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Course Information: 

Course Number: The course is cross-listed under three designations: 

 

Cognitive Science Graduate Course 

Title: Seminar in Cognitive Science II: Computational Neuroscience 

Rutgers Course Number: 16:185:601 

Index Number: 11311 

 

Psychology Graduate Course 

Title: Advanced Studies in Psychology: Computational Neuroscience 

Rutgers Course Number:  16:830:504 

Index Number: 13678 

 

Cognitive Science Undergraduate Course 

Title: Advanced Topics II: Computational Neuroscience 

Rutgers Course Number: 01:185:412 

Index Number: 04462 

 

Date and Time:  Thursdays 10:00-12:30 

Location:  Psychology Department, Busch Campus Room 301. 

Prerequisite Skills:  Prior neurobiology coursework, facility with computer programming 

(Matlab preferred), basic statistics 

Enrollment: Undergraduate enrollment is by permission of the instructor only 

 

Instructor: 
Dr. John P. McGann 

Email:  john.mcgann@rutgers.edu 

Office:  Psych 308 (Busch Campus) 

Office Hours:  TBD 

 

Introduction and Goals for this Course: Neuroscience has a rich theoretical history, from 

Hodgkin and Huxley’s account of the action potential to Hebb’s learning rule to modern network 

simulations and coding models. The conceptual frameworks we use to interpret neural activity 

implicitly and explicitly guide our experimental designs and increasingly shape our data analysis 

and interpretations. The goal of this course is to provide an overview of modern theoretical 

neuroscience accompanied by hands-on training in related methods of analysis and simulation 

through demonstrations and individual in-class projects. This course will emphasize real-life 

challenges like framing of questions to be answered, scoping of simulations, and analysis and 

communication of results. Students are expected to be able to read sophisticated neuroscience 



texts independently so that class time may be reserved for discussion of the reading and in-class 

work on individual projects.  

 

Topics to be covered: 

 History, goals, and limits of theoretical neuroscience 

 Representations of information in the nervous system 

 Variance and “noise” 

 Time and timing 

 Neural plasticity: adaptive codes, learning & memory, physical substrates 

 Questions of scale: molecular, synaptic, and circuit-level models, connectomics 

 Degree of abstraction: how much detail do you really need? 

 Simulation vs analysis 

 Brains and statistics 

 

Readings:  Each week this course will include readings from the textbook and primary literature 

that relate to the subject for discussion.  The papers can be downloaded from the class Canvas 

site under the Resources tab. This course assumes you have done the reading before each class 

meeting, so that you can bring questions and be prepared for discussion.  You should read for 

both detail and understanding. 

 

Principal Textbook:  
Theoretical Neuroscience, by Dayan and Abbott (2005). This foundational text addresses 

most of the classic questions and approaches in computational neuroscience. We will not 

be using this textbook explicitly in class, but reading the relevant sections will provide 

valuable context for in class discussions. 

 

Supplementary Textbooks: 

MATLAB for Neuroscientists: A Introduction to Scientific Computing in MATLAB, by 

Pascal Wallisch, Lusignan, Benayoun, and Baker (2008). This text is just a useful guide 

to coding in Matlab with many helpful examples for beginner to intermediate 

programmers. 

 

From Computer to Brain: Foundations of Computational Neuroscience, by William 

Lytton (2002). This is an introductory text in computational neuroscience that frames 

many of the principal issues in plain language. It may be helpful for students with limited 

background in math. 

 

Primary Literature:  
Each module of the course will include some readings from the primary literature, some 

of which are relatively accessible and some of which are fairly technical. In class 

guidance will be provided to help you prioritize your reading effort. 

 

Canvas:  The course has a dedicated Canvas site at canvas.rutgers.edu.  All registered students 

should automatically be members of the site.  The site includes downloadable readings for the 

course, this syllabus, a code bank, a chat room, and a venue for announcements to the class.  This 

is the tool that will be used to email the entire class when necessary. 



 

Evaluation (tentative): We may adjust the evaluation expectations depending on the mix of 

students who enroll in the class, but this is the initial plan: 

 

Graduate enrollments: The course will include an individual project for each student, 

including 1) an introductory in-class presentation framing the scientific question to be 

answered by the student’s project, including a brief review of existing literature and an 

explanation of how theoretical methods will be used to explore the question (25% of 

course grade), 2) a final in-class presentation summarizing the outcome of the project 

(25%), and 3) a succinct final paper describing the project due on (25%). This work will 

be complemented by a take-home graduate-level conceptual exam (no computation) 

worth 25% of the course grade. 

 

Undergraduate enrollments: The course will include participation in a group project, 

including an in-class presentation framing the scientific question to be answered by the 

student’s project, including a brief review of existing literature and an explanation of how 

theoretical methods will be used to explore the question (20% of course grade) and final 

in-class presentation summarizing the outcome of the project (40%). This work will be 

complemented by a take-home undergraduate-level conceptual midterm exam (no 

computation) worth 15% of the course grade and a take-home undergraduate-level 

conceptual final exam worth 25% of the course grade. 

 

In-class Work: Each class will include time to actively work on your theoretical neuroscience 

project, so please expect to bring a computer to class. During this time, you will be coached by 

the Instructor and will be tasked with working together in small groups to share ideas and 

methods. 

 

Academic Integrity: All students are required to comply with the University’s Academic 

Integrity Policy, as presented at http://academicintegrity.rutgers.edu.   

 

Conduct:  Students are expected to pay attention in class.  Use of computers and other electronic 

devices for anything other than note-taking is distracting to fellow students and is not permitted.  

Should I perceive a student's behavior to be disruptive to fellow students in the class, I will ask 

the student to leave the classroom, and, if this occurs on a regular basis, I may judge the 

disruptive student to be unable to successfully complete the course with a passing grade.   

 

Special Circumstances for Students with Disabilities: If you receive special accommodations 

for exams, you must provide your official Letters of Accommodation to Professor McGann at 

least one week prior to the conceptual exam. You must ALSO make appropriate arrangements 

with the Office of Disability Services for them to proctor your exam at the same day and time as 

the rest of the class.  The ODS requires you to make these arrangements at least five business 

days ahead of each individual exam.  If you fail to make arrangements through ODS, you will 

not receive special accommodations and will be required to take the exam with the rest of the 

class. 

 

  



Course Schedule for Workshop in Computational Neuroscience 
  

Each Unit will take approximately two weeks of class time. The exact schedule of which 

material is covered when may vary slightly.  

 

NOTE: There will be no class on April 20. 

 

Unit 1 
What is theoretical neuroscience? 

 Introduction to the course 

 Theories of neural computation vs using computation to explore the brain 

 Historical overview of theoretical neuroscience (e.g. Hodgkin-Huxley, Rall, Marr, Hubel 

& Wiesel, Hebb, Hopfield) and related theories and metaphors (information theory, 

learning theory, signal detection theory, signal processing) 

 What theoretical neuroscience can and cannot do 

 Formulating tractable questions 

 Degree of abstraction: how much detail do you really need? 

 Action potentials and firing rates 

 Demonstration: Simulating and characterizing a spike train 

Readings 

 Marr, D. and Poggio, T. (1976) From understanding computation to understanding neural 

circuitry. MIT Artificial Intelligence Laboratory A.I. Memo 357. 

 Abbott, L.F. (2008) Theoretical neuroscience rising. Neuron 60:489-495. 

 Gordon, J. (2017) NIMH Director’s Letter: Computational Neuroscience: Deciphering 

the Complex Brain. 

(https://www.nimh.nih.gov/about/director/messages/2017/computationalneurosciencedeci

pheringthecomplexbrain.shtml) 

 Gerstner, W., Sprekeler, H., and Deco, G. (2012) Theory and simulation in neuroscience. 

Science 338:60-65. 

 Gallistel, C.R. (2017) The coding question. Trends in Cognitive Science 21:498-508. 

 Theoretical Neuroscience Chapter 1: Neural Encoding 1: Firing Rates and Spike 

Statistics 

 

Unit 2 
How to represent a neuron 

 Integrate and fire (Lapicque) model 

 Dendritic architecture, cable theory (Rall), and electrotonic structure 

 Compartmental modeling 

 Hodgkin-Huxley and conductance-based models, including conductance physiology 

 Demonstration: Simulating single neurons and characterizing their behavior  

Project work 

 Group discussion and refinement of individual project ideas 

 Scheduling of first talks 

Readings 



 Mainen, Z.F. and Sejnowski, T.J. (1996) Influence of dendritic structure on firing pattern 

in model neurons. Nature 382:363-6. 

 Izhikevich, E.M. (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 

14:1569-72. 

 Theoretical Neuroscience Chapter 5: Model neurons 1: Neuroelectronics 

 Theoretical Neuroscience Chapter 6: Model neurons 2: Conductances and morphology 

 

Unit 3 
Network architectures and neuronal interactions 

 Feedforward, lateral, and feedback connections 

 Excitation/inhibition vs depolarization/hyperpolarization 

 Divisive vs subtractive inhibition 

 Presynaptic and postsynaptic kinetics and variance 

 Axodendritic, axoaxonic, and presynaptic connectivity 

 Demonstration: Simulating simple circuits and characterizing their behavior  

Project work 

 Project introductory talks by students 

Readings 

 Theoretical Neuroscience Chapter 7: Network models  

 

Unit 4 
Representation of information in brain: single neurons 

 Introduction to information theory and Bayes rule 

 Encoders and decoders 

 Timing codes and (versus?) rate codes 

 Mutual information between time-varying vectors 

 Forward and reverse correlation to external stimuli 

 Multiplexing in single neurons 

 Demonstration: Reverse correlation analysis of neurons in simulated (“toy”) circuits  

Project work 

 Project updates and discussion 

Readings 

 Theoretical Neuroscience Chapter 2: Reverse correlation and visual receptive fields. 

 Theoretical Neuroscience Chapter 3: Neural decoding 

 Theoretical Neuroscience Chapter 4: Information Theory 

 Chapter 2 of Spikes: Exploring the Neural Code, by Bialek et al. 

 Rajan, K. and Bialek, W. (2013) Maximally informative “stimulus energies” in the 

analysis of neural responses to natural signals. PLoS One 8:e71959. 

 

Unit 5 
Representation of information in brain: network activity 

 Local vs distributed representations 

 Sparseness of coding and its quantification 

 Linear decoding 



 Network state analysis – state-space manifolds and Markov models 

 Multiplexing in networks 

 Demonstration: Analyzing and depicting network behavior  

Project work 

 Project updates and discussion  

Readings 

 Willmore, B. and Tolhurst, D.J. (2001) Characterizing the sparseness of neural codes. 

Network 12:255-70. 

 Tkacik, G., Marre, O., Amodei, D., Schneidman, E., and Bialek, W. (2014) Searching for 

collective behavior in a large network of sensory neurons. PLoS Comput Biol 

10:e1003408. 

 Osborne, L.C., Palmer, S.E., Lisberger, S.G., and Bialek, W. (2008) The neural basis for 

combinatorial coding in a cortical population response. J Neurosci 28:13522-31. 

 Stopfer, M., Jayaraman,V., and Laurent, G. (2003) Intensity versus identity coding in an 

olfactory system. Neuron 39:991-1004. 

 Mazzucato, L., Fontanini, A., and La Camera, G. (2015) Dynamics of multistable states 

during ongoing and evoked cortical activity. J Neurosci 35:8214-31. 

 

Unit 6 
Plasticity and learning, a.k.a. information storage 

 Content-addressable vs indexed memory 

 Reading vs. writing – is there a meta-signal? 

 Autoassociation and weight matrices 

 Supervised vs unsupervised learning 

 Error attribution and backpropagation 

 Neuronal plasticity vs. synaptic plasticity (activity and timing dependent) 

 Changing content vs changing code 

 Demonstration: Simulating circuit-level plasticity  

Project work 

 Project updates and discussion 

Readings 

 Theoretical Neuroscience Chapter 8: Plasticity and learning 

 Theoretical Neuroscience Chapter 9: Classical conditioning and Reinforcement Learning 

 Moran, A. and Katz, D.B. (2014) Sensory cortical population dynamics uniquely track 

behavior across learning and extinction. J Neurosci 34:1248-57. 

 Johansson, F., Hesslow, G., and Medina, J.F. (2016) Mechanisms for motor timing in the 

cerebellar cortex. Curr Opin Behav Sci 8:53-59. 

 

Unit 7 
Statistical learning & predictive coding 

 Brains as statistical learners 

 Predictive coding 

 Variance and “noise” 

 Expectations and timing 



 Demonstration: Simulating anticipatory responding 

Project work 

 Student final presentations about their projects 

Readings 

 Theoretical Neuroscience Chapter 10: Representational Learning 

 Shipp, S. (2016) Neural elements for predictive coding. Front Psychol 7:1792. 

 Palmer, S.E., Marre, O., Berry, M.J., and Bialek, W. (2015) Predictive information in a 

sensory population. PNAS 112:6908-13. 

 Zmarz, P. and Keller, G.B. (2016) Mismatch receptive fields in mouse visual cortex. 

Neuron 92:766-772 

 Yildiz, I.B., Mesgarani, N., and Deneve, S. (2016) Predictive ensemble decoding of 

acoustical features explains context-dependent receptive fields. J Neurosci 36:12338-

12350. 

 


