Attention-Based Texture Segregation

Thomas Papathomas
Laboratory of Vision Research and
Department of Biomedical Engineering
Rutgers University
papathom@zeus.rutgers.edu

Andrei Gorea
Labortoire de Psychologie
Expérimental, CNRS and
René Descartes University
gorea@ext.jussieu.fr

Akos Feher
Laboratory of Vision Research
Rutgers University
feher@zeus.rutgers.edu

Tiffany Conway
Laboratory of Vision Research
Rutgers University
tec Conway@zeus.rutgers.edu
ATTENTION-BASED TEXTURE SEGREGATION

Thomas V. Paphthomas¹,²*, Andrei Gorea³, Akos Feher¹ & Tiffany Conway¹

¹Laboratory of Vision Research and ²Department of Biomedical Engineering, Rutgers University, Psychology Bldg.—Busch Campus, Piscataway, NJ 08854, USA

and

³Laboratoire de Psychologie Expérimentale, C.N.R.S. and René Descartes University, 28 rue Serpente, 75006 Paris, France

*To whom all correspondence should be addressed. E-mail: paphthom@zeus.rutgers.edu;

Andrei Gorea: gorea@ext.jussieu.fr
Akos Feher: feher@zeus.rutgers.edu
Tiffany Conway: teconway@eden.rutgers.edu
ABSTRACT

Luminance- or color-defined ±45° line elements were arranged so as to yield double-conjunction texture-pairs, DCjTP. In such pairs, the two textures to be segregated differ in the conjunction of the 2×2 attribute-values of which they are built, i.e., luminance-polarity (dark and bright) and orientation (+45° and −45°), or color (red and green) and orientation. Observers were required to discriminate the orientation of their separating edge (vertical or horizontal). Chromatic and luminance contrasts were matched to yield equal performances as measured with single conjunction texture-pairs, i.e. textures whose constituent elements differed along one single dimension (luminance, color or orientation). Orientation contrast (90°) could not be matched to the remaining two contrasts and it yielded thresholds about twice as high as the color or luminance contrasts.

DCjTP segregation was measured with two groups of naive observers. Observers in the test group were explained after four initial sessions the construction principle of the stimuli and were cued (asked to "pay attention") to one of their attribute-values (a given color, luminance-polarity or orientation). The control group ran through the same total number of sessions as the test group but the observers were not instructed in any way.

Non-cued observers typically yielded performances near chance level under the present experimental conditions. Feature cueing was effective for both color- and luminance-defined stimuli but less so for the latter, despite the equivalence of the chromatic and luminance contrasts. Within each stimulus category (color- and luminance-defined), attending to either of its two defining dimensions (color/luminance or orientation) yielded equivalent performance enhancements, despite a significant difference between the available contrasts along these dimensions. A global performance improvement occurred over time even without cueing. The test group showed such a trend in the post-cue phase for both the color- and luminance-defined stimuli, while the control group yielded similar practice effects only for the color-defined ones. These attentional and practice effects with texture stimuli are discussed in the context of one- vs. two-stage segregation theories, on the one hand, and by reference to signal enhancement vs. noise suppression proposals, on the other hand. It is concluded that, similarly to the visual search tasks, texture segregation can be improved by means of attentional strategies aimed to isolate specific stimulus features such as color, luminance-polarity and orientation.
INTRODUCTION

The improvement of our visual performance through priming one of the attributes (color, luminance, size, shape, location, etc.) characterizing a target stimulus embedded in a multidimensional "distracting" field has been documented for decades (e.g. Green & Andersen, 1956; Smith, 1962). Most of the literature assessed this priming effect in terms of a reduction in the reaction time for the cued trials, but sensitivity enhancement has also been claimed (e.g. Humphreys, 1981; Tsal & Lavie, 1988; Bravo & Nakayama, 1994; Maljkovic & Nakayama, 1994; Raymond, O'Donnell & Tipper, 1997). Generally, attribute-priming experimental designs involve an odd-man-out task. It is less clear whether or not attribute priming is equally efficient in texture discrimination tasks.

One way or another, the role of attribute priming is to reduce the size of the relevant attribute space within which the target is to be found. Phrased differently, attribute priming decreases the uncertainty characterizing search in a multiattribute space. Manipulating uncertainty has been the preferred method in assessing attentional effects in early-vision experiments (see Pelli, 1985 for a review). The general claim of this literature is that any uncertainty-related sensitivity effect (whose assessment does not necessarily require the use of priming) is evidence that the observer can somehow selectively monitor (or attend to) the sensory space circumscribed by the manipulated uncertainty. In a circular manner, the effectiveness of an uncertainty manipulation (explicitly—through priming—, or implicitly—through repetition; e.g. Bravo & Nakayama, 1992) was taken as evidence for the existence of distinct sensory mechanisms precisely because they could be addressed (monitored) independently (e.g. Davis, Kramer & Graham, 1983; Kramer, Graham & Yager, 1985). The main unanswered question in this literature is whether the observed effects are to be accounted for at the coding level (signal enhancement) or at the decision level (e.g. Palmer, 1994). Manipulation of uncertainty (through priming or otherwise) may be associated with a change in the number of noise sources to be considered at the decision level thereby affecting a sensitivity index such as d'. Recent studies favor this noise suppression interpretation (Shiu & Pashler, 1994a,b; Dosher & Lu, 1997), but evidence supporting the signal enhancement hypothesis also exists (Raymond, O'Donnell & Tipper, 1997).
Assessing the extent to which an observer can monitor (or attend to) an arbitrary perceptual attribute/dimension may be achieved without manipulating uncertainty. It is possible to design stimuli defined within a multi-attribute space in such a way that each of their defining features carry sufficient information for the task to be feasible, while their actual mixture renders the task difficult or even impossible. One can then inquire into the observer's capacity of extracting one such relevant feature in the presence of the remaining ones (whether they are relevant or not) so as to improve his/her performance.

A case in point is the double-conjunction (DCj) stimulus (Treisman & Gelade, 1980; Wolfe, Cave & Franzel, 1989) generalized to study texture segregation (Gorea & Papathomaz, 1991, 1993; Wolfe, 1992). Figure 1a illustrates a DCj texture-pair (DCj_{TP}) whose building blocks (textels) are defined by their luminance-polarity (dark and bright) and by their orientation (+ and −45°). The reader would probably agree that finding the texture edge in this stimulus is quite a difficult task. However, if he or she manages, one way or another, to mentally/visually "isolate" the bright (or dark) elements of the texture pair, the segregation task should be trivial (or "preattentive"): the vertical orientation-defined edge (between the + and −45° elements) will "pop out" (see Fig. 1c). In a symmetrical way, the observer may "focus" on, say, −45° elements and find the luminance-polarity-defined edge (Fig. 1d). This two-stage “attentional” strategy has been proposed as a general algorithm for resolving DCj targets (Treisman & Gelade, 1980; Treisman & Sato, 1990; Wolfe, 1994; Wolfe, Cave, & Franzel, 1989; Friedman-Hill & Wolfe, 1995).

FIG 1–The DCj_{TP}

1One should bear in mind that a DCj_{TP} discrimination task is not difficult by necessity. The difficulty of segregating the texture-pair shown in Fig. 1a, can be manipulated at will by modifying any of its two defining (luminance and orientation) contrasts: if the luminance- (or orientation-) contrast is set to zero, the task is impossible; increasing this contrast will by necessity improve discrimination at least up to some point beyond which performance may either saturate or possibly decrease again if the two attributes defining the texture-pair interact in some way (which must be the case with color and luminance). Thus, for one to speculate on the putative differences among the neural mechanisms subserving the discrimination of a variety of DCj stimuli, he or she must make sure that contrasts involved in each of these tasks are equivalent. Previous work differentiated between easy and difficult DCj stimuli in search tasks and arrived at conclusions about different underlying processing modes (e.g. Treisman & Gelade, 1980; Nakayama & Silverman, 1986; Quinlan & Humphreys, 1987; McLeod, Driver & Crisp, 1988; Wolfe, Cave, & Franzel, 1989; Wolfe, 1992), but did not consider such controls.
In the case of visual search, it is easy to imagine that detection of a DCj target can be guided by knowledge of one of its defining features, particularly if eye-movements are allowed (Egeth, Virzi, & Garbart, 1984; Friedman-Hill & Wolfe, 1995). It is less obvious, however, if and how one might select a given feature map in a DCjTP so as to transform its DCj edge into a single-conjunction one. It has been indeed shown that visual search and texture segmentation are not equivalent tasks (Wolfe, 1992). The literature provides no direct evidence in favor of the proposed two-stage strategy.

The advantage of an attentive map selection is less obvious than it seems. If one is to assume the existence of four visual "maps", ON_{45°}, ON_{-45°}, OFF_{45°}, OFF_{-45°} (e.g. Duncan & Humphreys, 1992)\(^2\), the implementation of such a selection for the case illustrated in Fig. 1 would consist in isolating any pair sharing one attribute, say the "ON" map, and then extracting the edge defined by the second attribute within this map, i.e. orientation. By doing so, however, edge information carried by the orientation contrast within the "OFF map" is lost. The selection process should then decrease rather than increase performance. To account for a performance improvement potentially yielded by such a selection technique, at least four additional maps must be considered: non-oriented ON and OFF units and polarity non-specific +45° and -45° units\(^3\). Because their activation is irrelevant to the texture segmentation task in the DCjTP of Fig. 1, it will play the role of noise. As a consequence, while "attending" to two of the four relevant maps will entail a reduction of the signal strength, it will also discard the four "noise maps". The interpretation of an increase in overall sensitivity should then require that the suppression of a number of signal sources be overcompensated by the concomitant suppression of the noise sources.

It should be noted that, although described here as a two-stage process, the selection scheme above is equivalent to a one-stage process whereby ON_{45°} (or ON_{-45°}) maps are selected from the very start. Such units will signal the DCjTP edge on their own. In all events, the putative increase in discriminability of a DCjTP due to "focusing" on one of its constituent features remains

\(^2\)Other mapping segmentations have also been proposed [see the Discussion section and Wolfe (1994) for a review].

\(^3\)For the chromatic DCj, the relevant maps should be Red and Green. Physiological evidence of significant proportions of cells in V1 and beyond that are non-specific to a certain stimulus attribute (such as orientation, color and/or luminance-polarity) has been repeatedly reported (e.g. Livingstone & Hubel, 1984; De Valois & De Valois, 1988; Edwards, Purpura & Kaplan, 1995; Leventhal, Thompson, Liu, Zhou & Ault, 1995).
to be confirmed experimentally. In the affirmative, the next question to be answered is whether or not some attributes (or dimensions) can be isolated (or monitored) more readily than others.

The dimensions under focus in the present study are color, luminance and orientation. Observers were asked to discriminate DC_{TP} prior to and after being explained the building principle of the stimuli and being instructed to "pay attention" to only one value of their constituent elements, i.e. red, green, dark, bright, + or −45°, and extract the edge within that subpopulation of textels. In order to present meaningful comparisons between potential performance gains yielded by cueing any of these features, intra-attribute contrasts must be set at an equivalent, or at least at a known discriminability level. This should insure a fair attribute-priming comparison insofar as any performance difference could not be attributed to a difference in observers' capacity of grouping the elements sharing a given primed value (say, dark elements in Fig. 1a), nor to a better segregation between the two values of the non-primed attribute (+45° from −45°). With a very few recent exceptions (e.g. Palmer, 1994; Palmer, Ames & Lundsey, 1993; Verghese & Nakayama, 1994), the previous endeavors of comparing priming efficiencies across attributes failed to achieve this basic criterion (e.g. Duncan & Humphreys, 1989, 1992). Obviously, the assessment of equivalent contrasts across stimulus dimensions is of main concern in any study trying to compare processing their efficiencies for any psychophysical task [such as direction discrimination (Gorea & Papathomas, 1989; Agonie & Gorea, 1993), texture segregation (Gorea & Papathomas, 1991; Kingdom, Moulden & Collyer, 1992); stereo (Papathomas, Kovacs, Gorea & Julesz, 1995), or depth perception in general (Landy, Maloney, Johnston & Young, 1995)].

METHODS

Stimuli

They were displayed on a Sony GDM-17E11 RGB monitor, 1280 pixels wide and 1024 pixels high under the control of an Indy Silicon Graphics workstation. The screen subtended 21.8×17.1 deg at a distance of 76 cm in all experiments. All experiments were run in a dimly illuminated room.
Main and Equivalent contrast experiments. The stimuli consisted of +45° and/or −45° textels, 5.4' (5 pixels) wide and 35.4' (33 pixels) long, presented on a yellow background (chromatic coordinates averaged across observers: 0.413, 0.451) of 27 cd/m². Luminance-defined textels were isochromatic to the background and yielded either variable or fixed (at ±≈40%) luminance contrasts in the Equivalent contrast or Main experiments, respectively. Chromatic-defined textels were equiluminant to the background and differed from it in chromaticity (Red: 0.554, 0.357; Green: 0.277, 0.542). Inter-textel distance (computed from their centers) was 46.2' in average. In the Main experiment, textels were arranged so as to yield DCjTP with vertical or horizontal edges defined by the conjunction of color and orientation or of luminance and orientation (Fig. 1). In the Equivalent contrast experiments, they were arranged so as to yield texture pairs of the type "Color across Orientation" (C×O), "Luminance across Orientation" (L×O; see Fig. 2a), O×C and O×L (Fig. 2c; see Gorea & Papathomas, 1989, 1991, 1993). The vertical or horizontal edges of these texture pairs are defined by one attribute only with the two values of the remaining attribute being randomized over the whole texture pair (Figure 2). In the terminology used in the search literature, these stimuli are of the single conjunction type (SCjTP). The horizontal or vertical edge of both the DCj and SCj texture-pairs was randomly jagged within a spatial range of 2 textels and its mean position was also randomized about the center of the screen within a range of 2 textels. Such a randomization (4 textels, i.e. 1.54° overall) was meant to minimize the chances that observers infer the orientation of the edge by means of systematic eye movements (see more in the Discussion section). To this same effect, observers were repeatedly reminded to maintain fixation on a central, conspicuous cross. SCj and DCj stimuli were presented for only 417 and 694 ms, respectively (shorter durations yielded performances close to chance level).

FIG 2–The SCjTP
Equiluminance stimuli. The stimuli were 16.1'×2.8° periodically displayed red, green and/or yellow bars on a red, green or yellow background. They were animated at a 18 Hz rate. A detailed account of their spatiotemporal configuration can be found in Gorea, Papathomas & Kovacs (1993).

Unique yellow stimuli consisted of equiluminant red and green square textels 8.6' of side, regularly arranged along opposite 45° diagonals on an equiluminant yellow background (see Figure 3). They were displayed repeatedly for 111 ms.

![FIG 3–Unique Yellow Stimuli](image)

Observers

They were 28 (from high-school to university graduate) students with normal or corrected-to-normal vision. They were dispatched in an experimental (n=16; 5 male; age: 18-26) and a control (n=12; 8 male; age: 19-25) group. They were all screened for normal chromatic vision with Ishihara plates. In addition, three of the four authors were run through the equivalent luminance contrast procedure.

Procedure

Preliminary experiments. If performances obtained with DCjTP stimuli defined by color and orientation and by luminance-polarity and orientation are to be compared, one needs to make sure that: (1) the hues defining the texture elements (Red and Green) are *equiluminant*; (2) the Red and Green elements yield equal chromatic contrasts relative to the background so that they be equally salient (i.e. the hue of the equiluminant background must be *unique yellow*); (3) the three types of contrast (Red/Green, Dark/Bright and +45°/−45°) defining the chromatic and luminance DCjTP are *equivalent* to each other. As the results will show, a ±45° orientation contrast is less salient than the maximum obtainable Red/Green contrast. Given that a ±45° contrast is the largest achievable in the orientation domain, the only way of boosting its efficiency relative to the chromatic and/or luminance contrast would be to decrease the latter. However, lowering
luminance or chromatic contrast should also reduce the perceived orientation contrast, so that the latter could not be equated to the former. As a consequence, the third requirement was satisfied for the chromatic and luminance contrasts only. The equivalent contrast procedure was run with three of the four authors. Because their luminance contrasts equivalent to the red/green chromatic contrast were very similar (i.e., 38.5%, 36.4%, 43.6%), their average was used for all 28 observers. Equiluminant and unique yellow points were assessed for each observer.

Equiluminance. The equiluminance assessment procedure involved a reverse-phi motion technique originally described by Gorea et al. (1993). Equiluminance was achieved for each observer in two steps. **Step 1a,b.** The background was yellow and the animated bars were (a) yellow and red or (b) yellow and green. The yellow bars were set + or −5% luminance contrast with respect to the background. The luminance of the red or green bars was variable. The yellow background and bars were obtained by mixing the outputs of the red and green phosphors in equal proportions (in luminance units). When the luminance contrasts of the yellow and red (or green) bars are of the same sign, the spatiotemporal configuration of the stimulus is such that it yields the same perceived direction as the physical displacement over time. Luminance contrasts of opposite signs for the yellow and red (or green) bars yield reverse-phi motion and hence a perceived direction of motion opposite to the physical one. Thus, when the variable luminance of the red or green bars is strictly equal to the luminance of the yellow background, the stimulus should yield 50% leftward and rightward directional reports. The average of these values, yielding 50% performances with yellow bars of +5% and -5% contrast, was taken to be the red-yellow and the green-yellow equiluminance point. Previous measurements (see Gorea et al., 1993) show that this procedure insures (through transitivity) the equiluminance between the red and green bars. **Step 2a,b.** The same procedure was repeated after having assessed the unique yellow (see below).

Unique yellow. This procedure was meant to make sure that the equiluminant red and green elements yielded equal chromatic contrasts with respect to the yellow background (see Figure 3 for the illustration of the achromatic case). The yellow background was originally obtained by using the red-to-green phosphor output ratio derived from the equiluminance settings. Both textels and background were set at their equiluminant point as assessed above. Observers
were asked to report the most salient perceived diagonal by pressing one of two response keys ("red" vs. "green" diagonal). The chromaticity of the background was varied along the red-green (L-M) chromatic axis so as to achieve 50% saliency for the red- and green-defined diagonals. This was achieved by means of a staircase which increased the output of the red phosphor relative to the output of the green phosphor subsequent to a "red" response and decreased it after a "green" response. The manipulation of the red/green output ratio was such as to keep the sum of the two outputs constant. The red/green output values obtained for the last 10 reversals (out of 15) were averaged to obtain the unique yellow. This new yellow was used in to reassess equiluminance red and green values, and was used in all subsequent experiments.

Equivalent luminance contrast was measured in three steps for only three observers (three authors). *Step 1.* % Signal threshold (see next section) was first assessed for the equiluminant C×O stimulus. *Step 2.* The obtained % Signal threshold for a given observer (hereafter referred to as θ) was kept constant for the P×O stimulus and discrimination performance for this latter was measured in terms of its luminance contrast required to achieve the same % correct criterion as for the C×O stimulus. This luminance contrast threshold was the luminance contrast *equivalent* to the red/green chromatic contrast. *Step 3.* θ was also measured for the O×C stimulus. It was typically higher than the one obtained in step 1. Because the orientation contrast was already maximal (i.e. 90°), it could not be increased even more to achieve the same performance level as for the C×O stimulus. *Step 4.* θ was finally measured with O×P stimuli set at the equivalent luminance contrast obtained in step 2. The obtained thresholds were practically identical to those obtained in step 3 (i.e., larger than those obtained in step 1), thus offering an additional validation of the equivalent luminance contrast procedure.

Given that the three observers having been run through this procedure displayed very similar equivalent luminance contrasts, their mean value was used for the 28 naive observers for all the achromatic stimuli.

% *Signal thresholds* (θ) were measured for both DCjTP and SCjTP stimuli. The orientation of the texture pair edge (vertical or horizontal) was randomized across trials and observers had to specify it by pressing one of two response keys. For any texture-pair type, the textels defining the
contrast of the texture edge were intermixed in variable proportions (noise, N) so that the saliency of the edge was decreased. Take as an example the LxO texture pair of Fig. 2. A 0% N condition is the one where all the bright/+45° and bright/-45° textels are on its left-hand side and all the dark/+45° and dark/-45° are on its right side (Fig. 2a). A 25% N configuration is the one where one fourth of the left-hand textels at random locations are exchanged with one fourth of the right-hand textels, also selected at random locations (Fig. 2b). A 50% N stimulus is a purely random one, i.e. it yields no edge whatsoever. All data will be presented in terms of signal, S (rather than noise) on a 0 to 100% scale so that S=1–2N. % S was under the control of a staircase which increased it by 2 percentage points after three correct responses in a row and decreased it by the same amount after every wrong response. This rule yields an average of 79% correct. One session was completed after 20 reversals and θ was computed as the average of the last 12 ones.

Experimental design. A. Following the preliminary experiments, % S thresholds were obtained from all 28 observers for the four SCj conditions (i.e. C×O, O×C, L×O and O×L). Each condition was repeated twice in a sequence randomized across observers. In addition to checking the reliability of the equivalent contrasts assessed for only three of the four authors, this first experimental series was meant to familiarize the observers with the texture edge segregation task. B. Observers were subsequently run through the DCj conditions in two distinct groups, the test group (which ran in two stages, B1TEST and B2TEST), and the control group BCTR: B1TEST. The test group was presented with the color- and with the luminance-defined DCjTP with no other instruction than to specify the orientation of their separating edge. This will be referred hereafter as the pre-cue phase. Each stimulus was run twice. The four sessions were run in a abba sequence for half of the observers and in a baab sequence for the other half: B2TEST. Observers were then explained the construction principle of the DCjTP. They were drawn attention to the fact that segregation might be much easier if they could mentally isolate or group one of the defining features of the DCjTP (i.e. a given color, luminance or orientation) and perform the edge orientation task based on the contrast of the second attribute. This will be referred hereafter as the post-cue phase. There were six possible "cues", i.e. "pay attention" to red, green, bright, dark, +45° or −45° elements. Given that the latter two occurred for both the color- and luminance-defined DCjTP, there were eight cueing conditions overall. The cueing sequence was randomized
according to two, 8×8 Latin squares, one for each subgroup of eight observers. Including the pre-cue phase, each observer ran 12 sessions. BCTR. A control group was also run through 12 sessions but without any cueing or instructions as to the construction principle of the DCjTP. The sequence of color- and luminance-defined stimuli was randomized in such a way that each of the two stimuli was presented an equal number of times for each observer (i.e. 6) and that it appeared with the same frequency (i.e. 6 repeats) in every sequence order across observers. This control group was necessary to check for potential learning effects which could be confounded with the attentional/cueing effect. In addition, the control group was also used to test the attentional/cueing effect across groups.

Each observer ran the whole set of experiments in about five hours on two separate days.

RESULTS

 Equivalent luminance contrast

The three observers who run this preliminary experiment (with SCjTP) yielded equivalent luminance contrasts of 38.5, 36.4 and 43.6% at % Signal levels of 18.1, 20.3 and 18.6, for observers TVP, TEC, and AF, respectively. Once the luminance contrast of the O×L stimuli was set at this equivalent level for observer TEC, the orientation discrimination performance yielded % Signal thresholds of 63.3% for the O×L stimulus and 67.7% for the O×C stimulus. The fact that the two sets of thresholds were very similar was taken as additional evidence of the accuracy of the equivalent contrast measurement.

Figure 4 displays mean θs for the test (gray bars) and control (white bars) groups and for each of the four SCjTP with the luminance contrast set at 40% (the average of the equivalent contrasts measured with three of the authors). As expected, the data show very similar thresholds for C×O and L×O stimuli, on the one hand, and for O×C and O×L stimuli, on the other hand. Thresholds for the latter two are about a factor of 2 larger than for the former two. This was also the case for the three trained observers. Overall, the data show that, for the present stimuli, chromatic and luminance contrasts were equally efficient, while the orientation contrast was substantially less efficient.
Cue effects

Figure 5 displays mean segregation thresholds (θ) with DC_{JT} for the control (bars with thin outline) and test (bars with thick outlines) groups. Thresholds for the color- and luminance-defined stimuli are shown as white and gray bars, respectively. The first four bars show θs obtained during the first four sessions for both groups (the pre-cue phase for the test group). The next eight θs are for the test group in the post-cue phase under all eight cueing conditions (as indicated on the abscissa; “R”: cue on Red, “G”: green, “B”: bright, “D”: dark, “/”: +45°, and “\”: -45°). The last two bars show θs obtained by the control group during the last eight sessions. Vertical lines are ±1 SE. The horizontal gray area indicates expected thresholds given that observers respond at chance level (and that θs are limited to 100% signal).

During the pre-cue phase (first four sessions) performances of the test group for the two types of stimuli are barely below the gray horizontal bar, i.e. slightly above chance level (14 out of 16 observers showed θs > 98%). For the luminance-defined DC_{JT}, the control group also shows performances close to chance during both the first four and the last eight sessions. However, for this same group, color-defined stimuli yield significantly lower thresholds during the 12 sessions of the experiment.

At inspection, the data seem to display an overall cue effect both within and across groups. Cueing the color-defined stimuli appears to be substantially more efficient than cueing the luminance-defined ones. This is so despite the accurate match of their color and luminance contrasts. Within each group of stimuli, cueing either of its two defining attributes (orientation, color or luminance) appears to yield similar effects despite the significantly lower efficiency of
the orientation contrast. At first glance, cueing "red" is more efficient than cueing "green" but this difference is not significant (see below).

Statistical analysis of the pre-/post-cue effect. The design of the present experiments was by necessity unbalanced: the stimulus factor had two modalities (color and luminance) in the pre-cue phase, and eight modalities (cue on red, green, dark, bright and on $+45^\circ$ and -45° elements in both chromatic and achromatic stimuli) in the post-cue phase. To circumvent this difficulty, two distinct ANOVA tests were run independently. In the first ANOVA (A1) the eight cueing conditions were collapsed into two modalities, i.e. cueing the chromatic and cueing the achromatic stimulus, so that the analysis was of the $2\ [\text{stimuli}] \times 2\ [\text{pre-/post-cue}]$ type. It was meant to assess the global cue and stimulus type effects. A1 was performed both within the test group (A1W) and across the test and control groups (A1A). A1A compared performances of the test group for the last 8 sessions (i.e. post-cue phase) with those of the control group also during the last 8 sessions. This ensured that the two groups had the same exposure to the stimuli. In order to avoid interference between the effects under test and a potential overall performance difference between the two groups, A1A was run with both raw and normalized data. Normalization was achieved for each observer by reference to his/her mean threshold during the first four sessions. Normalization was performed independently for the color- and luminance-defined stimuli.

To analyze the specific cue effects, a second $2\ [\text{stimuli}] \times 2\ [\text{cue type}]$ ANOVA (A2) involved only performances of the test group in the post-cue phase. Cue type referred to orientation ($\pm 45^\circ$) and "polarity", each with two modalities. To achieve this format, color and luminance polarity cueing conditions were lumped together, "red" with "bright" and "green" with "dark" cueing, as well as "red" with "dark" and "green" with "bright" cueing. A2 was performed for each of these two grouping conditions. Because this grouping procedure precludes the comparison between the effects of cueing red vs. green and of cueing dark vs. bright elements, two independent one-way ANOVA were run to this effect.

Global cue and stimulus effects. The within-group analysis (A1W) confirms all the observations made on mere inspection of Fig. 5. It yields significant effects of both the pre-/post-
cue manipulation [F(1,15)=33.05, p < .00001] and stimulus type [F(1,15)=6.47, p < .0225], as well as a strong interaction between the two factors [F(1,15)=17.65, p < .0008]. The significant interaction strengthens the conclusion that the stimulus type modulates sensitivity only in the post-cue phase. The across-groups analysis (A1,x) on the raw data yields the following effects: pre-/post-cue [F(1,26)=3.59, p < .069], stimulus type [F(1,26)=15.73, p < .0005], interaction [F(1,26)=0.30, ns.]. The overall decrease of the pre-/post-cue effect and of the interaction would be expected if, by chance, the control group happened to perform better than the test group during the first four sessions. This difference is visible in Fig. 5 (first four sessions) for the color stimuli. The same analysis performed on the normalized data (see above) confirms this hypothesis: pre-/post-cue [F(1,26)=13.04, p < .001], stimulus type [F(1,26)=11.88, p < .002], interaction [F(1,26)=5.20, p < .031]. Thus, once the level of performance across groups is taken into account, both within- and across-groups analyses confirm the significance of the cue and stimulus effects as well as their interaction.

Specific cue effects (A2). As noted above, this analysis was performed twice, once by pairing red-bright and green-dark performances and a second time by using red-dark and green-bright pairing. The two variants yielded practically identical results (those of the second one are given in parentheses); the only significant effect was that of stimulus type [F(1,15)=12.30 (12.30), p < .0032]. The two analyses showed no significant effect for either cue type (i.e., orientation vs. color or polarity), cue and stimulus type interaction, or the cued orientation (+ vs. −45°). As noted above, the format of the analysis did not allow to assess the effects of "polarity" (i.e., red vs. green and bright vs. dark cueing). The two one-way ANOVA showed no such effect.

In conclusion, the statistical analysis shows (1) an overall pre-/post-cue effect (2) larger for the color than for the luminance stimuli; (3) no effect of the cue type for a given stimulus type, (4) no interaction between stimulus and cue-type factors, and (5) no effect between cueing bright vs. dark or between cueing red vs. green elements.

Practice effects

Figure 6 displays % Signal thresholds as a function of the session order for both the test (a) and control (b) groups. Gray and crosshatched columns show θs for luminance- and color-
defined stimuli, respectively. Open and closed squares are mean θs (averaged over color and luminance conditions) for each of the first four and for each of the last eight sessions, respectively. Vertical bars show ± 1 SE computed over all observers. At inspection, mean θs appear to slightly, but systematically decrease with session order for both groups. To assess the significance of this effect linear regressions were independently fit to performances obtained with luminance- and color-defined stimuli (continuous and dashed lines in Fig. 6) for each group. To avoid confounding the potential practice effect with the cue effect in the test group, only the last eight sessions (post-cue phase) for this group were considered. For the control group, a session-order effect was obtained only for the color-defined stimuli ($\text{slope} = -0.63, p < .0004$). The test group showed performance improvement over the last eight sessions for both color- ($\text{slope} = -0.30$) and luminance-defined ($\text{slope} = -0.18$) stimuli but this decrease in threshold did not reach statistical significance. This observation suggests that, once the observers have benefited from the cueing effect, they cannot improve significantly beyond that level. Moreover, inspection of Fig. 6 reveals that, for the last two sessions, performances with color-defined stimuli are practically identical across groups. This is not the case for the luminance-defined stimuli. We speculate that, even without explicit knowledge on the construction principle of the DCJFP, naïve observers manage to apply, for color stimuli, segregation strategies similar to the one suggested to the test group. For some unknown reason, however, such strategies appear to be difficult to implement with luminance-defined stimuli (see the Discussion section).

FIG 6–PRACTICE

DISCUSSION

The present experiments on DCJ texture segregation yielded two main effects: a feature-cueing and a practice effect. Feature cueing was effective for both color- and luminance-defined stimuli but less so for the latter. This cueing efficiency difference was obtained despite the equivalence of the chromatic and luminance contrasts. Within each stimulus category (color- and
luminance-defined), attending to either of its two defining dimensions (color/luminance or orientation) yielded equivalent performance enhancements despite a significant difference between the available contrasts along these dimensions (see Fig. 4). Within each dimension, there was no significant difference between attending to one or the other of its two values (red/green, dark/bright, +45°/-45°). Overall, the feature-cueing effects observed in this study with DCjTP replicate those revealed by means of reaction time measures in visual search studies (Friedman-Hill & Wolfe, 1995). It should be noted that this generalization is not necessarily self-evident, given both the differences in methodologies and the noted idiosyncrasies between visual search and texture segregation performances (Wolfe, 1992).

A global performance improvement occurred over time even without cueing (Fig. 6b). Practice effects with DCj stimuli have already been reported (Sireteanu & Rettenbach, 1995; Von der Heydt & Dürsteler, 1993) but their origin is not clearly understood. Interestingly, the test group showed such a progress in the post-cue phase for both the color- and luminance-defined stimuli, whereas the control group yielded similar practice effects only for the color-defined ones. This difference suggests that color features, as opposed to luminance-polarity, “draw attention” spontaneously so that naive observers may apply (consciously or not) the strategy suggested to the test group and progressively improve on it. The generalization of this hypothesis would be that all practice effects observed with DCj stimuli involve increasing control over attentional strategies.

The overall cueing and practice effects observed in this study are not homogeneous across observers. In the test group some observers do not show any cue effect. Equivalently, not all observers in the control group show practice effects. Among these observers, some show close to chance performance throughout the 12 experimental sessions, while others yield from the very start too high a performance to improve upon. Friedman-Hill & Wolfe (1995) also report interobserver differences in "guided" visual search experiments. Together with the previous remarks, these inter-observer non-homogeneities suggest the involvement of inspection strategies and/or an uneven capacity of implementing them. The abrupt post-cue performance improvement is very similar to the “Eureka effect” of Ahissar and Hochstein (1997), who reported significant improvement in perceptual learning after supplying observers clear one-shot knowledge of the expected image.
Insofar as these attentional strategies involve the suppression of irrelevant noise sources at the decision stage (see below), it is interesting to note that, in the present (and related) experiments, this suppression must operate on highly suprathreshold signals. In contrast, the standard account of uncertainty manipulation effects (see Introduction) involves suppression of liminal noise signals. While the efficiency of suppression might vary widely across the two paradigms, so does the strength of the signals involved so that, overall, the efficiency of attentional monitoring may remain unaffected.

It is beyond the accuracy of the present experimental design to ascertain that eye movements played no role whatsoever in the observed cueing effects. Observers could have deliberately fixated diagonally away from the fixation cross, "pick up" the element which happened to be there, execute one large saccade either horizontally or vertically, pick up at the new location a second element of either the same color or the same orientation as the first, and compare its second defining feature with that of the first element. The outcome of such a comparison should give away the orientation of the edge: a "no difference" outcome for a horizontal saccade indicates a horizontal edge, whereas a "difference" outcome indicates a vertical edge; the situation is reversed for a vertical saccade. Obviously, the hit rate will be inversely proportional to the amount of noise in the texture pair. For this strategy to work out, observers should have fixated away from the central cross by more than 1.54° (given the jaggedness and the randomization of the position of the edge). Had the observers complied even loosely with the strict fixation instructions, they could not have used this modus operandi.

The fact of the matter is that DCjTP are practically impossible to segregate at first sight but that, once the observer manages to group/isolate one of their defining features, their separating edge appears to "pop out" (at least for the color-defined ones). For some, this introspective argument is to be taken seriously, regardless of whether observers move or do not move their eyes: the introspective clarity of the edge is, for them, convincing evidence that overt attention can selectively isolate sensory maps. However, this line of argument yields a hidden circularity.

4This view has been suggested to us by Patrick Cavanagh. It is reminiscent of Titchener's and Wundt's. For Titchener, the difference between attended and non-attended objects resides in the higher "clearness", "vividness" or "attensity" of the former. Wundt formulates this difference in terms of two "degrees of consciousness" whereby attended objects "are brought within the focus of consciousness (Blickpunkt)" from within the more general "field of consciousness (Blickfeld)" (Boring, 1950, pp. 338, 415).
It was argued that the difficulty of resolving some DCj targets results from the absence of units simultaneously tuned to the two dimensions under focus (Nakayama & Silverman, 1986). Another possibility suggested in the Introduction was to pose their existence [see references in Note 2 and Gorea & Papathomas (1993) for a review] and to attribute the difficulty of segregating DCj stimuli to the noise from non-selective units. Performance enhancement contingent upon a two-stage attentional strategy is then to be accounted for in terms of the suppression of this noise. So, contrary to intuition, the fact that "attending to red" followed by "segmenting on the basis of orientation" happens to be a useful strategy in DCj_{TP} segmentation does not necessarily ascertain a two-stage processing. "Attending to red" will have the disadvantage of ignoring a reliable edge signal from the "green oriented map" but this disadvantage appears to be overcompensated by the suppression of the noise generated by the "chromatic non-specific" and by the "green, non-oriented" units. Along this view, DCj_{TP} segmentation is a parallel, one-stage process even in an "attentive mode". In all events, the successful implementation by our observers of the suggested two-stage processing strategy requires the selective processing along the two dimensions. The debate, as we see it, is whether or not these dimensions are coded directly by a single conjunctive mechanism.

We know of two proposals in the literature that genuinely fit into a two-stage processing scheme. One is Treisman's feature integration theory (Treisman & Gelade, 1980; Treisman, 1985; Treisman & Sato, 1990), the other is Wolfe's guided search model (Wolfe et al., 1989; Wolfe, 1992, 1994). In Treisman's model, color (non-oriented) and orientation (non-chromatic) responses lacking explicit spatial labeling (first stage) are "glued" or coupled together through focal attention (second stage) at the level of some disembodied spatial map. In Wolfe's model, the same first-stage 1D units do carry spatial labels and the DCj target is pointed to by the highest responsive location (second stage), i.e. the one where the activated feature maps overlap spatially. Not all the four authors of the present paper share these views. According to our account of the attended feature effect, the 1D maps proposed in both these approaches hinder the segmentation process. Contrary to our account, they assist, rather than disturb, the segmentation in both these models. Given that the output(s) of the first stage taken alone is (are) but noise with respect to the segregation task, a benefit of grouping requires that the output of this stage be ignored at the decision level but not when it comes to "glue" it (Treisman) or "spot" its spatial overlap with the
second activated map (Wolfe) stages. Thus, to account for the function of "focal attention", the two-stage approaches also require, though not explicitly, some sort of noise suppression. The present experiments cannot discriminate among these alternative views. As already noted in the Introduction section, the debate over whether attention works as a noise suppression or as a signal enhancement device is still unsolved, although recent studies favor the noise suppression account (e.g. Palmer, 1994; Dosher & Lu, 1997).

The statistical analysis shows a lesser cueing effect for the luminance- than for the color-defined stimuli. This is so despite the equivalence of their chromatic and luminance contrasts and despite the use of the same orientation contrasts in the two types of stimuli. To account for the relative cueing inefficiency with luminance-defined DCJT, one must assume that luminance non-oriented and luminance-polarity non-specific units cannot be suppressed through voluntary control. Alternatively, such units might be more numerous than the chromatic non-oriented and chromatic non-specific ones so that suppression of the luminance units would be less efficient than suppression of the chromatic ones. This interpretation predicts higher segregation performances for the color than for the luminance DCJ non-cued stimuli. This trend is indeed present in the data of both groups for the non-cued conditions. Yet another possibility is that chromatic maps can be attended more easily than luminance ones (Cavanagh, 1992). In the framework of our noise suppression interpretation, this possibility amounts to posing that color insensitive units can be more easily ignored than luminance-polarity ones. In all events, recent work on "attentive tracking" does not support a clear-cut distinction between stimuli defined by color and stimuli defined by some second-order dimension (such as contrast, texture or stereo; Seiffert & Cavanagh, 1997). Finally, a more trivial interpretation of the difference between cueing efficiency with luminance- and color-defined stimuli could reside in that the latter may have contained a residual luminance signal. Any luminance imbalance between the red and green elements would have favored their segregation and thus allowed for better attentional focusing. The higher (though not statistically significant) cueing effect for red than for green elements (see Fig. 5) is in accord with this interpretation.

Preliminary experiments were successful in equating the chromatic and luminance contrasts but not the orientation contrast. The data displayed in Fig. 4 (across type texture-pairs) show that orientation-based segregation in both chromatic and luminance stimuli is more than a
factor of two worse than luminance- or color-based segregation. On the other hand, within each DCj_{TP} type, orientation and color/polarity cueing yield identical discrimination performances. This contradiction is partly illusive. From the standpoint of a one-stage 2D filtering formulation, it is clear that whatever the relative tuning properties of the front-end filter (along the two dimensions it codes, e.g. color and orientation), its overall output will be the same whether the edge is perceived as an orientation or as a color/luminance contrast. Instead, the only perceptual difference between a color- and an orientation-defined edge in a DCj_{TP} should reside in the specific population of suppressed or ignored units under each "attentive mode" (color- and orientation-insensitive units, respectively). Two-stage, 1D filtering models should not predict a difference between the two attentive modes either. Within this framework, the overall probability of a correct segmentation will be given by the product of the probabilities of having correctly grouped (1st stage) and then segmented (2nd stage) the relevant elements whatever the order of these two operations might be.

Acknowledgments. Patrick Cavanagh was very helpful in discussing attention-related issues with one of us. We thank Janos Geier and Jim McGowan for helping with the statistics. Part of this study was presented at the Association for Vision Research and Ophthalmology, Fort Lauderdale, Florida, 1996. This work was supported by grant DRET no. 94-047 to A. Gorea and J.S. McDonnell Foundation grant 95-60 to T.V. Papathomas and A. Feher.
REFERENCES

FIGURE CAPTIONS

Figure 1. Luminance-defined DCjt as used in this study. For the color-defined ones, the reader should replace with imagination the dark and bright textels with red and green ones. Top panels show a 100% (a) and a 50% (b) signal DCjt (see text) with a vertical edge. Bottom panels show the appearance of these DCjt had the observer been able to "isolate" their bright +45° or −45° textels.

Figure 2. L×O (a,b) and O×L (c,d) SCjt with vertical edges. C×O and O×C configurations are obtained if the dark and bright textels are replaced with equiluminant red and green ones, respectively. Left- and right-hand panels show configurations yielding 100% (a,c) and 50% (b,c) Signal.

Figure 3. Black-and-white representations of the chromatic stimuli used to assess unique yellow. In the actual stimuli, dark and bright textels were equiluminant red and green and the gray background was equiluminant yellow. (a) Brighter (more greenish) backgrounds yield a higher salience for the dark (red) textels; (b) darker (more redish) backgrounds reinforce the saliency of the bright (green) textels. The "unique gray" (unique yellow) is obtained when the two textel types (i.e. the two diagonals along which they are aligned) are equally visible.

Figure 4. % Signal thresholds for the test (gray columns) and control (white columns) with L×O, C×O, O×L and O×C stimuli. Vertical bars show ±1 SE.

Figure 5. Mean % Signal thresholds with DCjt for the test (columns with heavy outlines) and control (columns with thin outlines) obtained during the first four (first four columns) and last eight (remaining columns) sessions. White and gray columns are for the color- and luminance-defined stimuli. Labels on the abscissa refer to the cued feature in the post-cue phase of the test group: R = red, G = green, B = bright, D = dark, / = +45° and \ = −45°. Vertical bars show ±1 SE.

Figure 6. % Signal thresholds as a function of session order for the test (a) and control (b) groups. Gray and crosshatched columns show θs for luminance- and color-defined stimuli, respectively. Open and closed squares are mean θs for each of the first four and for each of the last eight sessions, respectively. Vertical bars show ±1 SE computed over all observers. Linear regression fits to the θs obtained for the luminance- and color-defined stimuli are shown as continuous and dashed lines, respectively. For the test group, linear regressions were fit only to the post-cue phase θs.
B. CONTROL GROUP

FIG. 6b

Session Number

% Signal Threshold