location on axis 3 where bending is applied and 0 < b3 < 1 defines the region
of influence of bending. Our method for incorporating global deformations is not restricted
to only tapering and bending deformations. Any other deformation that can be expressed
as a continuous parameterized function can be incorporated as our global deformation in a
similar way.
We collect the parameters in s into the parameter vector

qs = (a,&17a27a3,61,62,t1,t2,b1,b2,b3)T. (10)

Once we have recovered a superquadric from an image (range or intensity), it is a very
simple matter to extract the dimensions of the superquadric. The width (x dimension) of
the superquadric is given by

width = aaq, (11)
the height (y dimension) by

height = aas, (12)
and the length (z dimension) by

length = aas. (13)

Given the dimensions of the part, we can classify the part as either a stick, strip, plate, or
blob according to the rules described in Section 2.

3.2 An Alternative Approach to Recovering Qualitative Shape

Before we leave the recovery section, it is worth noting that there is an approach to re-
covering sticks, strips, plates, and blobs directly from image data without first recovering
superquads. The approach is based on the qualitative shape recovery work of Dickinson,
Pentland, and Rosenfeld [9] and relies only on a region segmentation of the input image. In
that approach, a fixed set of volumes was analyzed over the viewing sphere, giving rise to a
set of aspects. Shape recovery was therefore formulated as part-based aspect matching with
a set of conditional probabilities associated with the aspects and their features used to guide
both bottom-up inferencing of features and top-down prediction of features.

This approach could be extended by analyzing the views of a greater variety of parts
sorted into the four shape classes. In this manner, image dimensions of image faces in a part
aspect could be measured and, using a derived conditional probability distribution, used to

“These coincide with the model frame axes z, y and z respectively.
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suggest the class membership of the part. Although much less robust than inferring class
membership from a superquadric fitted to the part due to the effects of foreshortening, the
approach does avoid the process of fitting the superquad.

4 Recovering Object Function

Our function-based object recognition strategy supports bottom-up (or unexpected) object
recognition, whereby an object is presented to the system and the system identifies the
object based on the functionality of its parts. In addition, our strategy supports top-down
(or expected) object recognition, whereby the system looks for a particular object in the
image by mapping its functional parts to image feature predictions. In this section, we will
describe both these strategies.

4.1 Unexpected Object Recognition

In an unexpected object recognition task, we first first segment an input image into a set
of homogeneous regions from which we recover a set of qualitative 3-D parts using local
part-based aspect matching techniques [9, 8, 5]. Next, using the techniques of Dickinson
and Metaxas [6], we use the recovered qualitative shape to constrain the fitting of a set of
deformable superquadrics to the qualitative parts. From the resulting quantitative parts,
we compare the dimensions of the parts to abstract a set of sticks, strips, plates, and blobs.
Furthermore, we can recover the spatial relations spanning the recovered parts. For the
experiments conducted in this paper, a spatial relation specification consists of an attachment
specification and a relative orientation specification. A stick can be attached at its end or
at its side, a strip at its flat surface, its short side or its long side, a plate at its flat surface
or its side, and a blob anywhere. Relative orientation is specified according to the angle
between the z axes of the recovered primitives: orthogonal if the angle between the axes is
within 30 deg from perpendicular, and oblique otherwise.

If there is no a priori knowledge of what object is in the image, then groups of spatial
primitives and their spatial relations can be used to infer a set of functional primitives and
relations. The recovered functional primitives and relations are then compared to a set of
functional object models. In our simple domain of hand tools, we can map shape primitives
to possible functional primitives and map shape relations to possible functional relations,
providing a number of functional object hypotheses that are then compared to the object
database. As an example, suppose we place a hammer in front of the camera and ask the
system to identify the object. The recovery process would recover a stick and a blob in some
spatial configuration. The blob then maps to end-effector as well as all other functions a
blob could serve. Similarly, the stick would map to a handle as well as all other functions
that it could serve. Finally, the spatial relation between the stick and blob would map to all
functional relations joining a stick and a blob in that configuration. Combining the various
interpretations for the stick, the handle, and their relationship would yield a number of
object hypotheses which satisfy the recovered functionality.

13



4.2 Expected Object Recognition

In an expected object recognition task, we use knowledge of the target object’s functional
model to constrain our search in the image both in terms of what we look for and where we
look for it. Given a functional object model, we first choose some functional primitive whose
presence in the image would provide the least ambiguous mapping to the target object. For
example, in looking for a cup on a table containing glasses and cups, we should look for a
cup handle and not a container since the handle is unique to the cup. Next, the functional
primitive is mapped to one of the four abstract shape primitives, i.e., sticks, strips, plates,
and blobs. Finally, the shape primitive is mapped into an image region shape prediction
in terms of extent or elongation. Like the unexpected object recognition algorithm, the
image is first processed to extract a region topology graph. By examining the extent (or
elongation) of an image region, along with that of its immediate neighbors, we can derive a
simple heuristic for drawing attention to a particular image region. We can thus focus the
recovery of the shape primitive and constrain the search for other primitives belonging to
the object.

For example, if we are searching for blobs or plates, we can rank-order the image regions
by increasing extent. Furthermore, regions whose immediate neighbors include a region with
similar extent can be favored as being part of a blob, while regions whose neighbors do
not include a region with similar extent can be favored as being part of a plate. Similarly,
if searching for sticks or strips, we can rank-order the image regions by decreasing extent.
Regions whose immediate neighbors include a region with similar extent can be favored as
being part of a stick, while regions whose neighbors do not include a region with similar
extent can be favored as being part of a strip. These rules can provide a useful ordering on
the positions from which shape recovery is attempted.

From a candidate search position, the next step is to recover a superquadric from which
the 3-D part dimensions and orientation can be recovered. This consists of first recovering
the qualitative shape of the part [9, 8, 5], which is then used to constrain the fitting of a
superquadric to the image data. Once the part is verified as a stick, strip, plate, or blob, the
search for other object’s parts can be constrained to those image regions adjacent to or in
the vicinity of any previously recovered volumes.

5 Results

In this section, we apply the function-based expected object recognition algorithm to the
image of the mallet shown in Figure 7(a), while in Figure 7(b), we show the segmented region
image. Without any a priori knowledge of scene content, each of the functional primitives,
namely the end-effector and handle, are deemed equally likely to appear in the image. The
algorithm arbitrarily chooses the end-effector (mallet head) and maps that to a search in
the image for a blob. The algorithm rank-orders regions in the image according to the ratio
of area to extent (computed from bounding box). The large region is chosen first and the
bottom-up algorithm is used to recover the most likely interpretation of the region and its
neighbors.

In Figures 8(a) and (b), we show the results of using the recovered qualitative shape to
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(a) (b)

Figure 7: (a) Original image. (b) Segmented region image.

constrain the fitting of a superquad to each part; the parameters of the two superquads are
given in Table 1. Since only a monocular image was used (a stereo pair was unavailable),
depth or scale must specified as a constraint; in this case, an arbitrary depth was chosen.
When a stereo pair is available, true depth and scale can be recovered using the methods
specified in [6]. When a stereo pair is unavailable, we can apply the simple heuristic that if
two parts intersect in the image, they intersect in the world; in this case, since the qualitative
parts intersect in the image, we infer that they belong to the same object.’

Finally, it should be noted in Figure 8 that the fitted handle of the hammer does not
quite extend along the full length of its corresponding recovered qualitative volume (stick).
This is due to the fact that the fitting of the z dimension (or length) of the stick is a function
of strong forces pulling from the end of the stick and weak forces pulling from the sides.
Since the contour corresponding to the end of the stick (at its intersection with the blob)
was not present, the forces pulling the end of the fitted stick towards its intersection with the
blob were weakened, resulting in the fitted stick stopping slightly short along its migration
towards the intersection. A simple scaling of the forces exerted by the side of the stick could
be used to extend the fitted stick a bit further, but the fitted stick will never extend beyond
its longest side (contour) appearing in the image.

From the recovered superquad parameters in Table 1, we can proceed to classify each
part as either a stick, a strip, a plate, or a blob according to Equations 11, 12, and 13 in
Section 2.1.1; the results are shown in Table 2. Using Equations 1, 2, 3, and 4, defining two di-

®For a stronger heuristic that examines the nature of the parts’ intersection in the image to determine
intersection in the world, see [9].
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Superquad Part
Parameter || Head ‘ Handle

a 37.19 37.19
ay 0.45 0.22
s 0.45 0.22
a3 0.69 1.14
ts -4.40 4.97
ty 0.51 -3.88
t, -50.0 -50.0
711 0.49 0.54
719 -0.22 0.07
T13 -0.84 0.84
T91 -0.14 0.78
T'99 0.93 0.27
T'93 -0.33 -0.53
731 0.86 -0.26
T'39 0.28 0.96
T33 0.42 0.09
€1 0.0 0.0
€9 1.0 1.0

bend, 0.0 0.0

taper, 0.0 0.0

Table 1: Recovered superquad parameters for mallet.
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(a) (b)

Figure 8: Recovered superquads: (a) Mallet head. (b) Mallet handle. Intermediate grey
values along contour portions represent locations of image forces acting on superquad. Note
that due to the absence of forces at the junction between the two parts (no contours at the
junction end of the handle), the fitted handle was not “pulled” all the way to the junction.

mensions as similar if the ratio of the biggest to the smallest is within 4:1 (width:height:length
ratios for the two parts are: 1:1:1.53 for the head and 1:1:5.18 for the handle), and specifying
their relative size ratio (stick length to blob dimension) as lying between 1:1 and 4:1, then
the mallet head is classified as a blob, while the mallet handle is classified as a stick.

Since our search procedure is looking for the mallet head (end-effector), it chooses the
blob, and proceeds to search for the handle in the vicinity of the recovered blob. Due to
region undersegmentation, the regions corresponding to the body surfaces of the head and
handle of the mallet were joined. However, those contours not used to recover the head but
still belonging to the large region are free to be part of other recovered volumes. Since we
have already recovered a stick and its defining contours were not used to infer the blob, we
can instantiate the handle in the image. The last step in recognizing the object is to satisfy
the functional relation between the two parts which is mapped into a spatial constraint on
the part junction. Since the computed relative orientation of the two parts is such that
their z axes are orthogonal (> 60deg in our qualitative partitioning of angle), and since
the junction occurs at the end of the handle and at the middle of the head, the algorithm
successfully verifies the hammer in the image.

In the second example, we apply our function-based unexpected object recognition ap-
proach to a scene containing a short cylinder attached to the side of a block; the image is
shown in Figure 9(a), while the segmented region image is shown in Figure 9(b). Only two
qualitative volumes are recovered in which the conditional probability mapping the recov-
ered aspect to the recovered volume is high (see [9, 8, 7], corresponding to the block and
the cylinder.® The fitted models for the two recovered qualitative volumes are shown in

6All regions in the scene which do not touch the border of the image are examined by the algorithm in
terms of their possible grouings with adjacent regions to form part-based aspects.
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Dimension Part
Head ] Handle
width 16.74 8.18
height 16.74 | 8.18
length 25.66 42.40

Table 2: Recovered dimensions for mallet.

Figures 10 (a) and (b), respectively.

From the recovered superquad parameters in Table 1, we can proceed to classify each
part as either a stick, a strip, a plate, or a blob according to Equations 11, 12, and 13 in
Section 2.1.1; the results are shown in Table 4. Using Equations 1, 2, 3, and 4, and again
defining two dimensions as similar if the ratio of the biggest to the smallest is within 4:1
(width:height:length ratios for the two parts are: 1:1:2.51 for the block and 1:1:0.89 for
the cylinder), then both the block and the cylinder are classified as blobs. Although their
connection position and orientation are consistent with the hammer model, the hammer
model requires that its handle be a stick. In addition, the relative size of stick length to
blob dimension does not fall in the required 1:1 to 4:1 range. The unknown object cannot,
therefore, be classified as a hammer.

6 Limitations

The domain of hand tools defines a simple, one-to-one mapping between an object’s func-
tional primitives and relations and their corresponding shape primitives and relations. In
the more general case, shape primitives must be grouped to form larger shape primitives
according to rules such as coplanarity, collinearity, and cocurvilinearity. The mapping from
shape primitives to functional primitives is many-to-one, and a much more elaborate reason-
ing strategy is required to support the inference of a functional primitive from a collection
of interacting shape primitives. Nevertheless, we strongly believe that such a reasoning
mechanism must operate at the level of an object’s coarse volumetric parts.

The method that we propose for shape recovery, i.e., the use of qualitative shape to
constrain the recovery of quanitative shape, relies on a good region segmentation of an
intensity image [6] or a range image [7], although a certain degree of both undersegmentation
(as shown in the results) and oversegmentation can be tolerated. Furthermore, our region
segmentation techniques rely on object surfaces being opaque and devoid of surface markings.
In current work, we are trying to introduce a feedback mechanism between the qualitative
and quantitative shape recovery processes to better handle region segmentation problems,
and are extending our region segmentation strategy to include other measures of homogeneity
such as texture and color.

Finally, the object representation described in this paper is appropriate for objects com-
posed of simple volumetric parts. Furthermore, we support only functionality that is defined
in terms of an object’s shape. Functions that are based on color, texture, or more impor-
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(a) (b)

Figure 9: (a) Original image. (b) Segmented region image.

Figure 10: Recovered superquads: (a) Block. (b) Cylinder. Intermediate grey values along
contour portions represent locations of image forces acting on superquad.
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Superquad Part
Parameter || Block ‘ Cylinder
a 37.19 37.19
aq 0.54 0.45
a2 0.54 0.45
a3 1.36 0.40
ts -2.77 1.64
ty 0.32 -0.06
t, -50.0 -50.0
711 078 0.39
719 -0.11 0.02
T13 -0.62 0.92
791 -0.16 0.49
T'99 0.92 0.84
T93 -0.36 -0.23
r31 0.61 -0.78
739 0.38 0.54
33 0.70 0.32
€1 0.05 0.1
€9 0.05 1.0
bend, 0.0 0.0
taper, 0.0 0.0

Table 3: Recovered superquad parameters for unknown object.

Dimension Part
Block ‘ Cylinder
width 20.08 16.74
height 20.08 16.74
length 50.58 14.88

Table 4: Recovered dimensions for unknown object.
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tantly, motion, are not currently supported, although in current work we are enhancing our
representation to include motions of an object’s parts.

7 Conclusions

We have presented an approach to function-based object recognition that reasons about the
functionalities of an object’s parts. Previous approaches have relied on more global object
features, often ignoring the problem of object segmentation and thereby restricting them-
selves to range maps of unoccluded scenes. We extend the popular “recognition by parts”
shape recognition framework to support “recognition by functional parts”, by combining a
set of functional primitives and their relations with a set of abstract volumetric shape prim-
itives and their relations. We show how these shape primitives and relations can easily be
recovered from superquadric ellipsoids which, in turn, can be recovered from either range or
intensity images of occluded scenes. Furthermore, the proposed framework supports both
unexpected (bottom-up) object recognition and expected (top-down) object recognition.
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