research


  

publications


  

classes


  

research opportunities

 

M a n i s h   S i n g h
A s s o c i a t e   P r o f e s s o r

Department of Psychology
Rutgers – New Brunswick campus

Member, Rutgers Center for Cognitive Science
Rutgers Perceptual Science Group

Email: m a n i s h <AT> r u c c s <DOT> r u t g e r s <DOT> e d u
Departmental address: 152 Frelinghuysen Road, Piscataway, New Jersey 08854


Ph.D., 1998: Department of Cognitive Sciences, University of California, Irvine

1998 - 2001: Post-doctoral fellow, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology


R e s e a r c h   I n t e r e s t s

Computational and psychophysical investigation of mid-level vision

Probabilistic computation and representation of geometric structure

Visual representation of shape

Visual interpolation and extrapolation of contour and surface geometry

Computation of layered surface structure under partial occlusion and transparency

Visual prediction of the physical behavior of objects


R e c e n t   P u b l i c a t i o n s

(Click here for downloadable papers.)

Cholewiak, S., Fleming, R. & Singh, M. (2013). Visual perception of the physical stability of asymmetric three-dimensional objects. Journal of Vision, 13(4):12, 1-13.

Kim, S.-H., Feldman, J., & Singh, M. (2013). Perceived causality can alter the perceived trajectory of apparent motion. Psychological Science, in press.

Singh, M. & Hoffman, D. (2013). Natural selection and shape perception. In: Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective. S. Dickinson & Z. Pizlo (Eds.). Springer Verlag.

Feldman, J., Singh, M., Briscoe, E., Froyen, V., Kim, S. & Wilder, J. (2013). An integrated Bayesian approach to shape representation and perceptual organization. In: Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective. S. Dickinson & Z. Pizlo (Eds.). Springer Verlag.

Singh, M. (2013). Transparency and translucency. In: Encyclopedia of Computer Vision. K. Ikeuchi (Ed.). Springer Verlag, in press.

Hoffman, D. & Singh, M. (2012). Computational Evolutionary Perception. Perception (Special Issue on the 30th anniversary of Marr's "Vision"), 41(9), 1073-1091.

Wagemans, J., Elder, J., Kubovy, M., Palmer, S., Peterson, M., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: Perceptual grouping and figure-ground organization. Psychological Bulletin, 38(6),1172-1217.

Singh, M. & Feldman, J. (2012). Principles of contour information: A response to Lim & Leek (2012). Psychological Review, 119(3), 678-683.

Kim, S.-H., Feldman, J., & Singh, M. (2012). Curved apparent motion induced by amodal completion. Attention, Perception, & Psychophysics, 74(2), 350-364.

Secord, A., Lu, C., Finkelstein, A., Singh, M. & Nealen, A. (2011). Perceptual models of viewpoint preference. ACM Transcations on Graphics, 30(5), 109:1-12.

Wilder, J., Feldman, J., & Singh, M. (2011). Superordinate shape classification using natural shape statistics. Cognition, 119(3), 325-340.

Barnett-Cowan, M., Fleming, R. W., Singh, M., & Buelthoff, H. H. (2011). Perceived object stability depends on multisensory estimates of gravity. PLoS ONE, 6(4), 1-5.

Juni, M., Singh, M., & Maloney, L. (2010). Robust visual estimation as source separation. Journal of Vision, 10(4):2, 1-20.

Froyen, V., Feldman, J., & Singh, M. (2010). A Bayesian framework for figure-ground interpretation. Advances in Neural Information Processing Systems, 23.