
The role of objects in perceptual grouping

Jacob Feldman

Department of Psychology, Center for Cognitive Science, Rutgers University, New Brunswick, NY, 08903,

USA

Received 11 May 1998; received in revised form 22 October 1998; accepted 10 November 1998

Abstract

Perceptual organization can be viewed as the selection of the best or ``most reasonable''

parse of a given scene. However, the principles that determine which interpretation is most

reasonable have resisted most attempts to de®ne them formally. This paper summarizes a

formal theory of human perceptual organization, called minimal model theory, in which the

best interpretation of a given scene is expressed as the formally minimal interpretation in a

well-de®ned space of possible interpretations. We then focus speci®cally on the role of types of

grouping units, in particular the di�cult notion of ``object''. Although grouping is often

thought of as the process of dividing the image into objects, most research in perceptual

grouping actually focuses on simpler types of units, such as contours and surfaces. Minimal

model theory characterizes grouping units at a logical level, demonstrating how formal as-

sumptions about units induce the observer to place a certain preference ranking on interpr-

etations. The theory is then applied to the more subtle problem of objects, culminating in a

de®nition for objects that is formally rigorous but at the same time captures some of the

¯exibility of human intuitions about objects. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. The puzzle of grouping

Perceptual grouping is the process by which raw image elements are aggregated
into larger and more meaningful collections. Grouping is widely assumed to be early,
automatic, and preattentive (Kahneman & Henik, 1981; Prinzmetal & Banks, 1977;
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Treisman, 1982), though the extent to which grouping can proceed without attention
is controversial (Barchilon Ben-Av, Sagi, & Braun, 1992; Rock, Linnett, Grant &
Mack, 1992). Grouping and scene organization can impose decisive in¯uences on
other low-level processes (e.g., lightness perception, Gilchrist, 1977). Grouping is a
necessary precursor to object recognition, because for complexity reasons only well-
organized groups, rather than arbitrary subsets of the image, can be compared
against as stored object models (Jacobs, 1996). Nevertheless, grouping is certainly
one of the least understood problems in vision. This state of a�airs re¯ects the dif-
®culty of precisely formalizing subtle human intuitions about the relative ``reason-
ableness'' of candidate groups.

Indeed, notwithstanding the rapidity and e�ortlessness with which human per-
ceivers perform it, grouping is an extremely di�cult problem from a computational
point of view. The number of candidate groups in a con®guration of n items is
equal to the number of subsets and hence is exponential (2n); the number of par-
titions (divisions of the n items into disjoint subsets) is a far larger exponential
function of n. Many early grouping phenomena, such as the detection of collin-
earity, are often treated by researchers as local problems in a restricted neighbor-
hood, thus reducing the amount of computation required. However, the more
general problem of grouping is well known to involve global e�ects. Long-distance
in¯uences over large areas of the image are common, meaning the fundamental
complexity remains extremely high (a fact re¯ected in the very term ``Gestalt'',
connoting the primacy of the whole). Perhaps the best illustration of the di�culty is
the fact that in computational vision, it has become commonplace to require a
human user to outline target shapes in images before recognition or motion
tracking can commence, because existing grouping algorithms do not provide suf-
®ciently robust or accurate results. The lack of good algorithms in turn re¯ects the
failure of psychologists to propose a theory rigorous and concrete enough to be
implemented computationally.

Yet the real theoretical di�culty in grouping stems from the di�culty in clearly
de®ning the computational goal: a rigorous de®nition of what makes a ``good
group''. Unlike such physically grounded variables as depth, color, and motion,
goodness of grouping candidates does not have an objective physical de®nition.
Some ways of combining image elements simply seem more intuitively reasonable
than others. The Gestaltists called this elusive quality of perceptual goodness
Pr�agnanz, usually translated as ``good form''. Fig. 1 provides an example. Of the six
line segments in the image, four are grouped into one phenomenal object (a ¯at
square) and two, which are not physically contiguous, into another (a ``stick'' pen-
etrating the square). The factors that make this particular interpretation the most
plausible are subtle and not well understood.

Two general strategies for attacking this problem in the literature can be distin-
guished. Loosely, some authors seek to explain the procedure by which the visual
system arrives at its preferred percept ± i.e., ®nd a process model ± while others
attempt to characterize the nature of the preferred percept itself (cf. the distinction
between dynamic and static approaches noted by Van der Helm & Leeuwenberg
(1996)). The distinction is related to Marr's well-known (Marr, 1982) division
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between an algorithmic theory and a theory of the computation, the latter sometimes
referred to as a competence theory following Chomsky's terminology (see Richards,
1988). As such the two approaches operate at distinct but mutually compatible levels
of analysis. The research described in the current paper places the emphasis on the
competence theory, on the belief that trying to discover how the visual system
computes something ± without ®rst de®ning that thing ± amounts to letting the tail
wag the dog.

Hence, this paper focuses on an attempt to de®ne in formal terms exactly which
interpretation for a given scene is most preferred by human observers, and why.
Mathematical details and computational issues in the theory, called minimal model
theory, are explained in more detail elsewhere (e.g., see Feldman, 1997c). The em-
phasis here will be on one particular issue: the role of grouping units. What kind of
groups ± contours, surfaces, objects etc. ± are image items aggregated into, and why?
In particular I will attempt to shed light on the somewhat amorphous concept of
``object'', the grouping unit most di�cult to de®ne and hence, perhaps, most in need
of a rigorous theory.

2. Grouping units

In the common wisdom, perceptual grouping is the process whereby the visual
image is decomposed into objects. However, this de®nition is somewhat at odds with
the way perceptual grouping is studied in practice by researchers in the ®eld. More
commonly, research has centered around how visual items are organized into stri-
ated patterns (Barchilon Ben-Av & Sagi, 1995; Kubovy & Wagemans, 1995; Zucker
et al., 1983), contours (Caelli & Umansky, 1976; Feldman, 1996, 1997a; Link &
Zucker, 1987; Pizlo et al., 1997; Smits & Vos, 1987), and Moir�e patterns (Glass,
1969; Prazdny, 1984; Stevens, 1978). Researchers studying perceptual completion
behind a subjective occluder (Kanizsa, 1979; Kellman & Shipley, 1991; Takeichi
et al., 1995) or a visible occluder (Bu�art, Leuwenberg & Restle, 1981; Sekuler et al.,
1994; Van Lier et al., 1995) have usually conceptualized the completed thing as a
simple surface (though see Van Lier, 1999). Such an object though is at most a very

Fig. 1. A line drawing illustrating the role of Pr�agnanz in selecting the most reasonable interpretation.
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simple one, consisting of only a single closed region, and almost invariably 2D
(though see Tse, 1999). The computational literature has also focused primarily on
contours (Guy & Medioni, 1996; Zucker, 1985) and surfaces (Barrow & Tenenbaum,
1981; Binford, 1981). In the human vision literature in general, there is a widespread
view promulgated by Gibson (1979) that surfaces rather than objects are the primary
unit of visual representation (see He & Nakayama, 1992; Nakayama & Shimojo,
1992).

Objects per se have been little studied in the context of grouping. 1 For the most
part this probably stems from the di�culty in precisely de®ning them. Contours
always have a certain well-de®ned geometrical form: they are 1D space curves, i.e.,
smooth deformations of the unit line. Similarly, surfaces are always smooth defor-
mations of a neighborhood of the plane. Many objects are simply 3D analogs of
contours and surfaces: smoothly bounded regions of 3D space (i.e., ``blobs''). In
general though objects can be more complex than this, having parts and articulated
substructures, and potentially complex spatial relations within them (Fig. 2). Given
the di�culty in completely characterizing human grouping preferences even for these
geometrically simpler units, grouping researchers have not often approached the
more abstract problem of objects directly.

On the other hand, objects have been a central focus in the developmental liter-
ature (e.g., Baillargeon, 1994; Spelke, 1990, as well as Xu, 1999). There, interest has
centered on de®ning properties of objects that go beyond strictly visual aspects, such
as spatio-temporal cohesion and stability over time. (Indeed a complete de®nition of
objects would certainly combine both visual and non-visual aspects, which is beyond
the scope of this paper.) Objects have also been of central interest in the study of
attention. They are thought to be the loci of feature binding (Ashby, Prinzmetal, Ivry
& Maddox 1996; Treisman & Schmidt, 1982) and of spatial indexes (Pylyshyn, 1989).
Moreover, it is known that attention can be moved more easily within than between
objects (Baylis & Driver, 1993; Kramer & Jacobson, 1991). The basic question of
which parts of the visual array can count as objects, though, must be provided by an
earlier process, presumably perceptual grouping.

Minimal model theory (henceforth MM theory; Feldman, 1997b,c) has been de-
veloped as an approach to the general problem of perceptual organization, not
speci®cally the problem of de®ning objects, but the theory provides a foundation on
which an object de®nition can be built rather directly. Section 3 gives some back-
ground, and Section 4 give a general pr�ecis of the theory. Section 5 considers more
speci®cally the role of grouping primitives in the theory, and Section 6 takes up the
speci®c question of objects. In Section 6 a simple formal criterion is proposed that
putatively captures the intuitive notion of ``object''.

1 Conversely, much research has been devoted to how objects are represented and recognized (e.g.,

Biederman, 1987; Tarr & Pinker, 1989, as well as Lawson, 1999). But this research has usually assumed

that the problem addressed here, namely how objects are separated from other objects and from the

background, has already been solved.
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3. A ``logical'' approach to grouping

Our overall goal is to develop a theory describing the rules human observers use
to choose the best interpretation of a given scene. Hence, we begin with the problem
of de®ning an ``interpretation'', a term often used in vision in a loose way but rarely
de®ned carefully.

Reiter and Mackworth (1989) (see also Clowes, 1971) have proposed a de®nition
of an interpretation using ideas from mathematical logic, a ®eld in which the idea
of enumerating the alternative interpretations of a ®xed set of facts is a central
concept. Their de®nition is quite technical. The discussion here follows their de®-
nition only loosely, and is oriented speci®cally around the idea of choosing
grouping units.

Consider an observer presented with a (proximal) scene x, who would like to infer
from x a model M of the (distal) world. The observer assumes that the world is made
of some type of units P ± i.e., that the scene elements proximally observed were
actually generated by P's in the world. Further, obviously, the observer assumes that
the true world model is observationally consistent with what is observed, i.e., with x.
In e�ect, the observer is making two assumptions about the origins of the observed
scene x, which we call image axioms:

Fig. 2. Line segments grouped into (a) a contour, (b) a surface and (c) complex objects.
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Axiom 1 (Observational consistency). M is consistent with x.

Axiom 2 (Scene primitives). M is built from units of type P.

The observer seeks an interpretation that satis®es both of these axioms. In
mathematical logic, one speaks of a ``model'' as a concrete object that satis®es some
set of abstract predicates, e.g., the assignment x � 7 is a model of the theory ``x is
prime''. Similarly, an interpretation of a scene can be thought of as a model that
satis®es the image axioms. Hence, we de®ne:

De®nition (Grouping interpretation). An interpretation is a world model M that
satis®es Axioms 1 and 2.

If P is (say) ``contours'', then this is simply a strict way of saying that the observer
seeks a contour-based world model that is consistent with the image. Twenty years
ago, a precise statement of the problem in logical terms might have seemed elegant,
but would have been of little practical use. Today, however, computational methods
for evaluating logical expressions ± for example for ®nding models of logical
premises ± have reached a high state of development. The ®eld of Logic Program-
ming has progressed from its beginnings in the 1970s to the point where methods for
constructing and evaluating logical expressions are widespread, well-understood,
and extremely e�cient ± as exempli®ed by the widespread use of practical logic
programming languages such as Prolog. Hence, the project of ®nding a model for
our image axioms, and thus a model of the scene, is entirely tractable; the main
obstacle is in expressing interpretations in a suitable logical language.

Of course, for any given image x there will typically be many models that satisfy
the image axioms for a given unit type P. Take for example a dot con®guration that
we wish to parse into contours (Fig. 3). Any of the depicted assignments of dots to
contours, as well a large number of others, is consistent with Axioms 1 and 2.

In addition to a concrete de®nition for interpretations, then, what is needed is a
way to rank the interpretations in order of preference. The core of MM theory is this
ranking, which takes the technical form of a partial order among models, coupled
with a minimum rule for selecting the most preferable model.

4. Minimal model theory

Minimal model theory has three main components: (a) a relational language for
describing qualitative interpretations, (b) a ranking among interpretations and (c) a
rule for selecting the most-preferred interpretation.

4.1. Parse trees

First we need a language in which to express interpretations. It is widely believed
that ®gural representations are relational (Hock, Tromley & Polmann 1988; Palmer,
1978; Wagemans, Van gool, Swinnen & Van Horebeek, 1993) and hierarchical
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(Palmer, 1977; Van der Helm & Leeuwenberg, 1991). In logical terms a relation such
as collinear between two line segments x and y can be expressed as a predicate with
two arguments, e.g.,

collinear�x;y�:
In many cases, the arguments to such a predicate will themselves be complex

objects, expressed in the same relational language. For example, the two collinear
line segments x and y described by the above expression form a ``virtual'' line seg-
ment (see Fig. 4). This line segment in turn may be perpendicular to a third line
segment z. This state of a�airs is most conveniently expressed by a tree (see ®gure),
which we call a parse tree.

In what follows it is assumed that a complete qualitative representation of an
observed con®guration can be captured in a suitable parse tree ± i.e., that qualitative
relations among image items are paramount. This emphasis on qualitative spatial
relations makes this interpretation language unsuitable for applications requiring
metric information, such as face recognition, but it makes it suitable for representing
organizational properties such as how the scene should be grouped. 2 The inter-

Fig. 3. A dot con®guration and several contour models that are consistent with it. Some interpretations

(a) are more preferred than others (b, c).

2 Of course, metric and qualitative representations are intimately related. For example, qualitative

relations such as non-accidental properties (see discussion below), can take the form of special values

along measurable parameters (e.g., collinearity, right angles, etc.).
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pretation problem now reduces to the problem of selecting the most suitable parse
tree for a given con®guration.

4.2. The partial order among parses

Next we seek to impose an ordering among parse trees, towards the end of for-
mulating a rule for selecting a most-preferred interpretation.

Parse trees are discrete, qualitative objects. The natural formal structure for
ranking such objects is a partial order. Formally, a partial order (denoted by 6 ) is a
re¯exive, antisymmetric, transitive relation (see Davey & Priestley, 1990 for an in-
troduction). Informally, a partial order is an ordering in which not all items are
necessarily ranked with respect to all other items. (This is in contrast to a total order,
in which all items are ordered with respect to all others; an example is the integers
under their usual ordering.)

An example of a partially ordered relation is the relation ancestor: father is an
ancestor of child, and mother is an ancestor of child, but mother and father are not
ordered with respect to each other (i.e., mother is not ancestor of father and father is
not ancestor of mother). It is convenient to display orders in a diagram. Fig. 5 gives
diagrams (known as Hasse diagrams) of several typical total and partial orders. The
crucial idea is to generalize away from simple quantitative comparison (the way we
usually use the symbol 6 ) and think instead in terms of abstract rankings.

An important example of a partial order, which is used directly in the theory
below, is the relation subset (denoted �). For example the four relational facts

fag � fa; bg
fbg � fa; bg
fg � fag
fg � fbg

de®ne a partial order that is depicted in Fig. 5c, taking x6 y if and only if y � x.

Fig. 4. (a) A line drawing and (b) a parse tree describing it.
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In a parse tree, each leaf (bottom node) is an image element (e.g., a dot or line).
All other nodes are models which act as a head term over several arguments (its
children). (Most predicates in this paper have two arguments, but the theory can be
generalized easily to any number.) In the example above, the models (collinear
and perpendicular) were ``regularities''. A regularity is a qualitatively ``special''
con®guration, such as collinear, perpendicular, coterminous, parallel, etc. (cf. non-
accidental properties, and see below for discussion.) More generally, models are sets
of regularities, because more than one regularity can apply at a time. Hence, some
models are subsets of other models. Larger models denote con®gurations that are
more regular than small models. For example, the model fcoterminousg is a
subset of the model fcollinear;coterminousg (Fig. 6) and hence describes a
less regular con®guration.

Hence, models can be ordered by the subset ordering induced on the sets of
regularities the models contain. Now, parse trees are made up of multiple models at
di�erent levels of the tree. We create a partial order on parse trees recursively, by the
following de®nition.

De®nition (Partial order �6 � among parse trees). For any two trees T1 and T2 such
that

we say T16 T2 if and only if

�a� M1 � M2; and

�b� T1a6 T2a and T1b6 T2b:

Fig. 5. (a) A total order (the integers) and several examples of partial orders: (b) ancestor, (c) subset, (d)

an arbitrary partially ordered relation. For any two items x and y, if x is ``hanging'' from y in the diagram

(even with intervening nodes) then x6 y.
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That is, one tree is earlier in the partial order than another if all of its corre-
sponding nodes are more regular (or at least as regular). For example, if two trees are
the same except that one's head term is a superset of the other's, then the former is
earlier in the partial order than the latter; likewise if the head terms are the same but
some internal node is a superset of the corresponding superset on the other tree.
Earlier trees are depicted as lower in the corresponding diagram, and from here on
we will use ``lower'' to mean earlier and ``higher'' to mean later.

The set of all parse trees that are possible (for a given type of con®guration, with a
given set of regularity types), ordered by 6 , is called the interpretation space. The
interpretation space includes all qualitatively distinct interpretations that can be
placed on con®gurations; this is the set of conclusions from which the observer must
choose. The interpretation space has a number of interesting formal properties, some
of which are discussed and proved in Feldman (1997c). For our purposes here the
important point is that the partial order can be shown to be a preference ranking
among interpretations ± lower interpretations should be preferred to higher ones.
This crucial fact, which will be discussed at length in the next section, suggests the
use of a minimum rule to select the most preferred interpretation.

4.3. The minimum rule

By de®nition, interpretations that are lower in the partial order are more regular
than higher ones. For example, say the head term of one contains all the regularities
contained in the head term of the other, plus one. In this case the former tree ex-
presses a con®guration that is one ``notch'' more regular than the latter, but is
otherwise the same.

Fig. 6. Two con®gurations and their corresponding parse trees. The head term of the lower tree is a subset

of that of the upper tree, capturing how the lower con®guration is a less regular con®guration than the

upper con®guration.
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A priori, however, it is not obvious why more regular interpretations should be
preferred. The world is not always a simple place ± at least, it is not always as simple
as possible. This point has long troubled philosophers of induction (Quine, 1965;
Sober, 1975) seeking to justify Occam's razor. In perception, the role of regularity in
perceptual organization is subtle and complex (see Kanizsa, 1979). Although it is not
entirely clear why, it is often observed that ± all else being equal ± a more regular
interpretation is preferred to a less regular one. This is precisely the situation rep-
resented by two minimally distinct parse trees connected by a line (in graph theory,
called an ``edge'') in the interpretation space. Hence, in the context of a formal
theory it would be desirable to explain why two such trees should be preference-
ordered ± i.e., why the 6 -ordering should predict intuitive preference.

The signi®cance of the 6 -ordering depends on the meaning of the regularity
terms. Normally, each regularity denotes some kind of non-accidental property
(Binford, 1981; Lowe, 1987; see also Wagemans, 1992) ± a con®guration, like col-
linearity, cotermination, parallelism, perpendicularity, etc., that is unlikely to be
satis®ed by accident. In Barlow's elegant phrase (Barlow, 1994), such con®gurations
are suspicious coincidences: they rarely occur randomly, and are signi®cant when they
do occur (see also Feldman, 1997c; Jepson & Richards, 1992; Richards, Jepson &
Feldman, 1996 for discussion). Moreover, though regularities rarely occur by acci-
dent, they typically occur when some particular world structure occurs ± e.g., col-
linearity among dots is atypical among random dots but typical among dots along a
contour (Feldman, 1996). We say the regularity is non-generic when a particular
world model M is absent, but generic when it is present. Hence, when a particular
regularity is satis®ed by the image, the reasonable inference is that the correct model
of the world should include it.

If regularity terms are chosen to have this ``suspicious'' property, then the
6 -ordering becomes a preference ordering: whenever a lower model is satis®ed it
should be preferred. This directly suggests a rule for selecting the most preferred
interpretation: the optimal interpretation is the lowest (minimal) interpretation that
the image con®guration satis®es.

De®nition (Minimum rule). Given a con®guration x, among all parse trees in the
interpretation space that x satis®es, choose the one that is minimal in the partial
order. (See Feldman, 1997d.)

This winning interpretation will be referred to as the minimal interpretation (or
minimal parse or minimal model). One can assign to each parse tree T a numeric
score, denoted depth(T), measuring ``how regular'' the interpretation is. 3 For a
simple model M, depth(M) is simply jM j (the number of regularities contained in M).
For a tree, the depth is the recursive sum of the depth of its head term plus the depth
of all of its subtrees. The depth of the generic model is always zero (depth�fg� � 0).

3 In other treatments this number is called the ``codimension'', a term emphasizing a geometric

interpretation not important in this paper.
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Eliding a few formal details, ®nding the minimal interpretation is the same as ®nding
the maximum-depth interpretation, and the two terms will be used interchangeably
from here on.

Because of the way it is de®ned, the minimal interpretation is the most preferred
grouping interpretation available to the observer. More speci®cally it is the ``least
coincidental'' interpretation: the interpretation in which the fewest possible number
of suspicious coincidences are left unexplained (cf. Rock's ``coincidence explanation
principle'' (Rock, 1983)). Putting it the opposite way, it is the interpretation that
explains the largest possible number of coincidences. Collinear lines are explained as
contours (under which they are generic, or expected); coterminous segments are
explained as being joined in the world (in which case one would expect to see them
coterminate in the image); and so forth.

4.4. Discussion of the theory

The minimal interpretation has a number of attractive properties. Most impor-
tantly, it appears to be descriptively correct as a theory of human perceptual
grouping. Several examples are given in Fig. 7, using scenes made of dots, lines, and
edge fragments. In each case the minimal parse tree captures the grouping intuition
correctly. The winning tree also in e�ect provides ®gure-ground segregation; the
most salient or structured part of the image, i.e., the ®gure or ``object'' corresponds
to the maximum-depth subtree in the winning tree. Feldman (1997b) gives examples
involving images with hundreds of items, where the procedure correctly ®nds the
psychologically most salient curve. The performance of the algorithm here is com-
parable to other algorithms designed in an ad hoc manner solely for this problem
(e.g., Ullman & Shashua, 1988), while the complexity (O�n2� for n items) is com-
parable or better.

Representing interpretations as trees is advantageous in that the tree vividly and
directly portrays the qualitative or categorical spatial relations perceived in the ®gure
± bringing the system a step closer to a phenomenal description such as ``a stick
penetrating a surface''. By contrast the usual output of computational grouping
algorithms is a processed image which still requires some further (unspeci®ed) pro-
cessing before it can be described or comprehended.

One advantage of the ``logical'' characterization of preferences is that grouping of
di�erent types of image elements (e.g., dots, lines, edge fragments) receive a relatively
uniform treatment. Collinearity, for example, has an intrinsically di�erent de®nition
over dots (where it requires three arguments) than over edge fragments (where it only
requires two). Yet in MM theory every collinear con®guration (i.e., subtree with the
predicate collinear in the head position), regardless of the nature of its leaves
(i.e., type of image elements), is treated equivalently from the point of view of higher
nodes in the tree. That is, one does not need to postulate an entirely di�erent process
for handling dots from the one that handles lines, etc., as is commonplace in the
computational literature.

One of the main advantages of the theory is that local and global con®gural
goodness are put into a uniform framework. Imagine that an entire scene is described
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by a tree T. A subtree low down near the leaves might describe a relation (e.g.,
collinearity) between two nearby image elements ± a local con®guration. But at or
near the top of the tree, predicates (e.g., symmetry) can refer to large portions of the
®eld, a highly global representation. This is essentially the point famously made by
Marr and Nishihara (1978), that con®gural relations occur at all spatial scales. MM
theory gives away of representing these relations that is equally applicable across
scales. This may seem obvious, but in the literature there is no similarity or con-
nection in the way (for example) contours are represented and the way global
symmetries are represented; the MM argument is that both of these types of

Fig. 7. Examples of con®gurations (left) and their minimal models (with syntax simpli®ed for ease of

presentation): (a) dot con®guration, (b) line drawing, (c) edge image. Example (c) shows how the ®gure or

``object'' in a ®eld of noise corresponds to a high-depth subtree in the minimal parse.

J. Feldman / Acta Psychologica 102 (1999) 137±163 149



regularities, when observed, tend to induce perceptual grouping, and it makes sense
to make explicit the structural analogy between them.

The way that MM theory represents proximity is unusual, and requires some
explanation. Fig. 7a contains an example of a dot cluster grouped by proximity; the
regularity predicate invoked here is usually denoted coincident. Just as the
predicate collinear involves the coincidence of two orientations ± but only ap-
proximately, as slight angular deviations from perfect collinearity are acceptable ± the
predicate coincident involves the coincidence of two positions ± but again, only
approximately. Just as collinear really means ``collinear or almost collinear'',
coincident means ``coincident or almost coincident'', and hence might be better
rendered in English as ``proximate'' (of course, the character string used to denote the
predicate is not as important as the predicate's de®nition!). In either case, the rea-
soning is the same. If two oriented features (line, edge fragments) are nearly collinear,
then that is an unexplained coincidence if they are seen as unrelated to each other, but
is explained if they are interpreted as part of the same contour. Likewise, if two lo-
calized features (dots, end points) fall nearby each other, then that is an unexplained
coincidence if they are represented as unrelated to each other, but is explained if they
are represented as part of the same object. In computational experiments, the
predicate coincident has been de®ned using a simple distance threshold. This is
almost certainly not a psychologically valid de®nition, in part because it is not scale-
invariant, but it gives reasonable results in dot grouping (e.g., Fig. 7a). Other de®-
nitions, e.g., distance threshold scaled by local item density, may also be used. In any
event, the psychological strength of the proximity cue is something to be discovered
by experiment (e.g., see Kubovy, Holcombe & Wagemans 1998; Kubovy & Wage-
mans, 1995). The main issue in MM theory is rather the logic whereby this local
decision is combined with others throughout the image to form a global percept.

Various regularities (e.g., collinearity, coplanarity, symmetry, etc.) are not all
equally perceptually salient, and one might well imagine that some sort of system of
weights or priorities attached to the various regularities might help to ®ne±tune the
minimization rule and better match human intuitions. Indeed, this idea may be
worth pursuing, but there are several reasons to hesitate. First, it should be noted
that reasonably good results (e.g., Fig. 7) have been obtained without any weights.
While adding weights would no doubt improve the ®t to empirical data, the im-
provement would come at the cost of many added parameters in the model. Second,
there is an argument (admittedly not a completely compelling one) that certain
regularities ought to have equal inferential strength, e.g., those that involve accidents
of exactly one degree of freedom. For example, collinearity and parallelism each
involve zero di�erence in orientation (a coincidence in one df), while coplanarity
between an end point and a plane involves zero distance (again a coincidence in one
df). Conversely, coincidences of more than one degree of freedom (e.g., cotermina-
tion of two endpoints in the plane, 2 dfs) are ``more surprising'' accidents and hence
should carry more inferential weight. 4 This argument suggests that the ``right''

4 The number of dimensions involved in the coincidence is the codimension; see previous footnote.

150 J. Feldman / Acta Psychologica 102 (1999) 137±163



weighting is one in which each regularity predicate expresses a one-df accident, with
no additional prioritization. This argument is not completely satisfying in part be-
cause it ignores the possibility that di�erent parameters might have di�erent prob-
ability distributions. For example, while collinearity and perpendicularity are both
regularities along an angle parameter, the parameter might have a tighter distribu-
tion around collinear than around 90�. Similarly, the distribution for spatial coin-
cidence (i.e., the basis for the judgment of proximity) might have a very wide
distribution (again see Kubovy, Holcombe & Wagemans, 1998).

The maximum-depth rule is evidently related to other perceptual rules from the
literature. Most obviously, it is a variant of the classic ``minimum principle'': choose
the simplest interpretation possible (Hochberg & McAlister, 1953; Leeuwenberg,
1971; Hat®eld & Epstein, 1985). As mentioned above the maximum-depth rule also
optimally satis®es Rock's ``coincidence explanation principle'' (Rock, 1983). His-
torically, the minimum principle has often been counterposed with the ``likelihood
principle'': choose the interpretation most likely to be true. The maximum-depth rule
proposed here reconciles these two principles by explicitly showing how under a
suitable model of minimality, the minimal model is the most likely to be true (cf.
Chater, 1996). 5

One advantage of MM theory over other extant proposals is that it is completely
explicitly de®ned and fully computable. The most closely comparable proposal is
structural information theory (also called coding theory) of Leeuwenberg and his
colleagues (Boselie & Leeuwenberg, 1986; Bu�art, Leeuwenberg & Restle, 1981;
Leeuwenberg, 1971; Van der Helm & Leeuwenberg, 1991), which is in many ways
similar in spirit (see Pomerantz & Kubovy, 1986 for summary and a critique). In
structural information theory, contours of competing candidate interpretations are
expressed as strings of symbols, and then the strings are compacted into a minimal
form by explicitly encoding repetitions, symmetries, etc. The interpretation with the
shortest minimal code is the winner. Structural information theory has been re-
markably successful in predicting human percepts in a variety of perceptual do-
mains. Progress has been made in ®nding e�cient algorithms for code minimization
(Van der Helm & Leeuwenberg, 1986). However, one di�culty in rendering a fully
computable version of the theory is that the choice of candidate interpretations is not
automatically determined; in practice the scientist must select them based on sub-
jective inspection of the ®gure. Perhaps for this reason, structural information theory
has not been taken up by researchers in computer vision. A more abstract problem
with the theory concerns the motivation behind its elemental operations; as with

5 That is, in many treatments pitting the likelihood and minimum principles against each other, it is

assumed that the two principles point to different perceptual interpretations ± and, indeed, depending on

how the principles are cashed out, they may well do so. By contrast MM theory speci®es a minimality

criterion that can be shown to systematically pick out the interpretation most likely to be veridical. Hence,

both principles are satis®ed, and the question of which principle is primary becomes moot. Such a link

between minimality and likelihood has been explicitly called for in the literature (Pomerantz & Kubovy,

1986).
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Gestalt laws, it is not clear exactly why the basic minimization rules in the theory
work (though see Van der Helm & Leeuwenberg, 1991 for steps in this direction).

From a certain point of view, MM theory is agnostic about the choice of
regularities used in the construction of interpretations. Indeed, no a priori basis
exists for this choice. Rather the thrust of the theory is to suggest a rational
mapping from a given choice of regularities to a given interpretation; that is, a
systematic way of deciding which interpretation one should choose given a certain
choice of assumptions. However, it can be shown that the choice of regularities is
determined by a choice of grouping units ± i.e., a choice of which types of ag-
gregations the observers would like to parse the world into. Again here no a priori
basis for choice exists. But a commitment to (say) contours and surfaces seems
somehow less tendentious than one to (say) collinearity and coplanarity; and in
any case, some commitment of the former type is made by every perceptual theory.
The issue of how grouping units give rise to particular preferences is thus a crucial
one, and leads eventually to proposal for a formal de®nition of the most abstract
grouping unit, ``object''. Hence, the next section spells out in more detail how the
observer's assumptions about grouping units lead to interpretive preferences in the
theory.

5. Existential axioms

Consider the simple con®guration of two collinear line segments in Fig. 8a. This
con®guration is described by either of two simple trees.

or

The ®rst tree is more regular than the second tree, which omits any mention of the
regularity present in the con®guration. Hence, the ®rst tree is below the second in the
6 -ordering, and the interpretation space is as shown in Fig. 8. Consequently the ®rst
tree is minimal and is preferred. Again, the logic here is that the observed collinearity
between the two line segments is left unexplained ± a suspicious coincidence ± by the
non-preferred tree, but is generic, and thus explained, under the preferred tree.
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Notice how the observer's tacit belief that there exist contours in the environment
licenses this ordering. Under the hypothesis that the two line segments are part of a
contour, the collinearity is generic ± expected ± and hence explained. Under the
``null'' hypothesis of no structure, the collinearity would remain an unexplained
coincidence. If contours do not exist in the environment, then there is no model to
explain the collinearity, and hence collinearity is a meaningless spatial con®guration,
no more special then a 37� angle. If contours do exist, then collinearity becomes
something which sustains a stable explanation, and hence should be noted when
present.

Fig. 9 gives examples of how certain characteristic regularities correspond to
certain stereotypical structures in the world. Just as contours generically give rise to
collinearities, surfaces generically give rise to certain patterns of regularities. For
example, the occluding edges of a surface will tend to be consecutively coterminous
(Fig. 9b) or coplanar (Fig. 9c). (In the ®gure, parallel line segments are interpreted

Fig. 8. (a) A con®guration of two line segments and (b) the interpretation space for this ®gure, showing

the partial order. The lower tree is minimal and is preferred.
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non-accidentally as parallel in 3D and hence as coplanar.) Again, each of these
special con®gurations is neatly explained by the corresponding world structure, so
that interpretations containing this structure are to be preferred.

Putting this more formally, we can envision existential hypotheses of the form:

Existential axioms

Axiom 2a. There exist contours.

Axiom 2b. There exist surfaces.

These axioms cash out Axiom 2 (scene primitives) from Section 3. Of course, the
existence of contours and surfaces is a very basic physical fact of our environment,
the converse of which is hard to imagine. But this certainly does not diminish the

Fig. 9. Figure showing how certain types of grouping units lead to the expectation of certain patterns of

regularities. In (a) a collinear term corresponds to a contour. In (b) and (c) various combinations of

regularity terms correspond to surfaces.

154 J. Feldman / Acta Psychologica 102 (1999) 137±163



importance of an observer's assuming it to be true; indeed this is exactly why the
system must assume it in order for its interpretations to come out right (Feldman,
1998).

From a logical point of view, the preference order is produced by the entailment

9contours) �fcollinearg6 fg�;
from which the partial order shown in Fig. 8 follows. Similarly, for surfaces,

9surfaces) �fcoterminousg6 fg�;
9surfaces) �fcoplanarg6 fg�;

etc. The importance of these hypotheses is a logical analog of the fact that, contrary
to what appears to be a widespread belief in the literature, conventional non-acci-
dental inference is not justi®ed from a Bayesian point of view unless the associated
world structure (e.g., in the case of 2D parallelism, 3D parallelism) is assumed to
have elevated prior probability in the world (Jepson & Richards, 1992).

Many details of the logical formalism have been omitted here for ease of expo-
sition. The geometry of curves and surfaces leads to the prominence of regularities
other than those discussed here, and in any case contours and surfaces are not ex-
haustive of sub-object-level units. In a more general sense, it is possible to prove that
for any image x and class of grouping units P, the minimal model will be the correct
parse ± will correctly recover the original primitives ± with probability arbitrarily
close to one. (The possibility of error here derives from the small but ever-present
possibility that regularities are satis®ed by accident, leading to accidental interpr-
etations.) This fact resolves the mystery of why more regular interpretations are
preferred: if the partial order is induced in a suitable way, then the most regular
interpretation is usually the objectively correct interpretation. We now attempt to
extend the above argument to objects in general.

6. Objects

Treisman (1986) refers to objects as ``complex wholes''. The object concept pro-
posed here formalizes both the notion of ``complex'' and the notion of ``whole''.
Consider again the parse trees in Fig. 7. In (a) and (b), the con®gurations consist
phenomenally of two objects, with only generic or ``irregular'' structure between
them. Correspondingly, the head term of each minimal parse is the generic term f g,
while each of the individual objects is a subtree hanging from the generic term. In
general, one might imagine that two objects in a generic relationship ± i.e., inde-
pendent and with no special juxtaposition ± would have a minimal parse with this
form. Hence, we postulate that in a tree of the form
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M and N are both ``objects'', provided that depth�M� > 0 and depth�N� > 0. We need
this provision because otherwise M and N could simply be empty models themselves,
containing no internal structure at all (perhaps even being head terms to yet more
generic structure beneath them ± which is how random noise such as the background
in Fig. 7c is represented).

This leads immediately to a very straightforward de®nition for objects. First, for
any node M in a parse tree, denote by p�M� the parent of M (that is, the node from
which it hangs; note that this is always unique). If M is the top node in the tree, then
we say M has no parent. For any tree T, denote by h�T � the head term of T. Then the
following de®nition seems to capture what we mean by an object in the context of
grouping.

De®nition (Object). In a con®guration whose minimal interpretation is T, a subtree
Q appearing in T is an object if

�a� p�h�Q�� � fg; or h�Q� has no parent; and

�b� depth�h�Q�� > 0:

Loosely, part (a) of the de®nition means that Q is a ``whole'', and part (b) means
that Q is ``complex''. More speci®cally, part (a) means that Q is not simply the
subtree of a larger, more complex object; rather it goes all the way to the top of the
tree describing the structure within it ± i.e., it is the whole. Part (b) means that Q
contains some regular structure, and is not simply a random juxtaposition of visual
items. Nevertheless, in keeping with the very ¯uid notion of object, this de®nition
does not say what structure Q must contain: any type of regularity will do.

Fig. 2c shown above gives some examples. In each of these con®gurations, the
minimal interpretation has a positive-depth term in its head, thus satisfying the
de®nition. More importantly, if any two of these objects are juxtaposed in one scene
at random, the minimal interpretation would then have f g in its head and the two
objects as subtrees (with probability arbitrarily close to one). On the other hand, if
two objects are ``glued together'' in some non-accidental way, e.g., two surfaces
placed perpendicularly, then the resulting scene would be cognized as a single object,
as predicted (cf. Leeuwenberg & Van der Helm, 1991).

The main argument in favor of this de®nition is prima facie. Objects are entities in
the scene within which there is a great deal of regular structure, and between which
there is little or none. When two objects act as if their structures and locations are
very coordinated, like two collinear lines or two inter-locked puzzle pieces, then they
become phenomenally one object.

Evidence from the literature supports the idea that items that appear to obey a
mutually constraining regularity are perceived as one object. Wagemans, Van Gool,
Swinnen and Van Horebeek (1993) and Feldman (1997a) found that dots tend to
cohere into a single unit the more regularity (symmetry, collinearity, etc.) is perceived
among them. Similarly, Pomerantz and Pristach (1989) argue that grouping is driven
by the extraction of ``emergent features'' from collections of items rather than by
simple aggregation. Working in the context of structural information theory, Van
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Lier, Van der Helm and Leeuwenberg (1994) emphasize the contrast between internal
structure and external structure, analogous to the dichotomy here between a given
node and its parent in the overall tree.

The proposed object concept dictates that the observer should divide up inferred
minimal parse trees at depth-0 nodes. The assumption is that the resulting compo-
nent subtrees ± objects ± will tend to exhibit the various extra-visual object properties
discussed by Spelke and others: persisting over time, mediating causality, and so
forth. It is extremely non-obvious that any consistent way of dividing up parse trees
will tend to create subtrees with such remarkable properties. The hypothesis that
there exists such a way, like the assumption that contours and surfaces exist, is a very
basic assumption that the observer must make in order to make semantic sense of the
visual world. This is the object hypothesis.

Axiom 2c. There exist objects (compare Gregory, 1970).

This hypothesis complements Axioms 2a and 2b in cashing out Axiom 2 (scene
primitives). Without this axiom, the object concept proposed here would still be well-
de®ned from a syntactic point of view, but it would be pointless semantically.

The proposed object de®nition describes ``perfect'' objects: all structure within the
object, no structure between objects. In practice one might imagine that two jux-
taposed objects, even if the juxtaposition was ``regular'', might still tend to seem like
two attached objects (rather than one object) if the structure within each object was
much greater than the structure joining them (see Van Lier et al., 1994). Formally,
this suggests that the degree of objecthood of a subtree might be related to the
difference between the depth of its head term and that of its head term's parent. This
notion is easy to formalize.

Proposal (degree-of-objecthood). For any tree Q whose head term is h�Q�, the
degree of subjective objecthood of Q will increase monotonically with the numeric
quantity

k�Q� � depth�h�Q�� ÿ depth�p�h�Q���:
We choose the di�erence here rather than some other contrast measure (e.g., the
ratio) because the two depths can be interpreted as dimensionalities of vector spaces
(see Feldman (1997c)), so their di�erence can also be interpreted as the dimension of
some space, 6 whereas the ratio is a meaningless quantity.

k�Q� is a measure of how much structure is interior to an object compared to how
much structure binds it to other components of the scene. The higher the k�Q� the
more the structure is inside the object, and hence the more phenomenally object-like
we expect Q to be. This proposal is speculative, and empirical data should be ad-
dressed to it; but Fig. 10 suggests that it is approximately right. The proposal also
explains the mixed intuition about, say, a nose on a face: a nose's high degree of

6 See Poston and Stewart (1978) for discussion of the meaning of such dimensional di�erences.
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Fig. 10. showing change in k�Q� with changing scene structure. Models are given in abbreviated notation,

with depth given in parentheses. For each model, k is the di�erence between its depth and that of its

parent. In (a) the two segments clearly form one object. In (b) there is more of a sense of two components,

but still one object. In (c) this sense diminishes as one part becomes more internally structured. In (d) there

is no structure binding the two parts at all (i.e., the depth of the head term is now zero) and the scene is

perceived as two objects.
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internal structure suggests that it is a separate object from the face, but its fairly
regular attachment to the face (perpendicular, coplanar, and dynamically tethered)
suggests that it is simply a part of a larger object (the head). A similar mixed case for
which the de®nition gives a reasonable answer is that of houses in a row (Fig. 11). If
each house is an internally unstructured con®guration, like a dot (perhaps as seen
from a distance), then the row becomes a phenomenal object. When some internal
structure within each house comes into view, while the regularity between houses
does not change, k for each house increases and the houses begin to be seen as
separate objects. Finally when only a small number of houses are visible, and the

Fig. 11. Zooming in on a row of houses. (a) Seen from a distance, internal details of each house are not

visible, while the collinearity in the entire row of houses is salient. Hence, the row is perceived as a single

object, of which the individual houses are parts. (b) At a closer viewing distance, when some internal

details of each house becomes visible (leading to higher k for each house) the houses begin to seem like

individual objects, though still hierarchically part of the row. (c) When only two houses are visible, each

with much internal detail visible, the regularity in the con®guration ceases to be represented, and each

house is a single object.
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collinearity between adjacent houses ceases to be perceptually represented, each
house becomes a perfectly coherent object unto itself.

Note that this proposal does not mean that there are no spatial relations between
objects. Rather it means that there are no non-accidental spatial relations between
objects. Parts of the scene bound by a non-accidental relationship will be cognized as
a single object. When two otherwise distinct objects move in tandem, like a horse and
rider, they tend to be regarded as a single object (albeit one with two well-de®ned
parts). Again the degree-of-objecthood proposal predicts that such an object will
seem relatively weak, and its constituent parts (the horse and rider) relatively strong
± which seems psychologically correct.

7. Conclusion

In Cognitive science, one learns to be suspicious of de®nitions. Too often they
stipulate that which was supposed to be explained, sweeping the subtleties of the
phenomenon under the rug. The object de®nition proposed here is not intended to
replace human intuitions; quite the contrary, it attempts to describe them, and hence
defers to them. Clearly, much remains to be worked out and speci®ed. Yet in order
to elevate objects above the level of ``I know one when I see one'', one needs to
commit to a formalism as a starting point for a more rigorous discussion.

The main goal of the object de®nition ± like MM theory in general ± is to render
human intuitions in mathematical form. The maximum-depth rule bears an ap-
pealing resemblance to the informal notion of ``inference to the best explanation'':
the minimal interpretation is the image description that explains the most of what
seems to need to be explained about the image. The ``object hypothesis'' amounts to
the belief that the best explanation of the image will sometimes tend to be com-
partmentalized into distinct coherent bundles. The proposed object de®nition simply
attaches a concrete meaning to this idea. One measure of the power of a theory is its
ability to solve pertinent problems that it was not speci®cally designed to solve. If the
object de®nition deriving from minimal model theory turns out to be useful, it tends
to lend credibility to the theory.
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