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This paper investigates perceptual grouping from a logical point of view, defining a grouping
interpretation as a particular kind of logical expression, and then developing an explicit in-
ference theory in terms of such expressions. First, a regularity-based interpretation language
is presented, in which an observed configuration is characterized in terms of the regularities
(special configurational classes, e.g. non-accidental properties) it obeys. The most preferred
interpretation in such a system is shown to be the most-regular (maximum “codimension”)
model the observed configuration obeys, which is also the unique model in which it is generic
(typical). Inference then reduces to a straightforward exercise in Logic Programming. Because
generic model assignment involves negation, this reduction requires that a version of the Closed
World Assumption (CWA) be adopted.
Next, this entire regularity-based machinery is generalized to the grouping problem: here an
interpretation is a hierarchical (recursive) version of a model called a parse tree. For a given
number of dots and a fixed choice of regularity set, it is possible to explicitly enumerate the
complete set of possible grouping interpretations, partially ordered by their degree of regularity
(codimension). The most preferred interpretation is the one with maximum codimension (i.e.,
the most regular interpretation), which we call the qualitative parse. An efficient procedure
(worst case O(n2)) for finding the qualitative parse is presented. The qualitative parse has a
unique epistemic status: given a choice of regularity set, it is the only grouping interpretation
that both (a) is maximally regular, and (b) satisfies the CWA. This unique status, it is argued,
accounts for the perceptually compelling quality of the qualitative parse.

Introduction: the logic of
grouping

Consider the four dots in Fig. 1. It is natural for human
observers to attribute some “structure” to such a configura-
tion; one such interpretation is notated in the figure. The
indicated interpretation includes some division into groups
(a) and, among some of the dots, some degree of collinearity
(b). The inference of this sort of structure is compelling to
the eye, of course, but does not (in a modern view) appear to
derive from any kind of absolute logical necessity. The un-
derlying inference does, on the other hand, have some logical
structure, which this paper investigates.

The author wishes to express his gratitude to Whitman Richards,
Allan Jepson, Alan Mackworth, and Ray Reiter for many help-
ful comments and discussions, and to three anonymous review-
ers whose comments greatly improved the manuscript. This work
was made possible by the Rutgers Center for Cognitive Science
(RuCCS), Rutgers University, New Brunswick, New Jersey.

Apparent collinearity(b)
Inferred groups(a)

Figure 1. A field of four dots, in which a human observer might
find (a) some grouping structure and (b) some (near-)collinearity
structure.

This interpretation can be thought of as a model of the dot
configuration. Intriguingly, though, in the usual terminol-
ogy of logicians, it is the configuration itself, rather than the
interpretation, that is the “model” that instantiates a certain
“theory” or logical construction. This reversal of terminol-
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ogy, compared to that in use among perceptual theorists, is
telling. This paper works out some implications of consid-
ering scene interpretation, in particular dot grouping, from
a “logical” point of view. In this approach, influenced by
the framework proposed by Reiter and Mackworth (1989);
see Mackworth, 1988) interpreting an observed configura-
tion will reduce to identifying a sentence of a certain logical
language that the observed configuration satisfies in a certain
way. The result will be a model of the dot configuration (in
this case a grouping interpretation) that uniquely satisfies a
certain set of desirable logical constraints.

The process of finding groups among visual items has
been regarded in a number of ways: as the result of low-
level neural mechanisms (Glass, 1969; Caelli & Julesz, 1978;
Prazdny, 1984); as the result of reflexive reasoning princi-
ples (e.g. Gestalt laws); or as the result of computational
procedures emulating such principles (see Stevens, 1978; Ja-
cobs, 1989; Brookes & Stevens, 1991; Zucker, 1985; Guy &
Medioni, 1992; and Cox, Rehg, & Hingorani, 1993 for recent
examples). All these approaches have merits, and are not
necessarily to be regarded (at least, a priori) as inconsistent
with one another, as they attack the problem at different lev-
els. The logical approach presented here presents an alterna-
tive. We cast grouping interpretation into a formal language
with its own rules of construction, and then consider logical
constraints on these interpretations such that a single inter-
pretation uniquely satisfies these constraints. Accordingly,
computing this grouping interpretation will be treated in the
context of Logic Programming, which considers how logical
structures can be computed. This setting allows for such pre-
viously inaccessible issues as the “semantics” of grouping to
be approached in a concrete fashion.

It turns out that there is a natural way of expressing group-
ing interpretations as logical structures, which will be laid
out in Sections and . We begin by recapitulating some
scene interpretation machinery (presented in part in Feld-
man (1991, 1992a, 1992b, 1997b): first informally for mo-
tivation, using an example from shape classification (Sec.),
then more formally using notation that will be incorporated
into the grouping theory (Sec. ). The interpretation theory
was originally conceived for characterizing shape classes,
but grouping interpretations are nothing more than a recur-
sive generalization of the same idea, in which each group
is characterized as a certain configuration type, and then the
overall interpretation is a characterization of the relationship
among the various groups. Suitably formalized, this hier-
archical grouping interpretation reduces to a sentence in a
certain logical language. This language has a rich internal
structure that is explored in detail in Section . Finding the
“correct” grouping of a set of items then reduces to a straight-
forward Logic Programming problem, the solution of which
(finding the “model” of the observed scene) corresponds to
proving that the scene satisfies a certain logical expression.

Background

This section gives a capsule summary of the shape-
classification work on which the current paper builds, giving

Figure 2. A regularity lattice for parallelograms and their sub-
classes.

an intuitive introduction to the major ideas. However, all the
needed machinery will be derived from the ground up in a
more formal manner starting in Section .

Regularities and the regularity lattice. In previous
work (Feldman, 1991, 1992a, 1992b, 1997b) it has been pro-
posed that intuitively compelling shape classes can be enu-
merated as the nodes in a structured hierarchy termed the
regularity lattice (Fig. 2). The idea is to model some ob-
ject space (e.g., parallelograms) by a set of generative oper-
ations (e.g., stretch and skew) applied to some simple object
(e.g., a square) (an idea proposed by Leyton, 1984, 1988;
see also Leyton, 1992). Taken all together, the ensemble of
operations parameterize the entire parallelograms space. But
taken in subsets, each set of operations defines a subclass
that is qualitatively distinct in that each picks out a class of
objects that, under the underlying parameterization, share a
distinct generative history. These special subclasses are enu-
merated and partially ordered by the regularity lattice. This
enumeration is been investigated from the point of view of in-
ductive categorization (Feldman, 1992b, 1997b) recovery of
stable scene interpretations (Richards, Jepson, & Feldman,
1996), and the distribution of probability mass in a shape
space (Feldman, 1996).

Notice that the special subclasses in the lattice in Fig. 2—
the nodes below the top node which denotes the completely
“generic” class corresponding to the entire shape space—can
be regarded as regularities: that is, constraints that disqual-
ify objects that obey them from being regarded as typical.
For example, the leftmost node has right angles, a highly
special configuration. The rightmost node has equal-length
sides. The entire lattice is constructed from these two reg-
ularity concepts, with shapes assigned to nodes (classes) by
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evaluating what set of regularities they obey. The represen-
tation is “qualitative” in that shapes are only characterized in
terms of their regularities, collapsing over finer distinctions
among shapes that obey the same set of regularities. Hence
the characterization divides the shape space into the equiva-
lence classes, isomorphic to the nodes on the regularity lat-
tice, and each node on the lattice can be thought of as a dis-
tinct qualitative prototype for the shapes in its equivalence
class. The lattice thus completely enumerates the possible
forms in the space that are qualitatively distinct modulo the
chosen set of regularities.

The Genericity Constraint. The critical formal con-
straint that makes inferences possible in the above frame-
work is the idea of genericity: that objects should only be
associated with a prototype in which they are formally typ-
ical. This constraint rules out models (using the term in
the perception-theoretic sense) in which the observed ob-
ject would have to be regarded as a coincidence. For ex-
ample, any particular square satisfies the requirements of be-
ing a rectangle (it falls in the rectangle class) but it does so
non-generically, because it is atypical for rectangles to have
equal-length sides. On the other hand, the square falls in the
“square” class generically, because it is perfectly typical for
squares to have equal-length sides. Under a particular formal
definition of genericity, the generic model choice turns out
to be unique. This paper will introduce some new technical
results about model assignment under the Genericity Con-
straint in Section . These results will be necessary in building
towards the main goal of the current paper, the application of
the regularity-based machinery to the problem of grouping.
This will only be taken up directly in Section .

Preview of the paper. The paper will be structured as
follows. In Section , we formalize the idea of the recovery
of the maximally regular interpretation, constructing a logi-
cal language in which each model is a valid expression. We
prove some novel formal results about the structure of the
space of these expressions; the main result is that it is a dis-
tributive lattice, called the lattice of models. In order actually
to compute the appropriate model for an observed configura-
tion, the observer must decide which model can be “proved”
from it. Hence it is natural to place this machinery into the
context of Logic Programming, which is concerned with how
logical expressions can be evaluated computationally. Be-
cause the expression for the most regular interpretation in-
volve negation, a problematic issue in Logic Programming,
we must delve a bit into semantics; it turns out to be neces-
sary to adopt an analog of the well-known “Closed World As-
sumption.” to justify the use of “negation as failure.” Section
applies the regularity-based interpretation machinery to the
grouping problem, introducing a hierarchical generalization
of the most regular interpretation called the qualitative parse.
The qualitative parse amounts to an explicit logical solution
to the grouping problem, with dot configurations assigned
only to parses in which they are generic. The treatment of
grouping will present formal results corresponding to (and
building on) each of the pieces of the ordinary interpretation
machinery: a logical language in which interpretations are
expressed, a rule for choosing the best interpretation, and fi-

nally a complete characterization of the structure of the space
of qualitative parses (i.e. the grouping analog of the lattice of
models). Remarkably, this turns out to be a set of disjoint set
of distributive lattices. For a given configuration the qualita-
tive parse is locally unique, and globally so except in unusual
circumstances: that is, for each configuration of dots, there is
one and only one grouping interpretation that simultaneously
(a) is maximally regular and (b) satisfies the Closed World
Assumption.

Interpretation as
regularity-finding

Regularities and models

Regularities. Say we have some input configuration x
chosen from a data space X . Certain types of configurations
are of special interest to the observer, in that they contain
some kind of suspiciously organized structure: two line seg-
ments that share an endpoint, three dots that are collinear,
and so forth. We call such properties “regularities.”

More formally, we regard a “regularity” R as a logical
predicate defined on X , which holds on some subset XR ⊂ X .
The essential condition for R to be regarded as a “regularity”
is the following primitive preference principle:

For a configuration obeying R, prefer a model in-
cluding R to one not including R (all else being
equal).

(1)

That is, a regularity is a class of configurations that an
observer tends to utilize or recognize when it occurs. The
justification for this tendency has been ascribed by percep-
tual theorists to a a number of sources for particular regular-
ities that exhibit it. For a certain class of features, Binford
(1981) and Lowe (1987) attribute the preference tendency
to “non-accidentalness,” i.e. probabilistic reliability due to
viewing geometry. Such features are special in that they are
unlikely to occur in 2-D unless they occur in 3-D, leading
to a high likelihood ratio in favor of inferring the feature.
This probabilistic relationship has been generalized by Ben-
nett, Hoffman, and Prakash (1989), who introduced a suit-
able measure-theoretic characterization of the unlikelihood
of a false inference. In several articles, Jepson, Richards and
Feldman (Jepson & Richards, 1992b, 1991, 1992a; Feldman,
1991, 1992a, 1992b, 1997b; Richards et al., 1996) have advo-
cated a more “structural” view, in which more regular con-
figurations are constructed from more generic ones by re-
moving degrees of freedom one by one. In this case, more
preferred configurations have lower dimension (higher codi-
mension1), and less preferred configurations have higher di-
mension (lower codimension), thus satisfying Bennett et al’s
measure condition. Each of these approaches attempts to elu-
cidate why certain configurations obey the above preference

1 Codimension is the difference in dimension between a geomet-
ric object and the overall space in which it is embedded (see Pos-
ton and Stewart (1978)), which corresponds here to the completely
generic configuration.
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condition; in the current paper we treat this as simply a prim-
itive, calling any configuration which obeys the principle a
“regularity,” and then investigate the logic of the resulting
inference structure.

Defn. 1 (Regularity) A regularity R is a logical predicate
defined on X and obeying (1). When R holds on x ∈ X we say
R(x), otherwise ¬R(x). The region {x ∈ X |R(x)} is denoted
XR.

Naturally, other conditions are required in order for a
given regularity to be useful in practice as a building-block
for scene interpretations; see Jepson and Richards (1992a)
and Richards et al. (1996).

The regularity set. Now, assume that the observer has at
hand some distinguished set of regularity types

R = {R1,R2, . . . ,Rk},(2)

called the regularity set. A given configuration may sat-
isfy some subset of these; the larger this subset, the smaller
the corresponding region of X satisfying it. It may be that the
various Ri’s are all independent, meaning that configurations
exist that satisfy any subset of R . To be more general, we
allow that there may be pairwise constraints ω of the form

Ri
ω→ R j,(3)

meaning that Ri can only hold if R j does as well, i.e.

Ri
ω→ R j iff XRi ⊂ XR j .(4)

The pairwise constraints ω can be regarded as imposing a
nested structure on the various regularity regions. For brevity
a regularity set coupled with an implication set will be re-
ferred to as a context C = 〈R ,ω〉.

Models. For any set M ⊂ R , the closure of M under ω is
the set augmented by any additional regularities implied by
transitive closure of

ω→. A set of regularities is called closed
if it is the closure of some set of regularities.

Any set of regularities {R1,R2, . . . ,Rc} ⊂ R can be iden-
tified with a logical ∧-expression

R1∧R2∧·· ·∧Rc,(5)

which is satisfied if and only if each of the regularities in
the set is satisfied. We ignore the order of terms in such an
expression, so that sets of regularities can be spoken of in-
terchangeably with the corresponding ∧-expressions. Each
closed subset of the regularity set is called a model:2

Defn. 2 (Model) Given a context C, any closed set of regu-
larities M ⊂R , or the corresponding∧-expression, is called
a model.

It is convenient to use the term “model” to refer to
both the closed set of regularities and the corresponding
∧-expression, so that we may speak of a configuration “sat-
isfying a model” (thinking of the model as a logical expres-
sion) and also speak of “a subset of a model” (thinking of the
set). Some sample contexts are given in Table 1.

X

RX SX

XR S

Figure 3. A Venn diagram of a configuration space X with two
regularities, R and S. While some points in the space satisfy more
than one model (i.e. are contained in more than one model region),
each point satisfies exactly one model generically.

Notice that /0 is a model in any context, because it is the
closure of itself regardless of ω. While for a given context
there are 2k sets of regularities (k = |R |), for non-empty ω
there are fewer than 2k distinct models. Notice that not all of
the subsets of R correspond to distinct regions of X , but each
model M does correspond to a distinct region XM , called the
“model region.”

In summary, the context C = 〈R ,ω〉 entails a fixed, finite
set of models M , each of which corresponds to a distinct
region XM ⊂ X . In each context, some of the models are
less constrained (contain fewer regularities), and hence cor-
respond to large regions of X ; some are more constrained and
correspond to smaller regions. The least constrained (most
“generic”) is always /0, because X /0 = X . The models repre-
sent each and every distinct “way of being regular” modulo
the context. That is, each model describes a configuration
class that is qualitatively distinct from each other class mod-
ulo the context, in the literal sense that it contains different
regularities.

Genericity and negation

In general, if a model M holds on a certain configuration
x, then so do all submodels Mi ⊆ M , including /0, which
holds on all x ∈ X . The situation is depicted in Fig. 3. The
“map” of the configuration space that is entailed by a given
context is characterized by this nest of overlapping and some-
times nested regions. Notice that while these regions are
closed under intersection, they are not generally closed under
union. In Fig. 3, for example, XR∩XS = XR∧S, but XR∪XS is
not the region for any model.

2 Notice again that we are using the term “model” in the
perception-theorist’s rather than the logician’s sense.
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Regularities R Implications ω Models
{R} - /0,{R}
{R,S} - /0,{R},{S},{R,S}
{R,S,T} T

ω→ S /0,{R},{S},{R,S},{S,T},{R,S,T}
{R,S,T} T

ω→ S,S
ω→ R /0,{R},{R,S},{R,S,T}

Table 1
Some sample contexts and their models. Models are given in set notation.

In the figure, any configuration x that satisfies a model
{R,S} (i.e. satisfies R∧S) also satisfies the models {R}, {S},
and /0. However, as suggested above, to identify x with any of
these other models would be undesirable, in that it satisfies
them non-generically—specifically in that in each case x also
satisfies a more regular model, namely {R,S}. This suggests
the following definition of “generic.”

Defn. 3 (Genericity) For an object x and a model M , “x
satisfies M generically” or “x is generic in M ” iff there ex-
ists no larger model M ′, M � M ′, s.t. that x also satisfies
M ′.

Each model that a given object x obeys non-generically
is missing at least one regularity that x obeys, and which
would be contained in a generic model. Hence by virtue of
the “primitive preference principle” (Eq. 1), it is immediate
that the observer should prefer a generic model to any non-
generic one. A non-generic model amounts to an interpre-
tation in which the observed configuration would have to be
regarded as a peculiarly atypical case. This is the so-called
Genericity Constraint:

(Genericity Constraint):For a configuration x,
prefer a model M in which x is generic.

For each configuration, there is always one and only one
such model.

Theorem 1 Given a configuration x in a context C, the
model M (x) in which x is generic exists and is unique.

Proof. x is generic in the model {R|R(x)}, because there
can be no larger models that x satisfies. Note that if x obeys
no regularities in C then x is generic in the model /0. ✷

The generic model is ipso facto the unique most preferred
interpretation for a given configuration. The remainder of
this section is devoted to characterizing this model more
completely.

An immediate consequence of the uniqueness of the
generic model is that the context C entails a partition of X , in
which each cell comprises a collection of configurations all
of which are generic in the same model. This partition may
be viewed two different ways. In one approach, each cell in
the partition is isomorphic to a model, but not identical to it,
because the model region contains some points that satisfy
it generically and others that satisfy it non-generically. For
example, in Fig. 3, the region XR contains both points that

are generic in {R} as well as points that are not (i.e. those
that are also in XS).

A second approach, which we pursue here, and which is
essential if we are to render model assignment computable,
is to attempt to give each cell in the partition an explicit log-
ical form, so that each model spells out the points that are
generic it in a completely literal way. Evidently, the key is to
recognize the implicit negative part of each model—the part
that rules out non-generic points—and make it explicit, thus
completing the necessary specification of points that properly
(generically) belong to the model. We call this the comple-
tion under genericity of the model.

First, we fix some some notation. For two sets A and B ,
let A−B denote the asymmetric difference {A∈A : A �∈B}.

For any set {A,B, . . . ,},
+︷ ︸︸ ︷

{A,B, . . .} means A∧ B∧ . . ., and
¬︷ ︸︸ ︷

{A,B, . . .} means ¬A∧¬B∧ . . ..

Defn. 4 (Completion of a model under genericity) For a
model M ⊂ R , the completion under genericity is

M ∗ =

+︷︸︸︷
M ∧

¬︷ ︸︸ ︷
R −M .(6)

Because each completed model contains some number
c≤ k of regularities in its “positive part” and k−c in its “neg-
ative part,” it is notationally convenient to renumber them
and rewrite the model as

M ∗ =

+︷ ︸︸ ︷
{R1, . . . ,Rc}∧

¬︷ ︸︸ ︷
{Rc+1, . . . ,Rk} .(7)

Model completion is always relative to a given regularity
set, but with the context fixed, models and completed mod-
els are in exact one-to-one correspondence. The number c,
the cardinality of the uncompleted model, or (equivalently)
the cardinality of the positive part of the corresponding com-
pleted model, is called the codimension. It measures numer-
ically the degree of structure exhibited by objects satisfying
the given model. The role of “logical” codimension, and
its relationship to the conventional geometric definition men-
tioned above, will be discussed below.

A configuration x satisfies a model M generically if an
only if it satisfies the corresponding completed model M ∗,
in which case we write M ∗(x). Hence the completed model
can be thought of as the “proper” (i.e., generic) name for the
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R SX

R SX

R SX

S RX

Figure 4. The same configuration space as in Fig. 3, except with
each region labeled explicitly by its completed model. (Note that
this is no longer a Venn diagram; the four labeled regions are dis-
joint.)

cell of the partition corresponding to the given model. This
correspondence is pictured in Fig. 4, in which the partition is
depicted and labeled explicitly.

Notice that the set of regions corresponding to completed
models, which are disjoint, is not generally closed under ei-
ther union or intersection.

As in the figure, note that the empty model /0 when com-

pleted becomes ¬R∧¬S · · ·, i.e.

¬︷︸︸︷
R . To satisfy this ex-

pression, a configuration must systematically avoid satisfy-
ing any particular regularity type—a highly “special” situa-
tion. This is a natural reflection of the idea that a completely
“typical” point in the configuration space is one that exhibits
no special structure whatever.

The key point is that the completed model is a fully ex-
plicit logical form for models. A configuration x can now
be assigned to a model generically simply by finding the
unique completed model that succeeds on x, e.g. using Logic
Programming. From this point of view it is significant that
the completed model requires negation, the computation of
which is well known to require delicate treatment.

The lattice of models

We now investigate the structure of the space of models
entailed by a given context. The resulting structure bears
some similarity to that developed in “concept lattices” (see
Davey & Priestley, 1990), though the motivation is different.
This characterization is critical partly because it allows the
full set of legal models in a given space to be enumerated.
Moreover, it is essential because inference among models—
e.g. the computation of the correct model for a given ob-
served configuration—is actually carried out by movement
through the internal structure of the model space. The space

pentagon diamond
Figure 5. Two forms that do not appear in any distributive lattice.

of models turns out to be a distributive lattice (cf Erné, 1993),
an extremely well-behaved type of partial order. Some prop-
erties entailed by this fact, which are extremely desirable
from the point of view of perceptual inference, will be ex-
hibited below.

Recall that a lattice is a partial order in which every pair of
elements A and B has a unique greatest lower bound (called
the “meet,” A∧B) and least upper bound (called the “join,”
A∨B. (See Grätzer, 1978 or Davey & Priestley, 1990 for
good introductions to lattice theory.) Pictorially, a lattice is a
partial order in which any two nodes have a unique common
bound (i.e. a node they both connect to) both above and be-
low. A distributive lattice is one that obeys the “distributive
identities”

(A ∧B)∨ (A ∧C ) = A ∧ (B ∨C ),(8)

(A ∨B)∧ (A ∨C ) = A ∨ (B ∧C ),

for all A ,B , and C ; that is, ∧ and ∨ “distribute,” as one
would expect if they were read as intersection and union re-
spectively. Pictorially, distributive lattices are distinguished
by the fact that they contain no “pentagons” or “diamonds”
(see Fig. 5) as sublattices. This rule serves as an thumbnail
check that lattices expected to be distributive actually are so,
and can be confirmed later in Figs. 6 and 12-15.

One might show that the set of models is a distributive
lattice simply be confirming the distributivity condition al-
gebraically. However it is far more revealing of the inter-
nal structure of models to do so by another means—namely
by explicitly constructing an isomorphism between the set of
models and a lattice that we know is distributive, but whose
structure is more transparent: a ring of sets3, which is a set
of sets that is closed under both union and intersection.

We use a basic theorem about distributive lattices:

Theorem 2 (Birkhoff’s Representation Theorem) A lat-
tice is distributive iff it is isomorphic to a ring of sets.

3 Also called a “lattice of sets.”
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Proof. See Davey and Priestley (1990) Thm.8.17, or
Grätzer (1978) Thm. II.19.

A distributive lattice, in other words, is one that behaves
as if ∧ and ∨ were intersection and union respectively, and
which is closed under them. What is remarkable about the
fact that the lattice of completed models is distributive is that,
as mentioned above, model regions (whether of completed
or uncompleted models) are not generally closed under these
operations. Nevertheless, these regions can be placed in one-
to-one correspondence with a set of sets which are closed
under them—namely, the uncompleted models themselves.
Correspondingly, taking completed models as logical expres-
sions, we can construct connectives exactly isomorphic to in-
tersection and union under which the set of completed mod-
els is in fact closed. These operators, which the following
theorem guarantees exist, are the meet and join of the lattice
of completed models.

Theorem 3 . The set of completed models forms a distribu-
tive lattice, when regarded as a partial order under subset
inclusion on the positive part of the models.

Proof. The set of uncompleted models (regarded as sets)
is closed under union and intersection. Consider arbitrary
models M and N :

Union. For every R ∈M , each S entailed
by R must also be in M , because M is closed
under ω; likewise for N . Hence S must also be
in M ∪N . Hence M ∪N is closed, and is a
model.

Intersection. For each R ∈ M ∩N , we
know that R ∈M and R ∈ N . Hence the clo-
sure of {R} under ω is also in both M and in N ;
therefore it is also in M ∩N . Therefore M ∩N
is closed and is a model.

Therefore, by Thm. 2 above, the set of uncompleted mod-
els form a distributive lattice when regarded as a partial order
under set inclusion. Because completed models are isomor-
phic to uncompleted models, it follows immediately that the
set of completed models form a distributive lattice, when re-
garded as a partial order under set inclusion on the positive
part of the completed models. ✷.

The following isomorphism maps uncompleted models to
completed models, and intersection and union to correspond-
ing novel operators on completed models.

M ⇐⇒ M ∗ =

+︷︸︸︷
M ∧

¬︷ ︸︸ ︷
R −M(9)

M ∩N ⇐⇒ M ∗ ∨∗N ∗ =

+︷ ︸︸ ︷
M ∪N ∧

¬︷ ︸︸ ︷
R −M ∪N

M ∪N ⇐⇒ M ∗ ∧∗N ∗ =

+︷ ︸︸ ︷
M ∩N ∧

¬︷ ︸︸ ︷
R −M ∩N .

Note the seemingly counterintuitive polarity of this map-
ping, in which ∩ goes to ∨∗ and ∪ to ∧∗. This serves to pre-
serve the sense of the correspondence between composition

of atomic regularities and composition of models; defined
this way, an expression built from ∧∗, like one built from ∧,
is satisfied when both left and right arguments are satisfied.
Interestingly, the operators can be rewritten with the more
intuitive parity, but at a cost in simplicity:

M ∗ ∧∗N ∗ =

+︷ ︸︸ ︷
(R −M )∩ (R −N )∧

¬︷ ︸︸ ︷
R − (R −M )∩ (R −N )(10)

M ∗ ∨∗N ∗ =

+︷ ︸︸ ︷
(R −M )∪ (R −N )∧

¬︷ ︸︸ ︷
R − (R −M )∪ (R −N ) .

For any two completed models, their meet on the lattice is
simply the model which obeys all regularities that either of
them obeys; their join is the model which obeys only those
regularities that both obey, and fails on the others. Movement
down the lattice thus always yields a strictly more regular
model, and movement up the lattice always yields a strictly
less constrained (more generic) model. We will sometimes
denote the model lattice for a context C by LM (C) (omitting
the C when the choice of context is clear), and the corre-

sponding partial order by
M≤, i.e.

M ∗
1

M≤M ∗
2 iff M1 ⊇M2.(11)

Because of the Genericity Constraint, the lattice partial
order is actually a preference ordering: lesser models, lower
on the lattice, are always preferred. Hence the partial order
is instrumental in inference, as will be detailed below.

The lattice contains all the models entailed by a given con-
text, and completely diagrams the relationships among them.
Fig. 6 shows lattices for several example contexts.

First, one remark about the internal structure of these lat-
tices is required. Recall that the codimension of a model (the
number c from Eqs. 5 and 7) is the number of regularities in
the (positive part of the) model, and hence is a measure of
the degree of regularity of the model. Notice in Fig. 6 that
each lattice is built of rows containing models of the same
codimension, with the codimension-0 (completely generic)
model at the top, and the highest-codimension (completely
regular) model at the bottom. This is a natural reflection of
the fact that the lattice partial order is an ordering on degree
of regularity. However, the correspondence between codi-
mension and row number cannot be taken for granted, be-
cause in an arbitrary lattice, the “row number” of a given
model may not even be well-defined. This is because dif-
ferent paths from the top to the given model may not have
the same length. However, a property of distributive lattices
guarantees that the row number actually is well-defined, thus
allowing us to think of “number of regularities” and “row
number” interchangeably when referring to codimension.

For a certain fixed model in a lattice, consider the length
of paths connecting it to the top node to the model. A chain
in a partial order is a totally ordered subset. A maximal chain
is a chain which is as “large as possible” in that for each el-
ements A ,C in the chain, if A ≤ B ≤ C , then B is also in
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Figure 6. Model lattices for some sample contexts. (a)
R = {R};(b) R = {R,S}; (c) R = {R,S,T}, T

ω→ S; (d) R =
{R,S,T},T ω→ S,S

ω→ R.

the chain. That is, a maximal chain is a complete “path.” In
a distributive lattice, all maximal chains from the top node
to a given node have the same length (see Grätzer (1978),
Thm. IV.2.4) This property, called the Jordan-Hölder chain
condition, can be readily confirmed by inspecting Fig. 6, and
counting the length of the various paths from the top node to
each fixed model. This theorem establishes that every model
has a well-defined row number, which clearly corresponds 5

to codimension.

Canonically, as discussed in Section , regularity regions
in fact refer not merely to subsets of a configuration space,
but to regions of (one) lower dimension than the space, i.e.
regions whose geometric codimension is one, this justifying
the “primitive preference principle” (Eq. 1). Hence the dis-
tributivity of model lattices serves to establish not only that
the discrete concept of codimension is well-defined, but also
that it aligns correctly with the geometric concept.

Inference to a model. Given an observed configuration x
in a context C with entailed models LC which model should
it be assigned to?

There are a number different but equivalent ways of iden-
tifying the most preferred model. Above, it was remarked
that x actually satisfies some set of (uncompleted) models,
but that it will satisfy exactly one of these models generi-
cally. Equivalently, x satisfies the positive part of some set

of completed models; denote this set {M ∗
x }. This set of mod-

els has a unique minimum in the partial order, which is also
the model with the maximum codimension. This model is the
unique generic interpretation of x, and is the sole completed
model that x satisfies. These various equivalent definitions
are captured by the following theorem, which summarizes
many of the results in this section.

Theorem 4 (Equivalence of inference rules) Given a con-
figuration x satisfying the positive part of some set of models
{M ∗

x } as described above, the following are equivalent:

1. x is generic in model M
2. x satisfies the completed model M ∗
3. M ∗ =

V∗{M ∗
x }

4. M ∗ is the maximum codimension model in {M ∗
x }.

We take pains to distinguish among these different but
equivalent definitions of the single “best” model, because
when these ideas are generalized to the grouping problem
in the next section, certain of the corresponding definitions
turn out not to be equivalent. In particular there will gen-
erally be multiple generic solutions but a unique maximum-
codimension solution.

This completes the exposition of the theory of “simple”
models and the inferential machinery relating to them, cul-
minating in the statement of the maximum-codimension rule
for selecting the most preferred model. The next section
takes up the question of how such models can be computed
concretely, which is necessary before actual computational
examples can be exhibited in Section .

Regularities and models in a Logic Programming
setting

Above, each regularity R has been treated as an abstract
logical predicate. Naturally, we would like to evaluate these
expressions computationally. This is a problem taken up by
Logic Programming (see Apt (1990) for an introductory sur-
vey). One of the major issues in Logic Programming is what
must be assumed in order to justify equating the truth or fal-
sity of logical expressions with the success or failure of some
corresponding computational procedure. Such assumptions
touch on the “semantics” underlying automatic inference, in
that they reflect how perfectly a given computational model
can be regarded as modeling the world in question. We will
appropriate some well-established arguments from this field
in order to gain an insight onto the semantics of perceptual
interpretations.

For each regularity R we assume that there is a corre-
sponding computable clause R that can be carried out on a
configuration x such that

R(x)← R[x],(12)

4 In fact, semimodularity, a weaker condition that distributivity,
is all that is required for this property.

5 Here we ignore a minor technical problem involving cycles
within ω, which causes no conceptual problems but would muddy
the presentation.



REGULARITY-BASED PERCEPTUAL GROUPING 9

meaning that R(x) can be definitely asserted if the clause R
halts with success on input x. Similarly, the entire regularity
set R has associated clauses

R1 ← R1[x],(13)

R2 ← R2[x],
...

Rk ← Rk[x].

The actual computation of models depends on being able
to assert that certain regularities do not hold—namely, the
ones in the negative part of the completed model. Hence a
critical question is: under what circumstances can we posi-
tively assert ¬R?

A classical solution to this question is the “negation as
failure rule:” assert ¬R if the clause R halts with failure; that
is,

¬R(x)← R[x] halts with failure.(14)

In many applications, the set satisfying a clause R turns
out to be recursively enumerable but not decidable; in such a
case R cannot be assumed to halt with failure if ¬R, because
it may not halt at all. Here, we have a different but analogous
situation. We can assume that each clause will halt on ev-
ery x. Nevertheless, regularities should really be regarded as
referring to the world, not the observation; hence the ques-
tion remains of whether a given world configuration can be
“proven regular” given a particular regularity definition. If
the regularity clause fails, then, what must be assumed in or-
der to justify the inference that the world is in fact not regular
in the intended sense?

Reiter (1978) observed that this inference can be regarded
as depending on an assumption about the world under con-
sideration, namely that it is closed—i.e. states in which R
obtains but R fails anyway do not exist:

Closed World Assumption (regularities ver-
sion): For each regularity R, the corresponding
computable clause R is complete.

This Closed World Assumption (CWA) can simply be re-
garded as augmenting the original clausal definition

R(x)← R[x],(12)

with its converse

R(x)→ R[x](15)

to yield the “completed” definition

R(x)↔ R[x],(16)

from which we can conclude Eq. 14 by modus tolens
(Clark, 1978). With this equivalence established, we can
drop the distinction in typeface between R(x) and R[x]. By

adopting the CWA, we are simply assuming that regular
states of a type that our definitions cannot uncover do not
happen—or at least that we will disregard cases where they
do. In fact such cases, usually labeled “misses,” are ubiq-
uitous in perceptual theory, which is in effect built on the
tacit assumption that ignoring them will not lead to too many
incorrect conclusions. Here we are attempting to make this
assumption more explicit.

The above version of the CWA allows the semantic scope
of a particular regularity inference to be stated precisely.
Clearly, this aids in understanding the scope of model in-
ferences as well, but it does not completely settle the matter.
We have only assumed so far that each regularity is closed.
In order to justify the inference of an entire model, we need
to assume further that the regularity set itself is closed—i.e.
that no regularities other than those in R exist in our world.

Closed World Assumption (models ver-
sion): R is complete.

Recall that the basic model definition was “A model M =
R1 ∧R2 ∧ ·· · ∧ Rc holds generically on x if the regularities
R1(x) . . .Rc(x) hold, but no other regularities hold”. Now due
to the CWA, this relatively abstract formulation can be reified
computationally in the fully completed form

M ∗(x)↔

R1[x]
...

Rc[x]


halt with success

Rc+1[x]
...
Rk[x]


halt with failure.

(17)

This expression can be thought of as a fully computation-
alized version of Eq. 7, and renders the logical definition of a
model fully computable. Now, by virtue of having character-
ized the scope of model assignment in this careful fashion,
via the uniqueness of the model picked out by Thm. 4, we
obtain the following characterization of the semantics of the
generic model:

Theorem 5 For a given configuration x and a regularity set
R , there is a unique computable interpretation M ∗ that sat-
isfies both of

1. the Genericity Constraint
2. the Closed World Assumption.
Proof. Because the correspondences in Eqs. 14 and 16

are both if-and-only-if, this is an immediate consequence of
Thm. 1. ✷

This theorem summarizes the unique epistemic status of
the regularity-based interpretation of the observed configura-
tion.

We can now proceed with the main goal of the paper, the
generalization of this machinery to the grouping problem.
The basic theory of grouping includes suitable hierarchical
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counterparts of each of the key elements of the simple the-
ory: models, codimension, the lattice of models, and so forth.
Like the simple theory, the hierarchical theory will culminate
in an inference rule that selects a most-preferred generic in-
terpretation.

Grouping as regularity-finding

The Dots World

All of the above machinery has been implemented in Pro-
log, using an efficient approximation described in Section ,
which generated all of the following examples and pictures.

Consider the “Dots World.” Here each configuration x
consists of a set of n points (“dots”) in the plane

x = {x1,x2, . . . ,xn} ⊂ R2.(18)

The idea is to regard the process of grouping these points
(dots) as a side-effect of finding the “structure” or regularity
in the configuration (Witkin & Tenenbaum, 1983). The first
step is to choose a regularity set R , designating which classes
of configurations are to be regarded as special. In the Dots
World, one obvious choice is collinearity, defined over dot
triplets {x1,x2,x3}:

collinear(x1,x2,x3)← abs(π−\x1x2x3) < θcoll,(19)

where θcoll is some threshold angle (π/3 is used in the
examples later). Fig. 7 shows an example; notice the isomor-
phism between this figure and Fig. 6a). Collinearity is well
known to be perceptually important, serving as a cue to an
underlying generating curve or contour, both computation-
ally (Parent & Zucker, 1989) and psychologically (Feldman,
1996).

Another special configuration of dots that is unlikely to
occur by accident is coincidence:

coincident(x1,x2)←‖x1− x2‖< θcoinc,(20)

where θcoinc is some threshold distance. This succeeds
when x1 and x2 fall near each other. Like collinearity, coin-
cidence is well known to be employed by human observers.
Adopting it as a regularity is obviously related to the Gestalt
principle of proximity. But notice that the reasoning here is
actually reversed from the usual. Instead of a somewhat ar-
bitrary presumption about inference (“if two objects are near
each other, group them together”), we have one about what
structures occur in the world (“two independent objects are
unlikely to fall near each other by accident”). This assump-
tion impacts on inference only via the need for a generic in-
terpretation, in which coincident items must be interpreted as
being non-independent. Rather than presuming a reasoning
principle, here we assume only that independent but never-
theless coincident items—like non-generic viewpoints, win-
ning lottery tickets, and other low-probability events—are in
fact atypical events in the world.

Parse trees. It is convenient to notate the regularity
coincident(x1,x2) as a tree:

collinear

collinear

Figure 7. A dot triplet satisfying (bottom) and not satisfying (top)
the regularity collinear. Note the isomorphism between this fig-
ure and Fig. 6a.

x1 x2

coincident

.
(21)

Each leaf in such a tree may be filled by any object that
has a location, not just a simple dot. For example, the above
tree itself has a location (e.g. the centroid of the x1 and x2).
Placing a tree in one of the leaf slots yields a more complex
tree that describes a coincidence among three dots:

x3

coincident

x1 x2

coincident

.

(22)

This process can be carried out ad infinitum, yielding trees
of arbitrary depth. We call these trees parse trees, following
the linguistic parsing literature. Parse trees can be thought of
as descriptions or models of arbitrary large sets of dots.

In light of this construction, it is simplest to rewrite the
collinear regularity, which above was written as a regular-
ity among three dots, as a binary relation between a tree and
a dot.

collinear(T,x)← x falls on the line defined by T,(23)

where T is a parse tree that passes up an orientation
and a location (see below); this definition is equivalent to
Eq. 19. We assume, following apparent human intuitions,
that the two arguments of the redefined collinear can only
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be judged collinear if they are also near enough to be judged
coincident:

collinear
ω→ coincident,(24)

i.e. a collinearity among three dots occurs when two dots
are near each other (satisfy coincident), a third dot is near
the first two, and the third dot falls on the line defined by the
first two.

Summarizing, we have the following context for the Dots
World:

R : {coincident,collinear},(25)

ω : coincident
ω→ collinear,

which yields the model lattice

{collinear, coincident}

{coincident}

0

.(26)

For simplicity, we abbreviate this to

collinear

coincident

gen

.

(27)

keeping in mind that, strictly, gen means /0,
coincident means {coincident}, and collinear
means {collinear,coincident} (i.e. the ∧-expression
collinear ∧ coincident). Recall that because of
the CWA, in the chosen context gen really means
¬coincident∧¬collinear.

The next section develops parse trees more completely.
Each nonterminal node of a parse tree will always be one of
the above three models, with the leaves being simple dots. A
parse tree is thus a hierarchical version of a “model,” i.e. it
is an interpretation of a configuration of dots; but it is also
built from simple models, and the formal properties of parse
trees will derive in part from the formal properties of models,
which is why those properties were derived in such detail in
the previous section. In particular some theorems about the
internal structure of the space of parse trees depend directly
on facts about the structure of the lattice of models.

The grouping interpretation resulting from this machinery,
the maximum-codimension parse tree or qualitative parse, is

the most regular interpretation of the dot configuration (mod-
ulo the chosen regularity set): hence the phrase “grouping as
regularity-finding.” Coupling this with “regularity-finding as
negation” (because the Genericity Constraint requires that a
regular interpretation only holds if all more regular interpre-
tations do not hold) and “negation as failure” (because of the
CWA) yields the handy motto “grouping as failure.”

The qualitative parse

We now present the grouping theory more formally, fol-
lowing the outline of the simple theory. Each of the following
definitions is simply a recursive version of an idea presented
above. We begin with a recursive definition of a parse tree.
Trees are notated in pseudo-Prolog as lists. In each tree other
than [dot], the head term (root node) is a model, and the
second term is a list of arguments to the head term.

Defn. 5 (Parse tree)

1. [dot] is a parse tree;
2. [M , [T1,T2, . . .]] is a parse tree if

1. M ∈ LC (i.e. M is a model), and
2. T1,T2, . . . are parse trees.

Parse trees can be satisfied by a set of dots coupled with an
assignment of those dots to the leaves of the tree. A complete
assignment in a complete parse tree is conveniently notated
by substituting the name of the dot in place of the tree [dot]
in the appropriate leaf. A parse tree coupled with an assign-
ment is called an interpretation.

The tree [dot] is satisfied by any dot. Satisfaction of other
trees is mediated by parameter passing. Each regularity,
when it succeeds, passes appropriate parameters up the parse
tree to be fed as arguments to regularities on the next higher
level. [dot] passes the coordinates of the dot. coincident
passes the centroid of the coincident dots, which is then
treated exactly as if it were dot. collinear passes the co-
ordinates of the last two dots in the collinear chain, which
define an orientation. Then, satisfaction of a tree and generic
satisfaction of a tree are both defined in a straightforward
recursive manner: a tree is satisfied (generically) if its head
term is satisfied (generically) and each of its subtrees is sat-
isfied (generically).

Defn. 6 (Satisfaction and generic satisfaction of a parse tree)

1. [dot] holds (generically) on any dot;
2. [M , [T1,T2, . . .]] holds (generically) on a set of dots

{x1,x2, . . .} if there exists a partition P of into cells p1, p2, . . .,
such that:
1. each tree Ti holds (generically) on the dots pi, and
2. the model M holds (generically) on the parameters passed
by T1,T2, . . ..

The recursion always bottoms out at the leaf nodes with
[dot]. In actual computation, genericity is determined by
regarding head terms as completed models, and then simply
computing satisfaction of the completed model. An assign-
ment is produced by recursively partitioning a dot set. In the
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Dots World regularity set, both regularities take two argu-
ments, so these partitions are always 2-way.

The notion of codimension also has a straightforward re-
cursive counterpart:

Defn. 7 (Codimension of a parse tree)

1. The codimension of [dot] is 0;
2. The codimension of [M , [T1,T2, . . .]] is the sum of the

codimension of the head term M and the codimensions of
each of T1,T2, . . ..

Head terms follow codim M ∗ = |M |, so codim gen
= 0, codim coincident = 1, codim collinear = 2 (=
|{collinear,coincident}|).6 As mentioned above, and
discussed in detail below, the generic parse tree for a given
dot configuration is not unique. The most preferred in-
terpretation, rather, is that picked out by the maximum-
codimension rule:

Maximum-codimension rule for choosing a
parse tree: Among parse trees T in which a con-
figuration x is generic, choose T that maximizes
codim T .

This choice is not guaranteed to be unique, but it fre-
quently is unique, for interesting reasons having to do with
the internal structure of the partial order. The maximum-
codimension interpretation will be referred to as the qualita-
tive parse.

Examples. Figs 8-10 show examples of dot configura-
tions along with their qualitative parses. The reader can per-
form a bit of “instant psychophysics” by evaluating whether
these interpretations seem intuitively plausible, while keep-
ing in mind that the parses can only be as psychologically
compelling as the regularity sets we have defined. For the
examples, θcoll is set at π/6 and θcoinc is set at 40 pixels
(the appropriate value depends on the density of dots in the
image) in a square window with sides of 360 pixels. Each
figure shows the dot configuration itself (part (a) of each fig-
ure), a pictorial schematic depiction of the tree superimposed
on the dot configuration (part (b)), and an explicit diagram of
the tree (part (c)). The left-to-right ordering of each tree is
of course meaningless. For simplicity, trees describing large
chains of dots are abbreviated, so that

xn

coincident

xn-1

coincident

x1 x2

coincident

.
..

(28)

x 1

x 2

x 3

Figure 11. An example of a configuration that has two distinct
generic interpretations.

is rewritten as

coincident

n
.

(29)

The pictorial regularity notation is as follows:
1. Dots that are coincident are drawn connected to a

small hollow circle at their centroid.
2. Dots x1,x2,x3 that are collinear are shown connected

by line segments.
3. Dots that are mutually generic are not marked in any

way, suggesting “no regular relationship.” Any dot “sitting
off by itself” thus explicitly indicates the failure of all rele-
vant regularities, with respect to the other dots and groups in
the field.

As mentioned above, some dot configurations have more
than one generic parse tree. Fig. 11, for example, is generic
under the interpretation

x3

generic

x1 x2

coincident ,(30)

6 Because coincident actually entails two fixed degrees of
freedom, it might be preferable to instead choose the less strictly
correct codim coincident = 2, codim collinear = 3; then the
overall codimension of a parse tree would correspond to the total
number of degrees of freedom generically fixed in the configura-
tion. In fact, the two definitions agree if coincidence to regarded as
two separate regularities, coincidence in the x-coordinate and coin-
cidence in the y-coordinate, which might make sense in some con-
texts. The ordering properties of the resulting space of parse trees is
unaffected by which definition is chosen, so we stay with the strict
one.
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(a) (b)

(c)

Figure 8. An example of a dot configuration and its maximum-codimension parse tree, showing (a) the dot configuration, (b) a schematic
pictorial depiction of the tree superimposed on the original configuration (see text for description) and (c) the parse tree in explicit form.

but is also generic under the interpretation

x2

generic

x1 x3

generic .(31)

i.e. the completely generic tree. However, tree (30) has
codimension 2, while tree (31) has codimension 0. Hence
the more natural interpretation, (30) and its the associ-
ated partition, is preferred under the maximum-codimension
rule. The difference originates in to the top-level partition,
{(x1,x2),(x3)} vs. {(x1,x3),(x2)}; the former is susceptible
to a more regular interpretation and is thus preferred.

The space of qualitative parses

As the lattice of models defined a partial order among
models, we can now construct a partial order among
parse trees, ranking them in order of degree of regular-
ity/genericity. Like the lattice of models, this partial order
can be used to completely enumerate the parse trees that are
possible for a given number of dots n, from the most generic

and unstructured interpretation to the most regular and con-
strained. Each of these parse trees is a possible grouping
interpretation for some dot configuration. Hence the enu-
meration will generate every distinct grouping interpretation
that can be drawn for n dots—an exhaustive qualitative map
of the Dots World.

The structure of the space.

The partial order among parse trees will be denoted
T≤, and

the corresponding poset (the set of parse trees regarded as a
partial order) by LT (C). It has a simple recursive definition
building on the partial order LM among simple models:

Defn. 8 (Partial order among parse trees) For parse trees
T1 = [M1, [T1a,T1b,

. . .]], T2 = [M2, [T2a,T2b, . . .]] we have T1
T≤ T2 if

1. M1
M≤M2, and

2. T1i
T≤ T2i for i = a,b, . . . .

T1 is minimally more regular than T2 if T1’s subtrees are
exactly the same as T2’s subtrees, but T1’s head term is mini-
mally more regular than T2’s head term; or, if T1 and T2 have
the same head term, but exactly one of T1’s subtrees is mini-
mally more regular than one of T2’s subtrees, and the rest are
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(a) (b)

(c)

Figure 9. Another dot configuration, with several groups of different types. The parse tree accurately reflects the intuitive structure of the
configuration.

the same. That is, a given tree gets more regular when either
its head term or one of its subtrees gets more regular.

For a given number of dots n, the full space of parse trees
can be generated by starting with a completely generic tree
G, and taking the “closure under going down” in the partial
order, called the down-set of G and conventionally denoted

↓G . (I.e. for any T , ↓T = {t|t T≤ T}.) For n = 2, for example,
the completely generic tree (denoting the leaves simply by an
asterisk *) is

generic

* *

.(32)

The down-set of this tree under
T≤ is the complete space

of qualitative parses for n = 2, and is shown in Fig. 12.

Similarly, for n = 3 the generic tree is
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(a) (b)

Figure 10. An example with a curvilinear chain embedded in 100 random points, which the program identifies as a high-codimension
subtree. Here the full parse tree is too large to display conveniently.

Figure 12. The space of qualitative parses for n = 2. The notation
is the same as the individual parse trees exhibited above, except with
* substituted for [dot] in the leaves, and generic, coincident
and collinear abbreviated to gen, coinc, and coll, respectively.

generic

generic

* *

generic

* *

**(33)

and its down-set is the space of parses for three dots
(Fig. 13), which in this case is a total ordering of four parse
trees. At the top is the parse tree for three mutually generic
dots, a totally unstructured configuration; at the bottom is the
tree for a chain of three collinear dots, a maximally structured
configuration.

For n > 3 the structure gets slightly more complicated. For
n = 4 there are two distinct completely generic trees,

generic *

generic

*

generic

* *

generic

* *

**

(34)

and

genericgeneric

generic

** **

.(35)

The complete space of parses consists of the union of the
down-sets of these trees, and is shown in Fig. 14. This par-
tial order can be plainly seen to consist of two disjoint lat-
tices (one of them being a total order), one hanging off each
generic tree. Both of these lattices are distributive, as can
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Figure 13. The space of qualitative parses for n = 3.

be readily confirmed using the “no diamonds or pentagons”
rule. The lattice for five dots has a similar form, and is shown
in Fig. 15.

In fact, this turns out to be the general form of L T for a
given number of dots n: multiple disjoint distributive lattices,
each hanging off a distinct completely generic tree.

Theorem 6 Let G1,G2, . . . denote the distinct completely
generic trees for n, and again let ↓T denote the down-set

of a parse tree T under
T≤. Then:

1. Every legal parse tree is contained in some ↓Gi ;
2. The ↓Gi ’s are disjoint;
3. For each Gi, ↓Gi is a distributive lattice.
Proof.

1. This is evident because for any M , M
M≤ generic.

2. All the Gi’s have distinct topologies, by definition. Ev-
ery parse tree within a given ↓Gi has the same topology,
namely that of Gi. Hence trees in different ↓Gi ’s must have
different topologies.

3. By induction on n. The direct product of distributive
lattices is distributive (Davey & Priestley, 1990, Proposition
6.8). In general,


[M , [T1,T2, . . .]] ∼=

M ×↓T1 ×↓T2 . . . ,

where ∼= indicates an isomorphism. Each Gi on n dots is re-
ally [generic, [g1,g2, . . .]], where g1,g2, . . . are each generic
trees on some m < n, so

↓Gi
∼= ↓generic×↓g1 ×↓g2 . . . .

Now, ↓generic is just LM (C), which is distributive by
Thm. 2. Therefore LT (C) for n is distributive if LT (C) for
m < n is distributive. LT (C) for n = 2,3,4,5, exhibited
above7 are distributive (by inspection); hence so is LT (C)
for arbitrary n. ✷

Note that the distributivity of these lattices is a direct re-
sult of the distributivity of the model lattices; the partial order
on head terms (i.e., models) is itself embedded in the partial
order on trees, because one way for a tree to get more regular
is for its head term to get more regular.

It is intriguing to regard each qualitative parse as a distinct
way that the regularity set can fail, and the space of parses
as comprising the legal “patterns of failure.” Normally, of
course, each regularity succeeds or fails depending on its ar-
guments. But it is a simple matter to jury-rig each regularity
so that it succeeds or fails regardless of input, making the
choice non-deterministically. Then, each solution that Pro-
log finds on backtracking corresponds to a distinct alterna-
tive parse tree. This procedural approach is equivalent to the
logical definition given above, but serves to emphasize the
link between negation (failure) and the completeness of the
space of interpretations.

Uniqueness of the qualitative parse.
The qualitative parse is not unique in general. However,

in the Dots World context, multiple maximal solutions turn
out to be unusual, in that they only occur under somewhat
rarefied formal circumstances. When they do occur, they cor-
respond to perceptually ambiguous configurations exactly as
one would expect. This section will characterize the special
circumstances that must occur in order to bring this about.

First of all, for each dot configuration x there is exactly
one generic solution per disjoint lattice in LT (C). To see
why, consider two parse trees T1 and T2, both of which hold
on some x. If they are on the same lattice, then neither one
is generic on x, because their meet T1 ∧ T2 exists and also
holds on x. Hence at most one parse tree per lattice can hold
generically on x. On the other hand, at least one parse tree
on each lattice will hold on x, namely the generic tree at the
top. Consequently, x has exactly one generic interpretation
on each of the disjoint lattices, namely the meet of all the
parse trees on that lattice that x satisfies.

Dot configurations, then, can have multiple generic inter-
pretations. The question of uniqueness hangs on whether it
is possible for two of them to have the same codimension—
pictorially, for the best parse tree on two disjoint lattices to

7 There is no space for n = 1 because no regularities in the con-
text take only one argument.
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Figure 14. The space of qualitative parses for n = 4.

be at the same row. It turns out that the multiple generic
interpretations are usually “tantamount to the same interpre-
tation,” i.e they are actually equivalent to one another in a
precise sense defined below. Moreover, it turns out that un-
der a general assumption about the context (satisfied by the
Dots World), even non-equivalent same-codimension solu-
tions usually cannot be satisfied generically by the same con-
figuration, meaning that configurations usually have unique
maximum-codimension interpretations.

Cluster-equivalence. First, we need to define what we
mean by “tantamount to the same interpretation.” Consider
again the trees (34) and (35). They are distinct trees and
cannot be brought into isomorphism with each other. Never-

theless, there is clearly a sense in which these are the same
interpretation: both describe a “cluster” of four mutually
generic dots. Similarly, n mutually coincident or mutually
collinear dots can be written in a number of distinct ways.
The difference between them is simply an artifact of the fact
that each tree is binary. The following definition captures the
necessary equivalence, which we call cluster-equivalence.

First, some notation: for any tree T , denote its head term
(model) by h(T ). Denote by m(T ) the multiset8 of head
terms in all of T ’s subtrees, or recursively in their subtrees
etc. (i.e. m(T ) includes all the models in the scope of T ).

8 i.e., set with duplicates.



18 JACOB FELDMAN

Figure 15. The space of qualitative parses for n = 5.

Similarly, given an assignment of dots, denote the set of dots
assigned to leaves of T by d(T ).

Defn. 9 (Cluster-equivalence) For parse trees
T1 = [M1, [T1a,T1b, . . .]],
T2 = [M2, [T2b,T2b, . . .]], we have T1

c∼ T2 if

1. the members of m(T1) (i.e., the head terms in the scope
of T1) are all the same, and m(T1) = m(T2).

2. M1 = M2, and T1i
c∼ T2i for i = a,b . . ..

Cluster-equivalence is an equivalence relation, and is pre-
served under change in the order of subtrees, which we have

been disregarding anyway. Trees (34) and (35) are a minimal
case of non-isomorphic but nevertheless cluster-equivalent
parse trees. Cluster-equivalent pairs bear a syntactic distinc-
tion which, like differences in the order of a tree’s subtrees,
does not correspond to any possible semantic distinction.

Now, we would like to show that for a configuration x, its
maximum-codimension parse tree T is unique up to cluster-
equivalence. We break this proposition down into three
cases, isolating the one case (Case 3 below) in which unique-
ness fails. An important role is played by transitive regulari-
ties, i.e. regularities R such that
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Figure 15. (continued)

x1 x2

R

,
x2 x3

R(36)

implies

x1

R

x2 x3

R .
(37)

In particular, in some of the cases below we will assume
that the context C has a transitive universal consequent, i.e.
a transitive regularity R0 such that for each R ∈ R other than
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R0, R
ω→ R0. In the Dots World (under a slight modification

of the regularity definitions given above), coincident fills
this role.

We start by assuming that the configuration x has a
maximum-codimension interpretation T = [M , [Ta,Tb]] (the
argument would apply equally to trees with more than two
subtrees). We then pursue a pigeonhole strategy, turn-
ing on the fact that in any alternative solution maximum-
codimension interpretation T ′ = [M ′, [T ′a ,T ′b ]], the subtree
T ′a must span some dots from Ta’s scope as well as some
from Tb’s scope—that is, some of the dots “cross scopes”
in constructing T ′. Denote by y the set of dots from d(Ta)
that are also in d(T ′a). Denote by Hy the generic model of
the relationship between y and the rest of d(Ta), that is, the
model such that

y d(T  ) - ya

Hy

,

(38)

holds generically. (Here we abuse the notation slightly
and let a set of dots stand in for a tree describing them.)
We break the question down into three cases according to
the value of M . The arguments pertaining to each case are
sketched informally.

Case 1: M = Hy. Because y has the same relationship
to the rest of Ta as Ta has to Tb, it is clear that y can be “re-
attached” to Tb instead of Ta without any loss in codimension.
Hence an alternative overall interpretation T ′ can be written
as

T ′ =

y

d(T  ) - ya

Hy

Hy

T b

,

(39)

which is cluster-equivalent to T . Hence no genuinely dis-
tinct solutions occur in this case. In practice this is the most
common case.

Case 2: M = generic. This is the most interesting case;
here the transitivity of R0 actually rules out alternative inter-
pretations. Denote by H the generic model of the relationship
between y and Tb, i.e.

y

H

T b
.

(40)

Then the joined model Hy∨H holds over both the trees

yd(T  ) - ya

Hy H

,
y T b

Hy H

.

(41)

Now, if R0 �∈ Hy ∨H, then Hy ∨H = generic, in which
case T ′ cannot have the same codimension as T , contrary to
assumption. So R0 ∈Hy∨H, which means that by transitivity
of R0,

T b

yd(T  ) - ya

R0

R0(42)

must hold. But this means that M cannot be generic, con-
trary to assumption.

In other words, T must be unique because any alternative
solution would have to posit some relationship between dots
in its left subtree and dots in its right subtree; but if such
a relationship holds, then part of it must have a transitive
component (because there exists a transitive universal conse-
quent), which means that T ’s head model is not generic. For
example, two clusters of coincident dots that are generic
with respect to each other must have a unique maximum-
codimension parse tree; because any alternative tree would
have to include some relationship between the two clusters,
which if it existed would mean that the two clusters were not
really generic with respect to each other.

Case 3: In the remaining cases, the transitive component
of Hy ∨H is also recognized by M , so there is no contra-
diction. The remaining component is intransitive, so the fact
that it holds between the two pairs (Eq. 41) does not entail
anything about M . Hence the intransitivity allows for the
genuine possibility of two distinct maximum-codimension
parses.

In the Dots World, collinear is intransitive, and indeed
it is possible to construct configurations with two alterna-
tive qualitative parses that hinge on the intransitivity. Fig. 16
shows an example. There, we have

T x

collinear

1

,
x

collinear

T2

(43)

but not
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x
T1

T2

Figure 16. An example of a configuration that has two distinct
maximum-codimension interpretations. Does x belong with T1 or
T2?

collinear

T1

T2 x

collinear

.

(44)

The dot x can be passed between the two trees without
changing codimension, resulting in two interpretations that
are both generic but are not cluster-equivalent. Notice that
such a configuration is itself atypical (meaning literally that it
has positive codimension). Finally notice that the its two in-
terpretations correspond neatly to a perceptual ambiguity: x
shifts from grouping with T1 to grouping with T2. (Of course,
our assignment definition does not allow x to be assigned to
both trees, which might correspond more closely to the hu-
man interpretation.)

Summarizing, the qualitative parse is always locally
unique (that is, it is a local minimum in the partial order
LT (C)), and it is globally unique in all but atypical circum-
stances. Coupling this fact with the semantic uniqueness of
the generic (simple) model afforded by the CWA yields a
similar statement of semantic uniqueness for grouping inter-
pretations:

Theorem 7 For a given dot configuration x, the qualitative
parse is the only computable interpretation that

1. is a global maximum of regularity (i.e. has maximum
codimension), and

2. satisfies the Closed World Assumption.
Like its counterpart for simple models, this statement ar-

ticulates the unique epistemic status of the qualitative parse.
Given the choice of description language (i.e., the regular-
ity set), preference for any other interpretation would mean

that the observer was accepting a needlessly large number of
unexplained coincidences in the data.

The collapsed space. Distinct but cluster-equivalent
parse trees are semantically equivalent, and it follows that
they ought to be psychologically equivalent as well. It should
be possible, then, to exhibit the complete set of psychologi-
cally distinct grouping interpretations, simply by collapsing
each equivalence class of parse trees into a single tree T
(chosen arbitrarily) which represents the class. For example,
the set of distinct completely generic trees would collapse to
a single generic tree, representing “the” generic interpreta-
tion.

This new smaller set of parse trees, in which each tree rep-
resents an equivalence class of cluster-equivalent trees, can

then be placed into a partial order in a natural way: T 1
T≤ T2

if there exist some T1 in T1’s class and T2 in T2’s class such

that T1
T≤ T2. The resulting partial order is a “join semilattice”

(join always exists but meet only sometimes exists). Hence
it can have multiple minima. Wherever meet exists, the dis-
tributive equalities hold. Hence, critically, the Jordan-Hölder
condition holds and codimension is well-defined. In effect
this is because cluster-equivalent trees always have the same
codimension, so codimension is preserved in the collapsed
partial order. An example of this collapsed space, that for
n = 4, is shown in Fig. 17.

The collapsed partial order is in a sense the most mean-
ingful enumeration of grouping interpretations and their in-
terrelationships. In practice, though, computation must be
performed in the original space, as the partial order can only
be cleanly defined among the raw lattices.

Discussion

The qualitative parse, like human perceptual interpreta-
tions, is very robust under slight changes in the configuration.
This is inherent in its qualitative definition, which collapses
over any changes that preserve regularity satisfaction. If the
regularity set is well chosen, the result is a representation that
is expressive, flexible, and captures stable world properties
generically.

Moreover, the regularity machinery can be easily adapted
simply by changing the regularity set. One obvious mild al-
teration would be the addition of a smooth regularity to sup-
plement collinear, in effect adding an additional degree of
continuity of the derivative of the underlying dot-generating
curve. This would allow the detection of “corners” in chains
of collinear dots (Link & Zucker, 1987) each of which would
show up as a ¬smooth head term over two smooth subtrees.
Another psychologically plausible regularity is equal spac-
ing of dots along the generating curve. Feldman (1997a) re-
ports evidence that human subjects treat equal spacing (like
collinearity) as evidence in favor of a curvilinear interpreta-
tion for dot chains—that is, they treat it as a regularity. Yet
another improvement would be to change the threshold def-
inition of coincident to something more psychologically
plausible; most evidence points to something closer to an ex-
ponential decay (Zucker, Stevens, & Sander, 1983; Barchilon
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Figure 17. The “collapsed” space for n = 4.

Ben-Av & Sagi, 1995). Closure of curves is another qualita-
tive regularity that human observers seem to respect (Kovacs
& Julesz, 1993).

More generally, because the theory is specified at the log-
ical rather than the algorithmic level, the entire Dots-World
regularity set can easily be rewritten or replaced entirely,
without altering the logic of inference. Experiments have
been conducted using a regularity set suitable for use with
edge fragments instead of dots, so that the grouping ma-
chinery can operate directly on the output of an edge finder.

The interpretation of line drawings (including occlusion, 3-
D pose, etc.) poses a far greater challenge than does simple
grouping, but again can be approached using the same logical
machinery augmented only by a suitable regularity set. This
could potentially lead to a system for producing qualitative
interpretations of line drawings with the same desirable prop-
erties of robustness, intuitiveness, and semantic optimality as
are exhibited by the qualitative parse. This possibility is the
subject of ongoing research.
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Efficient implementation

The machinery described above is pitched strictly at the
theoretical level, with no thought given to practicality. For
example every possible partition of a given number of dots,
of which there are an exponential number, was considered.
This is in the very nature of an attempt to define the “best”
interpretation, which is necessarily defined over the entire
set of possible interpretations. The goal of the theory, that
is, was to define the best interpretation, not to indicate the
fastest way to find it.

Having laid the theory out in pure form, though, it is natu-
ral to turn to pragmatics. It turns out to be possible to design
an efficient (worst case O(n2)) approximation to the ideal
solution. This approximation, which was used to construct
the examples given above, is extremely faithful to the ideal
solution. The implementation is described only briefly here;
a more detailed investigation of the properties and perfor-
mance of the algorithm is deferred to a separate paper.

The algorithm

Procedural vs. logical interpretation of lattices. Above,

the partial orders
M≤ and

T≤ have been regarded logically, that
is, as preference orders among logical forms. Alternatively,
the same constructions can be regarded procedurally, as the
sequence in which computations are to be carried out. This
interpretation, combined with control over backtracking in
Logic Programming using cuts, leads immediately to an effi-
cient procedure for finding maximum-codimension interpre-
tations.

The procedure is recursive. To find the interpretation of
the dot configuration x0∪x,

1. find the best interpretation T of x, and then
2. join x0 to some subtree of T .
The recursion bottoms out in the minimal case of two dots,

which are assigned an interpretation by means of clauses or-
dered in reverse order of codimension:

interpret({x1,x2}) as [coincident, [x1,x2]]←
coincident(x1,x2), !.

[otherwise: ]

interpret({x1,x2}) as [generic, [x1,x2]].

Notice that these two clauses are a procedural instantiation
of the n = 2 lattice (Fig. 12).

Similarly, each new dot x0 is added to the interpretation
of x by means of ordered clauses. For each new dot x 0,
the program generates subtrees of the existing interpretation,
and then attempts to find a regular relationship between x 0
and each subtree, testing for higher-codimension relation-
ships first (e.g., with the Dots World regularity set, starting
with collinear). The procedure terminates as soon as x0
fits generically in an existing subtree, and then pops up to the
next level.

The order of the clauses ensures that both the lattice par-
tial order and the genericity constraint are respected, because

higher-codimension interpretations are always evaluated be-
fore lower-codimension interpretations.9 This means that
by the time an interpretation T succeeds, all more regular
interpretations—which must not hold in order for T to be
generic—have already failed.

Complexity

Because the procedure terminates with success but con-
tinues on failure (which corresponds to lack of structure in
the configuration) processing time is highly dependent on the
degree of structure in the configuration. The worst case is
n mutually generic dots. In this case the program attempts
to join the n + 1-th dot with each of the existing n dots, for
a total of 1 + 2 + . . . + n = O(n2) processing steps. At the
other extreme, a completely ordered configuration such as
a collinear chain will take only n steps, as each new dot is
added in one step to the single existing subtree. Hence the
procedure is efficient in general, and extremely rapid when
the image structure is salient. In practice the procedure takes
only a few seconds on a Sparc Station 2 even on randomly
generated displays of hundreds of dots.

Local approximations to the qualitative parse

Efficient as the above implementation is, it still computes
an inherently global interpretation, because the preference
order is defined over entire interpretations. Nevertheless, it
is quite evident that grouping is highly dependent on local
structure.10 Hence it is worth noting that there is good rea-
son to hope that the qualitative parse might be recoverable
by local methods akin to those in the conventional grouping
literature, perhaps providing an even more efficient compu-
tation.

This hope is provided by the internal organization of
the space of parses, and in particular by its distributivity—
coupled with the fact that in the Dots World context, a dis-
tant dot must be generic with respect to extant structure, be-
cause coincident is a precondition of collinear. The
same would be true in any context in each regularity im-
plies coincident under ω. As a result, mutually distant
regions of a configuration can be regarded independently, in

that T1
T≤ T2 implies

T1 S

generic

T≤
T2 S

generic(45)

regardless of S. A locally better solution is, a fortiori, a
globally better one. Similarly, consider a configuration x,
which has qualitative parse Tx. If a new dot x0 is introduced
that is mutually generic with each dot in x, then it follows

9 The order of interpretations having the same codimension is
unimportant, because the there is always a unique model in which
the new dot fits generically.

10 Here of course by the term “local” we mean local in the plane,
rather than local in the partial order as was meant above.
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immediately that the new configuration x∪x0 has qualitative
parse

Tx *

generic

.(46)

Note these simple locality relationships might not hold
for other contexts, such as one appropriate for line draw-
ings. This accords with what one would expect psycholog-
ically, as such contexts are well known to have sometimes
striking non-local effects. One might imagine that multiple
percepts of impoverished scene configurations might corre-
spond to multiple maximum-codimension solutions, drawn
from a context definition corresponding to human regularity
concepts (again see Richards et al., 1996).

Relevance to human vision

Despite its perhaps imposing computational formalism,
the logical theory bears a close relationship to human percep-
tual organization. It is widely recognized that human higher-
level vision often exhibits a certain “qualitative” character,
wherein each potential interpretation is contraposed against
distinctly different alternative interpretations. This is espe-
cially obvious with ambiguous figures, such as the Rubin
vase/face figure, the Necker cube, or, to take an example
from dot grouping, a square grid of dots that is perceived
as either a set of horizontal strips or a set of vertical strips.
In each of these figures there seem to be two distinct, equally
plausible “solutions.” But the point holds in the more typ-
ical situation where there is a single unique winning inter-
pretation, chosen among qualitatively distinct alternatives.
The observer must (unconsciously) choose among a possi-
bly large set of alternative models of the scene—each of
which, in one way or the other, accounts for the observed
image. The process of deciding among these alternatives
has often been described as one of quasi-logical inference
and problem-solving (Rock, 1983), although the “reasoning”
tools available are obviously more restricted than in more
general cognitive contexts.

A particularly important—and particularly mysterious—
component of the perceptual system is the process by which
local qualitative decisions are combined with one another to
form a globally preferred interpretation. In computational vi-
sion some progress was made in the 1970s on line-labeling in
polygonal scenes, in which local qualitative decisions about
lines and vertices propagate through the image (see Mack-
worth, 1976 for a review). This work foundered not only be-
cause the process proved inefficient but also because it was
not accompanied by a well-motivated inference theory. In
the psychological literature, it is known that local grouping
inferences (e.g. the detection of local orientation) are aggre-
gated into complexes that are much larger than the receptive
field of any one simple cell (Dodwell, 1983; Field, Hayes,
& Hess, 1993), a phenomenon sometimes referred to as “co-
operativity” (Kubovy & Wagemans, 1995). Indeed, human

observers have been shown to depend heavily on non-local
structure in organizing the scene (Wagemans, Gool, Swin-
nen, & Horebeek, 1993). A key idea appears to be lateral
agreement between distinct cues suggesting a common distal
explanation (Enns & Rensink, 1991)—an idea closely related
to codimension.

Thus the problem addressed by the lattice theory—how
individual perceptual “atoms” are composed to form global
interpretations—is a puzzle of long standing in psychology.
Moreover the way preference among these interpretations is
computed—via a regularity-based partial order—resonates
with traditional approaches to the problem. The idea that the
visual system chooses the most regular solution is ubiqui-
tous, though controversial (Kanizsa, 1979), though the great
subtlety inherent in the idea of “regularity” has generally de-
feated attempts to define it formally. The notion has its roots
in the Gestalt notion of Prägnanz (good form) or the “mini-
mum principle”—choose the simplest interpretation possible
(see Hatfield & Epstein, 1985 for a review of minimum prin-
ciples). Indeed, the partial order exhibited above can be re-
garded as an explicit mathematically realization of this idea.

Probably the most sophisticated modern incarnation of the
minimum principle comes from the work of Leeuwenberg
and colleagues (Leeuwenberg, 1971; Buffart, Leeuwenberg,
& Restle, 1981; Van der Helm & Leeuwenberg, 1991), which
builds on earlier attempts to define the “complexity” of a
line drawing (e.g. see Hochberg & McAlister, 1953). In
this work, figures are first described in a fixed description
language, using the shortest description possible. Moreover,
when choosing between two figures (e.g., when evaluating
potential completions of a partially occluded figure), that
with the shorter description is preferred. The results seem
to agree well with human intuitions, for example correctly
predicting when human observers will complete a partly oc-
cluded figure vs. when they will draw the “mosaic” interpre-
tation (no occlusion).

This minimum rule is obviously related to the maximum-
codimension rule proposed above, and the two approaches
to some extent share a common spirit. Yet the lattice theory
has a number of advantages. First, it is fully computable,
whereas the coded descriptions described in the above pa-
pers were generated manually by the scientists. Second, it
is well-motivated; the maximum-codimension rule derives
from the Genericity Constraint, which in turn derives from
the straightforward Bayesian goal of minimizing false infer-
ences. By contrast, Leeuwenberg and colleagues themselves
admit some mystery about why the minimum rule in Coding
Theory actually works (though they have many informal in-
sights). Finally, and most importantly, while Coding Theory
provides a preference ordering on interpretations, it does not
provide the interpretations; these must be provided by the
researcher, which means by unanalyzed human intuitions.
For example, while the “mosaic” interpretation mentioned
above can be coded directly, the occlusion interpretation is,
by definition, unavailable. In their study the authors simply
code what they consider to be the intuitive completion, and
compare its code to that of the mosaic interpretation in order
to predict which is preferred. Even if the Coding Theory’s
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minimum rule is correct, then, a major element of a rigorous
account is missing. By contrast the lattice theory not only
compares but enumerates interpretations; indeed the prefer-
ence rule and the interpretations on which it operates emerge
in tandem from the same formalism, the lattice.

Admittedly, the clean, simple world of dot grouping is
vary far from the real world of noisy natural images. Indeed,
it might seem difficult to imagine how a clean formalism like
the lattice theory might apply in a more realistic setting. The
weakest and most over-simplified link in the theory as pre-
sented above lies in the very impoverished definitions of the
regularity predicates. The human visual system’s definitions
of collinearity and proximity, for example, exhibit a subtlety
and context-sensitivity not captured by the simple thresholds
used above. More realistic definitions are required, perhaps
supplemented with a richer notion of “satisfaction” then the
simple binary one used above. For example, in natural scenes
the observer often must decide whether a particular noisy or
textured region of the image is well-described as a single sur-
face. Some progress has been made (e.g. in regularization
theory) in defining the degree of fit between the data and a
given surface model. However, conventional models lack a
sufficiently rich notion of preference among models, such as
that provided by suitable lattice. Combining the lattice pref-
erence order with a more sophisticated notion of degree of fit
might provide some of the flexibility and power exhibited by
human observers.

Conclusion: a competence theory
for grouping

The regularity-based interpretation theory is presented as
a competence theory (Clowes, 1971; Marr, 1982; Richards,
1988): an account of what interpretations are preferred and
why, rather than of how they are computed—although the ef-
ficient implementation presented above demonstrates that the
“how” follows rather easily. The highlight of the theory is the
exhaustive enumeration of perceptual interpretations, which
is demonstrably complete with respect to a given Closed
World. Inference hinges on the partial order over these inter-
pretations, in which preferred interpretations are always min-
ima. Given a fixed set of distinguished regularity concepts,
there is a unique interpretation in which an observed configu-
ration is generic. In the hierarchical extension derived above,
preference devolves to the maximum codimension grouping
interpretation, the qualitative parse.

As Reiter and Mackworth (1989) argued in their original
paper, the logical approach has the advantage that “interpre-
tations” are given a full-fledged logical definition, suitable
for proving semantic optimality and other desirable infer-
ential properties. The current approach augments this rig-
orous definition of interpretations with a psychologically-
motivated preference ordering—an idea Reiter and Mack-
worth explicitly invited. One might even imagine a well-
defined idealized solution such as that proposed here might
ultimately replace seat-of-the-pants perceptual inspection by
human observers as the touchstone for evaluating the quali-
tative success of novel grouping methods.

Perhaps the most intriguing element here is the demon-
stration that classical high-level perceptual problems such
as grouping are vulnerable to attack by powerful and well-
understood techniques of Logic Programming. As suggested
above, the approach seems particularly apt in domains char-
acterized by qualitative perceptual interpretations of scene
configurations. Such situations are are well known to be
ubiquitous, but tend to be resistant to traditional approaches.
Qualitative effects have often been viewed as stemming from
non-accidental properties and other types of special configu-
rations; the research reported above shows these perceptual
primitives can serve as the atoms of a logical language with
a well-defined inference structure. Moreover, this approach
may permit a bridge between perceptual theory and the entire
universe of model-theoretic computational semantics (Baral
& Gelfond, 1994), a connection that is crucial to the future
development of a “perceptual semantics.”
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