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Why are the batteries in the microwave?: 
Use of semantic information under uncertainty 
in a search task
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Abstract 

A major problem in human cognition is to understand how newly acquired information and long-standing beliefs 
about the environment combine to make decisions and plan behaviors. Over-dependence on long-standing beliefs 
may be a significant source of suboptimal decision-making in unusual circumstances. While the contribution of 
long-standing beliefs about the environment to search in real-world scenes is well-studied, less is known about how 
new evidence informs search decisions, and it is unclear whether the two sources of information are used together 
optimally to guide search. The present study expanded on the literature on semantic guidance in visual search by 
modeling a Bayesian ideal observer’s use of long-standing semantic beliefs and recent experience in an active search 
task. The ability to adjust expectations to the task environment was simulated using the Bayesian ideal observer, and 
subjects’ performance was compared to ideal observers that depended on prior knowledge and recent experience 
to varying degrees. Target locations were either congruent with scene semantics, incongruent with what would be 
expected from scene semantics, or random. Half of the subjects were able to learn to search for the target in incon-
gruent locations over repeated experimental sessions when it was optimal to do so. These results suggest that search-
ers can learn to prioritize recent experience over knowledge of scenes in a near-optimal fashion when it is beneficial 
to do so, as long as the evidence from recent experience was learnable.
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Significance statement
This study investigated how people use semantic knowl-
edge to search for common household objects that have 
been hidden in unusual places within a room. The task 
was constructed so that long-standing world knowledge 
of likely locations could be useful in navigating such a 
context, provided that people learn to rely on recent 
experience when longstanding beliefs lead to poor search 
outcomes. Results from the present study showed that it 
is possible to learn to use recent experience with objects 
being hidden in unusual places to search more effectively, 

but that the ability to do so is limited. A practical impli-
cation 1 of these findings is the possibility to differenti-
ate between deficits in long-term memory and episodic 
memory in older adults who have been diagnosed with 
dementia, as these can often be difficult to dissociate 
within the same task. By differentiating these two char-
acteristic memory deficits, clinicians may gain insight as 
to the severity of each deficit and provide a more targeted 
intervention that can help improve their patient’s liveli-
hood and quality of life.

Imagine this scenario: the income tax return deadline 
rapidly approaches, and you have been working night and 
day to meet it. You find yourself in desperate need of a 
cup of coffee, but your trusty coffee mug is nowhere to 
be seen. Where do you search for it? What if a thorough 
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search through all of the usual places—your desk, the 
sink, the cabinet—produces no results? Suppose you 
finally discover that, in your sleep-deprived state, you 
mistakenly tossed the mug in the trash can. Moreover, 
suppose this happens repeatedly. Would you learn that 
the location you once thought was least likely to con-
tain the coffee mug is now a more probable location that 
you should search in the future? When given enough 
evidence, can we learn new expectations about where 
objects are likely to be in a familiar environment, even 
when the evidence guides you to search in otherwise 
unlikely places?

The goal of the current study was to investigate 
whether prior knowledge of scene semantics and recent 
experience can be used optimally to guide search 
behavior. Search was carried out within computer-illus-
trated environments made to resemble a kitchen and a 
living room. The expected locations of targets (world 
knowledge) were determined empirically, and then 
search was tested when target location probabilities 
were manipulated to be either congruent or incongru-
ent with scene semantics. A condition in which target 
locations were selected randomly from a uniform dis-
tribution was also included. Human performance was 
compared to that of simulated ideal Bayesian observ-
ers that searched scenes using world knowledge, recent 
experience, or a combination thereof. In the active 
search task, points were awarded for successfully find-
ing target objects, and points earned by human observ-
ers were compared to the simulated performance of an 
ideal Bayesian observer.

Background
Scene semantics have been shown to influence gaze posi-
tion and search performance when searching real-world 
scenes (Castelhano and Henderson 2007, 2008; Hender-
son et al. 2009; Vo and Henderson 2010). Viewers tend to 
prioritize locations that are most likely to contain targets 
(Torralba et al. 2006). Search for targets in locations that 
are congruent with scene semantics is generally faster 
than search for targets in incongruent locations (Castel-
hano and Henderson 2007; Hillstrom et al. 2012; Holling-
worth 2009; Wolfe et al. 2011, 2010; Vo and Wolfe 2013a). 
Visual search is slower and less accurate when targets do 
not belong in the scene (e.g., a toaster in a playground; 
Henderson et al. 1999), or do not belong in a particular 
location (e.g., an airplane in the lower half of an image; 
Malcolm and Henderson 2009; Neider and Zelinsky 
2006), which further suggests that scene semantics play 
a role in visual search. Search is impaired when seman-
tic cues are removed by either altering (Vo and Wolfe 
2013b), or scrambling (Biederman et al. 1973; Wu et al. 
2014) the scene. In these studies, scene semantics are 

typically manipulated through violations of scene gram-
mar: the prior expectations about the possible relation-
ships between objects in a scene (Draschkow and Vo 
2017; Vo 2021). The manipulations can take the form of 
semantic violations, such as placing objects in the scene 
that are not typical of the scene category (e.g., a toaster in 
a playground; Henderson et al. 1999), or syntactic viola-
tions of physics (e.g., a toilet on the ceiling; Draschkow 
and Vo 2017; Vo 2021). Taken together, the evidence sug-
gests that prior knowledge in the form of semantic infor-
mation facilitates visual search in real-world scenes.

While prior knowledge for scenes clearly informs 
visual search, there is evidence that recent experience 
is also a factor in search decisions. Although search for 
a target in semantically incongruent locations improves 
with repeated trials, fixations to semantically congruent 
locations persist (Vo and Wolfe 2012), suggesting that 
semantic guidance lingers despite repeatedly finding tar-
gets in incongruent locations. Young adults appear to be 
more readily able to learn to search for targets in seman-
tically incongruent locations than older adults (Wynn 
et al. 2019), which suggests young adults are better able 
to use both information learned from recent experience 
and prior knowledge in visual search than their older 
counterparts, who rely more on prior knowledge. Visual 
search in abstract displays devoid of scene semantics 
has been found to be adaptable and sensitive to location 
probabilities learned from recent experience (Chun and 
Jiang 1998; Chun 2000; Vickery et  al. 2005; Wolfe et  al. 
2004). Not only do these contextual cueing effects extend 
to real-world scenes, but observers are able to leverage 
prior knowledge for scenes to facilitate search when tar-
get locations learned from recent experience were pre-
dictable (Brockmole and Henderson 2006a, b; Brockmole 
et  al. 2006; Brockmole and Vo 2010). When searching 
for embedded letter targets (“T” or “L”) in scene images, 
Brockmole and Vo (2010) found that search became sig-
nificantly more efficient over time when targets were pre-
dictably associated with an object in the scene (the target 
letter was always on a pillow). The learned association 
between target letters and pillows generalized to scenes 
in which the associated object (a pillow) was absent, 
but could be predicted to occur from the scene context 
(e.g., a bed with no pillow). However, subjects’ recall for 
the spatial locations of targets was biased to the spatial 
center of the associated object rather than the target’s 
exact location, suggesting that learning of target loca-
tions from recent experience was imprecise. While the 
studies reviewed above suggest that both scene semantics 
and recent experience inform search decisions, informa-
tion gained from recent experience may be less reliable, 
as evidenced by imprecision in spatial memory for target 
locations (Brockmole and Vo 2010) and the persistence 
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of semantic guidance when search performance would be 
better served by reliance on recent experience alone (Vo 
and Wolfe 2012). The current study attempts to deter-
mine whether information from prior knowledge and 
recent experience can be used optimally in visual search.

Search performance in different cognitive domains, 
such as search in memory, has been shown to be influ-
enced by prior semantic knowledge (Davelaar and Raaij-
makers 2012; Anderson 1990; Shiffrin and Steyvers 1997; 
Duffy et al. 2006; Steyvers et al. 2006; Steyvers and Grif-
fiths 2008; Xu and Griffiths 2010; Hemmer and Steyvers 
2009; Hemmer and Persaud 2014; Persaud and Hemmer 
2016). For example, Persaud and Hemmer (2016) found 
that performance in a task measuring color recall was 
biased by prior knowledge of color categories. Similarly, 
priors estimated using the subjective beliefs of subjects 
about a continuous variable (human height) predicted 
performance in a memory task better than priors con-
structed from the statistics of the environment (Hem-
mer et  al. 2015). The authors argued that the bias to 
rely on prior semantic knowledge was the better strat-
egy because semantic knowledge is stable (more reli-
able) than information gained from recent experience 
(Steyvers et al. 2006; Hemmer and Steyvers 2009; Hem-
mer and Persaud 2014). Prior knowledge based on geom-
etry or physical principles can also bias even lower level 
visuomotor behaviors, such as smooth pursuit eye move-
ments (Santos and Kowler 2017; Badler et al. 2010). The 
aforementioned studies applied Bayesian models to dem-
onstrate the influence of prior knowledge across a range 
of behaviors.

Bayesian frameworks provide useful computational 
tools that can be used to understand how decisions can 
be determined from prior knowledge combined with 
immediate evidence (Ma 2012; Beck et  al. 2012; Balci 
et  al. 2009; Kheifets and Gallistel 2012; Körding and 
Wolpert 2004; Todorov 2004; Trommershäuser et  al. 
2008; Gibson et al. 2013; Traxler 2014; Wang et al. 2018; 
McCauley et al. 1980; Zaki 2013). One advantage of using 
Bayesian models is that they can be used to determine 
possible sources of suboptimal behavior, such as use of an 
incorrect prior (Ma 2012; Beck et al. 2012), or a failure to 
encode learned probabilistic information with sufficient 
fidelity (Dasgupta et  al. 2018). Bayesian ideal observer 
models, which draw optimal inferences conditioned on 
both prior knowledge and current evidence, have been 
successfully applied in vision research to characterize 
object perception (Kersten et al. 2004), contour integra-
tion (Feldman 2001), and other perceptual processes (see 
Geisler 2011 for review). Ideal observer models allow 
researchers to determine optimal performance on a task 
using the information available; human performance can 
then be compared against ideal performance, provided 

that the relevant stimulus properties can be meas-
ured (Geisler 2011). While the performance of the ideal 
observer on a given task should exceed that of humans, 
similarity (if not equivalence) between ideal and human 
performance would suggest that humans make use of 
the same information in a comparable way to complete 
the task. In the current study, we expanded on the litera-
ture on semantic guidance in visual search by developing 
a Bayesian ideal observer model with varying depend-
ence on prior knowledge and recent experience. We then 
compared human performance to that of simulated ideal 
observers in a visual search task.

The work reviewed above shows that decisions during 
tasks such as search are strongly influenced by seman-
tic priors and that semantic priors may continue to be 
influential even when their contribution results in errors. 
The goal of the current study is to investigate whether 
searchers can learn to optimally negotiate between using 
semantic knowledge and recent experience to efficiently 
locate target objects in a visual search task.

Rationale of the present study
The present study investigated the trade-offs between 
prior knowledge and recent experience during an active 
visual search task that required searching for common 
objects located within computer-illustrated visual scenes. 
Search was active in that targets were not visible in the 
scene and thus was carried out by a series of mouse-
clicks to reveal the contents of the selected location.

Active search was examined under three conditions: 
(1) congruent, in which the target location was consist-
ent with the statistical properties of prior knowledge, 
(2) incongruent, in which that target location was deter-
mined by mathematical inversion of the probabilities 
derived from prior knowledge (i.e., the most probable 
location under prior knowledge became the least prob-
able location), and therefore, searchers must rely on 
recent experience to help guide their search, and (3) neu-
tral, in which the target locations were randomly selected 
from a uniform distribution. To determine whether prior 
knowledge and recent experience guide search optimally, 
we developed a Bayesian ideal observer model and simu-
lated performance in the active search task when target 
locations were learned from the environment perfectly. 
Agreement between simulated ideal search performance 
and human search performance would suggest that visual 
search is Bayesian in that it combines recent experience 
and prior knowledge optimally to guide search deci-
sions. The active search paradigm allowed us to develop 
a Bayesian ideal observer model that inferred target 
locations from prior knowledge and recent experience 
without the need to model other factors known to influ-
ence gaze behavior in visual search (e.g., target size and 
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eccentricity, Schomaker et  al. 2017; center bias, Tatler 
2007; etc.), or violate scene grammar in the display (Dra-
schkow and Vo 2017).

Two experiments were conducted. In Experiment 1, 
semantic priors were estimated empirically for targets in 
two pseudorealistic computer-illustrated scenes. Experi-
ment 1 was conducted to obtain precise estimates of 
prior expectations about target locations in the main 
search task, for which experimenter intuition alone 
would be insufficient (for further discussion, see Chun 
2000; Koehler and Eckstein 2017; Henderson and Hayes 
2017). Human ratings were used to estimate target loca-
tion probabilities, which were then used as the basis for 
target selection in Experiment 2, and constituted prior 
knowledge in the Bayesian ideal observer model.

Experiment 2 tested search. The same pseudorealistic 
computer-illustrated scenes shown in Experiment 1 were 
rendered to be interactive for search in Experiment 2. 
The target objects appeared in either likely locations that 
were sampled from a distribution based on prior knowl-
edge (derived from Experiment 1), unlikely locations that 
were sampled from a distribution that was mathemati-
cally derived through the inversion of the prior knowl-
edge (derived from Experiment 1), or random locations. 
The scenes were searched by mouse click, and points 
were awarded based on how quickly the target was found. 
Half of the subjects received feedback about the target’s 
location at the end of each trial; the remaining subjects 
received no feedback on the target’s location.

An ideal Bayesian observer was generated to represent 
the performance that would be obtained when scene 
semantics and recent experience guide search decisions 
optimally. Performance in the search task was compared 
to the performance of Bayesian ideal observers for which 
search decisions were guided by varying degrees of prior 
knowledge for scenes, recent experience, or a combina-
tion thereof. This allowed us to evaluate how well human 
searchers were able to learn to prioritize semantic or epi-
sodic search guidance in the appropriate context, and 
how this ability changed over time.

Experiment 1
In order to measure prior knowledge about target 
locations in the scenes we designed, Experiment 1 
estimated semantic priors for a set of potential tar-
gets placed within two scenes (a kitchen and a living 
room). Subjects rated the likelihood that each potential 
target would be found in each of the 12 possible loca-
tions within the rooms. Ratings were then used to com-
pute the sampling distributions for target locations to 
be used in Experiment 2 and to model the beliefs of a 
Bayesian ideal observer.

Experiment 1: Method
Subjects
One-hundred and fifty-three subjects were recruited 
from Amazon Mechanical Turk. Subjects were screened 
to have greater than or equal to 1000 approved and com-
pleted Mechanical Turk tasks, and had more than 95% of 
their previous tasks accepted. All subjects were located in 
the USA. Based on preliminary pilot data, the task was 
expected to take about 5 min. Subjects were compen-
sated $0.50 per task ($6.00/h).1 The study was approved 
by the Rutgers University Institutional Review Board and 
procedures were in accordance with the Declaration of 
Helsinki.

Materials
The experiment was conducted using the Qualtrics 
Research Suite (Qualtrics, Provo, UT). Drawings of 
two indoor scenes (800 × 600 pixels)—a kitchen scene 
(Fig.  1a) and a living room scene (Fig.  1b)—were dis-
played side-by-side. Each scene contained 6 potential tar-
get locations. Locations in the kitchen were a trash can, a 
microwave, an oven, a sink, cabinets, a table, and in the 
living room were a couch, a television, a table, a coat, a 
bookshelf, and a backpack. We queried eleven potential 
targets: a remote, a mug, sunglasses, a receipt, a wallet, 
lip balm, batteries, a phone, keys, aspirin, and a novel tar-
get labeled “blicket” (Kouider et al. 2006) (Fig. 1c). Poten-
tial targets were common household items that could 
easily be lost in a room, with the exception of the novel 
object “blicket”, which served as a validity check on the 
procedure and analyses in that subjects should not have 
prior knowledge for its likely or unlikely locations. Target 
images ranged from 48 to 50 pixels in width and 30–75 
pixels in height. Scenes and object images were drawn 
using Adobe Illustrator vector graphics software.

Procedure
For each item, subjects were asked, “Think of the aver-
age person. They want to find the [x]. How strongly do 
you think they will find the [x] in each of the following 
locations?” (1 = not strongly, 7 = very strongly), where 
[x] was one of the targets (Fig. 1c). An image of the tar-
get was shown below the written prompt, along with 
images of the scenes as a reference (Fig.  1a, b). Ratings 
were provided via a 7-point Likert slider, anchored on 1 
= not strongly and 7 = very strongly. The slider default 
was set at 1. For each target, subjects rated all 12 loca-
tions separately. Target presentation order was rand-
omized. On average, the survey was completed in 7.70 
min ( median = 6.07 min).

1 Data collection took place in 2015.
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Experiment 1: Results
Likert ratings Targets were rated more likely to be located 
in the living room ( M = 3.55, SD = 1.21) than in the 
kitchen ( M = 2.25, SD = 1.25). Across targets, the liv-
ing room table was rated highest on average ( M = 4.51, 
SD = 1.81), and the trash can was rated the lowest ( M = 
1.97, SD = 1.01). Location ratings depended on the target 
(see Fig. 2). The mug in the cabinet received the highest 
average rating ( M = 6.28, SD = 1.25), and the phone in 
the oven received the lowest average rating ( M = 1.33, 
SD = 1.02). Note that for a novel target (the blicket), rat-
ings were approximately uniform.

Construction of target sampling distributions To con-
struct the congruent sampling distribution, the probabil-
ity of each target, t, appearing in each queried location, l, 
p̂t,l  was estimated from subject’s ratings using multino-
mial logistic regression:

(1)p̂t,l =
eL̄t ,l

∑
l′ e

L̄t ,l′

where L̄t,l is the Likert score averaged over the 153 sub-
jects for a target t occurring in location l. The prob-
abilities obtained using Eq.  1 constituted the sampling 
distribution for semantically congruent target locations 
in Experiment 2.

The semantically incongruent target sampling distribu-
tion was constructed through mathematical inversion as 
follows:

where the negative of the average Likert score for target 
t occurring in location l ( −L̄t,l ) was used to invert proba-
bilities. The probabilities obtained from Eq. 2 constituted 
the sampling distribution for semantically incongruent 
target locations in Experiment 2.

Resulting target sampling distributions Likert ratings 
were transformed into probabilities for each target indi-
vidually (see Figs.  3, 4) using Eqs.  1 and 2. The target-
location probabilities served as the basis for selecting 

(2)p̂t,l =
e−L̄t ,l

∑
l′ e

−L̄t ,l′

Fig. 1 The displays used in Experiments 1 and 2. a A kitchen scene including a table, a sink, an oven, a microwave, a trash can, and cabinets. b A 
living room scene including a couch, a table, a television, a bookshelf, a coat, and a backpack. In Experiment 2 only, each searchable location was 
surrounded by a red glow until the location was searched (as shown in a and b). c 11 targets were rated in Experiment 1: aspirin, batteries, keys, lip 
balm, a mug, a phone, a receipt, a remote, sunglasses, a wallet, and a novel target: blicket
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targets to use in the search task and constituted the sam-
pling distribution for the selected targets.

Experiment 1: Discussion
Experiment 1 estimated the prior beliefs about the prob-
ability that a given location would contain the target. 
We found that all targets (except for the novel “blicket”) 
showed non-uniform expectancies of likely locations. 
The distributions were not symmetric in that the seman-
tically incongruent distribution (Fig.  4) was flatter than 
the semantically congruent distribution (Fig. 3).

Two targets had a strong bias for one location (the 
mug and the aspirin in the cabinets) while the other tar-
gets, with the exception of the novel target, were biased 
toward multiple locations. Only three of the 11 targets 
were chosen to examine learning for each target under 
different congruency conditions over several trials, with-
out subjects becoming fatigued. The three targets were 

selected for the search task (Experiment 2) based on their 
location probabilities: the mug, batteries, and keys. The 
keys and the batteries were selected because they were 
rated as likely to be found in different locations (e.g., 
keys in the coat or on the table, batteries in the televi-
sion; see Fig. 3), and were rated as unlikely to be found 
in the same locations (e.g., neither keys or batteries were 
likely to be found in the oven or microwave; see Fig. 4). 
The mug was chosen because it was rated as highly likely 
to be found in a single location (the cabinet, see Fig. 3), 
which suggests that prior expectations for the location 
of mugs were strongly biased toward that location. We 
limited the number of targets to these three in order to 
compare search performance for targets with dissimilar 
sampling distributions with enough observations to do so 
effectively.

These measures directly quantify prior knowledge for 
target locations in the stimuli, and thereby allowed us to 

Fig. 2 Mean likert ratings for experiment 1. Error bars represent one standard error of the mean ( N = 153)
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implement a Bayesian ideal observer model for compari-
son against human search performance.

Experiment 2
The goal of the search task (Experiment 2) was to deter-
mine whether semantic and episodic information (recent 
experience with target locations) optimally guide search 
decisions. Target locations were selected to be either (1) 
congruent with scene semantics, from the congruent 
sampling distribution derived in Experiment 1 (semanti-
cally congruent), (2) incongruent with scene semantics, 
from the incongruent sampling distribution computed in 
Experiment 1 (semantically incongruent), or (3) random. 
We conducted a power analysis through G*Power 3.1.9.2 
(Faul et al. 2007) to determine our sample size. With an 
alpha of .05, the power analysis revealed that a sample of 
10 subjects would allow us to achieve a projected power 
of .95 and a projected effect size of .25 for a three-way 
repeated measures analysis of variance to compare sub-
jects’ search performance on the factors: target (three 
levels), congruence (three levels), and session number 
(five levels).

Experiment 2: Method
Subjects
Ten subjects completed the experiment. Data from one 
additional subject was collected but not analyzed because 
the instructions were misinterpreted. All subjects had 
normal or corrected-to-normal vision. Subjects were 
paid $10/h. The study was approved by the Rutgers Uni-
versity Institutional Review Board and was conducted in 
accordance with the Declaration of Helsinki.

Apparatus
Data was collected on a Dell Optiplex 755 with a 21.5” 
Dell SX2210Tb monitor (60 Hz refresh rate) using 1920 
× 1080 desktop resolution. The experiment was writ-
ten in HTML, CSS, and JavaScript using jsPsych (de 
Leeuw 2015), KineticJS version 5.1.0 (Rowell et al. 2012), 
and jQuery version 1.11.1 (jQuery Foundation, Inc.). 
The experiment was presented in a maximized Google 
Chrome browser window. Viewing distance was what-
ever felt most comfortable for the subject, which ranged 
from approximately 20-24”.

Stimuli
Stimuli for the search task were the same two room 
scenes used in Experiment 1 (Fig. 1a, b). Three displays 
were constructed using Adobe Illustrator and Adobe 
Photoshop, and were rendered as interactive scenes for 
the search task: a kitchen scene (Fig.  1a), a living room 
scene (Fig.  1b), and a map (Fig.  5b, c). Six searchable 
locations in each room were surrounded by a red glow 

Fig. 3 Heatmap displaying the empirically estimated probability 
of each target (11 targets, y-axis) occurring in each location 
(12 locations, x-axis) in the kitchen and living room scenes. The 
probabilities are congruent with the semantics of the scene

Fig. 4 Heatmap displaying the calculated probability of each target 
(11 targets, y-axis) occurring in each location (12 locations, x-axis) in 
the kitchen and living room scenes. The probabilities are incongruent 
with the semantics of the scene. Note that the scale here differs from 
the congruent probabilities show in Fig. 3 (the maximum probability 
value is lower)
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(which can be seen in 1a, b) until searched. An image 
of the target (48-75 pixels wide and 48-93 pixels high) 
appeared on each trial above the display and alongside 
the task instructions. A simple “map” consisted of an 800 
× 600 drawing with three grey, equally spaced squares 
(87 × 84), a red “ × ” (82 × 84) to mark the current loca-
tion on the map, and the text “Click a room”. The outer-
most squares on the map were labeled with room names 
(right: “Kitchen”, left: “Living Room”) and could be used 
to switch rooms via mouse click.

The display screen additionally showed the trial num-
ber, the subject’s current trial score (e.g., “Current reward 
for finding the [target]: 22 points”), the cumulative score 
for the block (“Accumulated points”), a button to access 
the map, the 800 × 600 region where the map and scenes 
were displayed, and a small image of the target. A 500 
pixel-wide timer bar indicated the time (and possible 
points) remaining in the trial. The timer bar and the 
maximum possible score were updated every second to 
reflect the time remaining in the trial. Below the score, 
a grey button labeled “Go To Map” allowed subjects to 
access the map.

Design
The levels of semantic congruence were (1) Semanti-
cally congruent: target probabilities were congruent with 
the semantics of the scene, selected using the congru-
ent sampling distribution obtained in Experiment 1 (see 
Eq. 1), (2) random: target location probabilities were ran-
dom; and (3) semantically incongruent: target location 

probabilities were selected using the incongruent sam-
pling distribution derived from the data in Experiment 1 
(Eq. 2), and thus target locations were incongruent with 
the scene semantics. The congruence manipulation was 
implemented via experimental blocks. In each block, 
rooms were searched for three targets: a mug, batteries, 
and keys (Fig. 1c). There was one search target per trial 
(10 trials/target/block).

Procedure
Order of testing Each experimental session (approxi-
mately 45 min) consisted of three blocks of 30 trials (10 
trials per target), one block for each level of semantic 
congruence. Subjects were tested for 5 sessions, except 
for one subject who was tested for only 4 sessions. 
Each session took place on a separate day. The order of 
blocks was pseudorandomized such that no two subjects 
received the same congruence condition order across 
sessions, and no subject received the same block order 
across sessions. Within a block, targets were selected 
at random. Each of the three targets appeared 10 times 
without replacement in a 30 trial block.

Instructions Before the beginning of testing, subjects 
were told that they would be searching two computer-
illustrated rooms for a target. They were given a list of 
searchable locations within each room. Subjects were 
informed that they would earn points by finding the tar-
get, and that they would earn more points for finding the 
target quickly.

Fig. 5 Schematic of the trial procedure
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Familiarization Each block was preceded by 12 famil-
iarization trials to inform subjects about the searchable 
locations within each of the two scenes. In the famil-
iarization trials, each room scene was displayed one at a 
time, in randomized order. In each scene, the six searcha-
ble locations were outlined with a red glow. Subjects were 
provided a label for one of the locations and instructed to 
click on it (e.g., “Click on the microwave”). Upon clicking 
a location, a sound played (“cha-ching” if they correctly 
clicked on the instructed location or “splat” for an incor-
rect click). Feedback text in 30 pt red font (“Correct!” or 
“Incorrect!”) was overlaid on the top-center of the scene 
for 900 ms. The trial persisted until the correct location 
was clicked, at which point there was a 250 ms inter-
trial interval and subsequently the next familiarization 
trial was displayed. Familiarization trial order was ran-
domized without replacement. Once all six locations in 
the first scene were correctly identified, the same proce-
dure was repeated for the second scene.

Search task Before each experimental block, a fictitious 
street address with a randomly generated house num-
ber was displayed and subjects were asked to search for 
items within the house. The purpose of the address was 
to produce the impression that subjects were searching in 
a new house in each block of trials. The address persisted 
until the subject pressed a key to begin the block.

A trial proceeded as follows (see Fig. 5). First, a screen 
displayed the current trial number and instructed the 
subject to find the displayed target (Fig. 5a). This screen 
remained until the space bar was pressed, which started 
the trial. A timer recorded the duration of the trial.

To initiate search, subjects first used the map to select 
a room (Fig. 5b), which caused the symbol (x) on the map 
to be displaced to the center of the chosen room over a 
period of 1000 ms (Fig. 5c). Subjects were able to switch 
between rooms at any time by clicking on a “Go to Map” 
button above the display region. Within a room, subjects 
could click on one of the searchable locations designated 
by the red glow (Fig.  5d). Upon clicking a location to 
search, an animation briefly (2000 ms) zoomed in on the 
chosen location (150% scale) and then zoomed out to the 
full scale of the room (Fig.  5e), during which time sub-
jects were unable to act. Following the search animation, 
audio and text feedback about the outcome of the search 
were provided simultaneously (Fig. 5f ): auditory feedback 
was the same as in the familiarization task, and text feed-
back was overlaid in 30 pt red font (“Nothing here.” or 
“Found!”) for 900 ms. After searching a location, the red 
glow surrounding the location disappeared, and subjects 
could no longer interact with the location. If the target 
was in the chosen location, a “cha-ching” sound played, 
the message “Found!” (900 ms) was displayed, and the 
trial terminated. A screen then appeared indicating that 

the target was found, and displayed an image of the tar-
get (Fig. 5g). Subjects then moved to the next trial. Oth-
erwise, a “splat” sound played, and the message “Nothing 
here” (900 ms) was displayed, after which they could con-
tinue searching. The trial persisted until either the target 
was found or 30 seconds elapsed. If the target was not 
found within 30 seconds, a screen appeared indicating 
that they did not find the target, along with an image of 
the target (Fig. 5h).

Point system To measure search performance, points 
were awarded equal to the seconds remaining in the trial 
at the time that the target was found. Delays associated 
with selecting a room to search in (1000 ms) and search-
ing a location within a room (2000 ms) cost subjects 1 
and 2 points, respectively. This meant that a maximum of 
27 points could be earned in a trial if the target was found 
immediately. Points awarded were the inverse of reaction 
time (e.g., 27 points earned corresponded to a 3 second 
search). If the target was not found, zero points were 
awarded. Points awarded on each trial were added to a 
cumulative score over the course of a block as motivation 
for subjects, but did not carry over to subsequent blocks.

Feedback Half of the subjects received feedback regard-
ing the actual location of the target at the end of a trial 
whether the target was found during the trial or not 
(Fig. 5h). The other 5 subjects were not informed of the 
target’s actual location after each trial (Fig. 5g).

Analysis
There were a total of 450 trials per subject (10 trials per 
target × 3 targets per block × 3 blocks per session × 5 ses-
sions per subject) for 9 subjects (4050 trials), and 360 
trials for one subject who completed only 4 experimen-
tal sessions, yielding a total of 4410 trials across sub-
jects. Sixteen trials were excluded from analysis due to 
a browser rendering issue during data collection. Data 
from the remaining 4394 trials were analyzed.

Analysis of search performance Search performance 
was measured in two ways: points earned and reaction 
time. Both measures were analyzed using a mixed analy-
sis of variance. There were three within-subjects factors: 
(1) the semantic congruence of the environment (seman-
tically congruent, random, or semantically incongruent), 
(2) the experimental session number (1–5) to evalu-
ate learning, and (3) the target (mug, batteries, or keys). 
Whether or not the subject received feedback at the end 
of each trial was included as a between-subjects factor.

Experiment 2: Ideal observer model and simulations
We developed a Bayesian model to predict the behavior 
of an ideal observer conditioned on prior knowledge and 
recent experience.
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Ideal observer model
An ideal observer’s belief that a target t would be found in 
a location l during search i, based on the searcher’s prior 
knowledge w and recent experience r, can be expressed 
using Bayes rule as follows:

where θt,l represents the searcher’s belief that target t is in 
location l, r represents the searcher’s recent experience, 
and w represents the searcher’s prior expectations based 
on general world knowledge. Note that before the first 
search event takes place, θt,l is determined by w.

To model an ideal observer’s beliefs, we treated each 
search event as a Bernoulli trial, where the outcome is 
either a success or a failure. Prior beliefs derived from 
knowledge about scenes were represented by a Beta dis-
tribution because it is well-suited to represent binary-
event probabilities (Kruschke 2014). We estimated the 
expected value, p̂t,l , of the Beta distribution representing 
prior knowledge about scene semantics using the Likert 
ratings obtained in Experiment 1 as follows:

where L̄t,l is the Likert score averaged over raters for a 
target t occurring in location l, and 7 is the maximum 
value on the Likert scale. To obtain a probability esti-
mate, we divided L̄t,l by 7, the maximum value of the Lik-
ert scale.

We obtained the Beta distribution shape parameter αt,l , 
the observed number of successful searches for the target 
t in location l, and the scale parameter βt,l , the number 
of times the target t was not found when location l was 
searched, by multiplying the expected value of each prior 

(3)P(θt,l |r,w) =
P(r|θt,l)P(θt,l |w)∑
i,j P(r|θti ,lj )P(θti ,lj |w)

(4)p̂t,l =
L̄t,l

7

distribution ( p̂t,l ) by the total number of observations, s, 
as follows (Eq. 5)

where θt,l  represents the event that the target is found 
(Ferrari and Cribari-Neto 2004). Because s is the total 
number of observations, it determines how heavily the 
prior p̂t,l  influences search behavior, and therefore s 
determines whether the searcher relies more on prior 
knowledge or on information gained from recent experi-
ence. We refer to s in the simulations as prior strength.

Simulations
We used the ideal observer model to predict optimal 
search performance for the target objects. The simulation 
(1) determined the behavior of an ideal observer for the 
task, and (2) predicted behavior as a function of different 
levels of the searcher’s dependence on world knowledge 
or recent experience (see appendix for expanded simula-
tion methods).

Three levels of semantic congruence were tested: (1) 
Semantically congruent: target probabilities were congru-
ent with the semantics of the scene, selected using the 
congruent sampling distribution obtained in Experiment 
1 (see Eq.  1), (2) random: target location probabilities 
were random; and (3) semantically incongruent: target 
location probabilities were selected using the incon-
gruent sampling distribution derived from the data in 
Experiment 1 (Eq.  2). The three levels of semantic con-
gruence, the sampling distributions for the three tar-
gets (as found in Experiment 1), and the target location 
sampling method were all identical to those used in the 
search task.

To compare performance of the simulated searcher 
against humans who have physical limitations (e.g., the 

(5)

P(θt,l |r,w) = �iP(t
i
f |θt,l)P(θt,l |αt,l ,βt,l)

= �iP(t
i
f |θt,l)P(θt,l |p̂t,l , s)

Fig. 6 Violin plots showing showing points earned by the ideal observer for different levels of prior strength (columns), as a function of semantic 
congruence. Low values for prior strength simulated a strong reliance on recent experience, while high values simulated a strong reliance on prior 
beliefs. Each violin plot corresponds to N = 1500 simulated trials. White circles indicate the mean and error bars represent ±1 standard deviation
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need to move a mouse), costs associated with search 
were doubled: selecting a room to search deducted the 
simulated searcher’s score by 2 points (vs. 1 for humans), 
and searching a location resulted in a 4 point deduction 
(vs. 2 for humans). Six different ideal observers were 
tested, varying in their dependence on prior knowledge. 
The dependence of the simulated searcher’s beliefs on 
prior knowledge was termed prior strength. Low values 
for prior strength simulated a strong reliance on recent 
experience, while high values simulated a strong reliance 
on prior beliefs.

Simulation performance was assessed via the points 
earned in the semantically incongruent condition, in 
which targets were placed in the least likely locations 
under prior knowledge guided by scene semantics. We 
simulated 500 trials for each of the three targets in each 
congruence condition (semantically congruent, ran-
dom, semantically incongruent), and each prior strength 
value (1, 30, 60, 90, 150, 300) resulting in 27,000 total 
simulated trials. Results of the simulation showed that 
simulated searchers successfully prioritized information 
from recent experience over prior knowledge when prior 
strength was below 60 (Fig. 6).

Considering performance for each target separately, 
simulated searchers learned to search successfully for all 
targets except the mug (Fig.  7), suggesting preliminarily 

that statistical learning of the incongruent target loca-
tions for the mug was not possible.

These simulations predicted the ideal search perfor-
mance for the three targets chosen for the active search 
task under varying degrees of reliance on world knowl-
edge and recent experience, as determined by prior 
strength (s). Because the ideal observer performed simi-
larly for prior strength values over 60 when target loca-
tions were incongruent with scene semantics (per Fig. 6), 
we chose to compare human performance in the search 

Fig. 7 Violin plots showing points earned by the ideal observer for 3 targets (rows) for different levels of prior strength (columns), as a function of 
semantic congruence. Low values for prior strength simulated a strong reliance on recent experience, while high values simulated a strong reliance 
on prior beliefs. Each violin plot corresponds to N = 500 simulated trials. White circles indicate the mean and error bars represent ±1 standard 
deviation

Fig. 8 Violin plot illustrating points earned per experimental testing 
session ( NSession1 = 892, NSession2 = 900, NSession 3 = 898, NSession4 = 
895, NSession5 = 809). White circles indicate the mean. Error bars show 
±1 standard deviation
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task to the simulated searcher’s performance using prior 
strength values of 1 (driven by recent experience), 60 
(informed by both prior knowledge and recent experi-
ence), and 300 (driven by world knowledge).

Experiment 2: Results
Search performance
Mean reaction time was analyzed using a mixed ANOVA 
with repeated measures on semantic congruence, session, 
and target and feedback as a between subjects measure. 
There was no effect of feedback, F(1,7) = 1.863, p = .215, 
η2 = .210, on participants’ reaction time and so data was 
collapsed across feedback conditions (Fig. 8).

There were main effects of session, F(4,32) = 5.769, p = 
.001, η2 = .419, and congruence, F(2, 16) = 17.665, p < 
.001, η2 = .688. Pairwise comparisons with Bonferroni 
corrections indicate that mean reaction time from ses-
sion 1 was significantly different from sessions 2 and 5. 
Specifically, reaction time in session 1 was significantly 

slower than sessions 2, p = .011, and 5, p = .005. All 
other comparisons were insignificant. For semantic con-
gruence, participants were quicker in the semantically 

Fig. 9 Violin plots indicating reaction time in each semantic congruence condition (left, NIncongruent = 1467, NRandom = 1464, NCongruent = 1463), 
and additionally for each experimental session (right, each violin plot is based on between 269 and 300 observations). White circles represent the 
mean and error bars represent ±1 standard deviation

Fig. 10 Violin plots indicating reaction time for each target in each semantic congruence condition (left, each violin plot is based on between 
487 and 490 observations), and additionally for each session (right, each violin plot is based on between 89 and 100 observations). White circles 
represent the mean and error bars represent ±1 standard deviation

Fig. 11 Violin plot illustrating points earned per experimental testing 
session ( NSession1 = 892, NSession2 = 900, NSession 3 = 898, NSession4 = 
895, NSession5 = 809). White circles indicate the mean and error bars 
represent ±1 standard deviation



Page 13 of 22Rehrig et al. Cogn. Research            (2021) 6:32  

congruent condition than the other two congruency con-
ditions, ps < .006 (Fig. 9).

A significant interaction between congruence and 
target was also found, F(4,32) = 22.391, p < .001, η2 = 
.737. Reaction time was higher when participants were 
searching for the mug in the semantically incongruent 
condition ( M = 20791.50 ms, SE = 672.67 ms) than the 
batteries ( M = 17384.59 ms, SE = 537.73 ms) and the 
keys ( M = 16724.22 ms, SE = 812.18 ms), but lower in 
the semantically congruent condition ( M = 13396.55 
ms, SE = 967.58 ms) in comparison to the batteries 
( M = 17821.19 ms, SE = 661.62 ms) and the keys ( M = 
16359.11 ms, SE = 917.67 ms). There were no other sig-
nificant interactions (Fig. 10).

Points earned in each trial was used to compare the 
performance of human searchers to that of the ideal 
observer. The average points per subject for all trials in 
each block were analyzed using a mixed ANOVA with 
repeated measures on semantic congruence, session, and 

target and feedback as a between subjects measure. The 
ANOVA revealed no effect of feedback F(1,  7) = 2.067, 
p = .194, η2 = .023, therefore, feedback was not included 
as a factor in subsequent analyses (Fig. 11).

A three-way repeated measures ANOVA revealed a 
main effect of session, F(4,32) = 5.528, p = .008, η2 = 
.409, and congruence level, F(2,16) = 18.197, p = .001, 
η2 = .695. On average, scores increased over sessions 
(Fig.  7). Pairwise comparison using Bonferroni correc-
tion revealed significantly higher scores by the fifth ses-
sion relative to the first, p = .003, and higher scores by 
the second session relative to the first, p = .014. Other 
pairwise contrasts were not significant (Fig. 12).

Scores were higher in the semantically congruent con-
dition than in both the incongruent, p = .002, and the 
random condition, p = .006; (Fig. 12). There was no dif-
ference between the semantically incongruent condi-
tion and random condition ( p = .40). There was no main 

Fig. 12 Violin plots indicating points earned in each semantic congruence condition (left, NIncongruent = 1467, NRandom = 1464, NCongruent = 1463), 
and additionally for each experimental session (right, each violin plot is based on between 269 and 300 observations). White circles represent the 
mean and error bars represent ±1 standard deviation

Fig. 13 Violin plots indicating points earned for each target in each semantic congruence condition (left, each violin plot is based on between 
487 and 490 observations), and additionally for each session (right, each violin plot is based on between 89 and 100 observations). White circles 
represent the mean and error bars represent ±1 standard deviation
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effect of target on overall points accrued, F(2,16) = 2.471, 
p = .134, η2 = .236 (Fig. 13).

There was a significant interaction between target and 
congruence level, F(4,32) = 22.596, p < .01, η2 = .739, 
suggesting that there was a significant effect of the tar-
get on the ability to learn incongruent target locations as 
predicted by the simulation. Namely, searchers would be 
less able to learn to search successfully in the semanti-
cally incongruent condition when searching for the mug 
than for the other targets, given that the ideal observer 
was unable to learn the mug’s incongruent locations. 
The results for human searchers supported this predic-
tion (see Fig.  12). When searching for the mug, scores 
were highest in the semantically congruent condition 
( Mmug = 17.659, SEmug = .943, Nmug = 393) and lowest 
in the incongruent condition ( Mmug = 10.416, SEmug = 
.623, Nmug = 396), indicating difficulty when learning to 
search for the mug. In contrast, learning to search for the 
batteries or the keys was tractable. Scores for the batter-
ies and keys were similar in the semantically congruent 
( Mbatteries = 13.339, SEbatteries = .630, Nbatteries = 418; 
Mkeys = 14.637, SEkeys = .950, Nkeys = 408) and incon-
gruent condition ( Mbatteries = 13.772, SEbatteries = .526, 
Nbatteries = 416; Mkeys = 14.436, SEkeys = .776, Nkeys = 
410), and lowest in the random condition ( Mbatteries = 
11.634, SEbatteries = .614, Nbatteries = 404; Mkeys = 11.034, 
SEkeys = .585, Nkeys = 401; see Fig.   13). There was no 
interaction between session number and either the con-
gruence level, F(8,64) = .244, p = .98, η2 = .030, or the 
target, F(8,64) = .364, p = .814, η2 = .044.

Because points decreased as time elapsed in a trial, 
reaction time and points earned were strongly correlated 
with one another (Pearson’s r(4392) = −0.99, p < .0001). 
To compare subjects’ search performance with the simu-
lated ideal observer, for which response times were not 
available, we elected to compare points earned by human 
searchers to that of the simulated searchers under three 
levels of prior strength that predicted different search 
performance in the simulations: 1, 60, and 300.

Comparison to simulations
To explore how well humans searched by compar-
ing their performance to the simulations, we compared 
points earned by the human searchers in each experi-
mental block with the ideal observer’s performance at 
prior strength values of 1, 60, and 300 (selected based 
on Fig. 6). Experimental blocks in which target locations 
were random were excluded from analysis in order to 
limit the number of comparisons to those that would be 
most informative and interpretable. We conducted two-
tailed unpaired Bayesian t-tests using the ‘BayesFactor‘ 

package in R (Morey and Rouder 2011) to compute Bayes 
factors that weigh evidence for the null ( H0 : no differ-
ence between sample means) against the alternative 
hypothesis ( H1 : sample means are different; Rouder et al. 
2009). Evidence in favor of the null ( BF01 ) was calculated 
by inverting the default Bayes factors ( BF10 ) that assess 
evidence for the alternative hypothesis against the null 
((H1
H0

 ) −1 = H0
H1

 )—in this case, BF10 captures similarity to 
the ideal observer. For the current analysis, Bayes factors 
above 1 were considered to support the null hypothesis, 
and the magnitude of the ratio indicated the strength of 
the evidence.

For each subject ( n = 10 ), each congruence block 
( n = 2 ) in each session ( n = 5 for all subjects but one) 
was compared to aggregated data from the simulations. 
Because there were 1500 simulated trials for each level 
of prior strength and congruence condition, simulated 
data were averaged over bins of 50 trials, resulting in 30 
data points (means) for each level of prior strength (1, 60, 
and 300) and semantic congruence condition (congruent 
or incongruent) for comparison (n = 6 samples). There 
were 588 t-tests in total. The number of tests that favor 
the null in each condition are reported.2

Aggregated performance for ideal observers in the 
congruent condition was approximately identical for all 
levels of prior strength, therefore for the congruent con-
dition, we report only comparisons to the performance 
of the simulated searcher with the lowest prior strength 
( s = 1).

Congruent human performance. For overall subject 
performance, a total of 23 Bayes factors (47%) exceeded 
1, and the average Bayes factor was 2.72 (SD = 0.86), sug-
gesting the overall performance for approximately half of 
subjects was comparable to the ideal observers that relied 

Fig. 14 Violin plots showing Bayes factors for Bayesian t-tests 
comparing points earned by subjects in the incongruent search 
conditions over experimental sessions (y-axis) to points earned 
by ideal observers that used recent experience to search in the 
incongruent condition ( s = 1). White circles indicate the mean. Error 
bars represent ±1 standard deviation

2 All comparisons are available on the OSF.
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on recent experience exclusively ( s = 1) in the congru-
ent condition. However, the number of Bayes factors that 
exceeded 1 was higher ( n = 34, 69%) when human data 
from the congruent condition was compared to the ideal 
observer relying only on recent experience ( s = 1) in the 
incongruent condition, and the average Bayes factor was 
slightly higher ( M = 2.80, SD = 0.84), suggesting human 
subjects searching in the congruent condition performed 
slightly worse than the simulated searcher that relied on 
recent experience in the congruent condition, and were 
more similar to the ideal observer that relied on recent 
experience in the incongruent condition. In contrast, 
only 2 Bayes factors supported the null when subject data 
was compared performance of the ideal observer with 
partial world knowledge ( s = 60) in the incongruent con-
dition ( M = 1.80, SD = 0.99), in sessions 1 ( BF01 = 2.50) 
and 4 ( BF01 = 1.10), and 0 Bayes factors supported the 
null when subject data was compared to simulated per-
formance that relied solely on world knowledge in the 
incongruent condition ( s = 300).

Over sessions, evidence for the null was largely con-
sistent for subjects in the congruent condition (Fig. 14). 
In sessions 1, 2, and 5, Bayes factors for 4 subjects (40%) 
supported the null hypothesis when compared to simu-
lated search in the congruent condition ( M1 = 2.25, 
SD1 = 0.51, M2 = 2.99, SD2 = 1.23, M5 = 2.67, SD5 = 
1.04), whereas Bayes factors for 5 and 6 subjects (50% 
and 60%) supported the null in sessions 3 and 4, respec-
tively ( M3 = 2.77, SD3 = 1.06, M4 = 2.83, SD4 = 0.63). 
More subjects performed similarly to the ideal incongru-
ent observer: in sessions 1 and 5, there were 6 subjects 
(60% and 67%3) whose Bayes factors supported the null 
( M1 = 3.00, SD1 = 1.05, M5 = 2.74, SD5 = 0.72), 7 sub-
jects (70%) in sessions 3 and 4 ( M3 = 3.05, SD3 = 0.54, 
M4 = 3.07, SD4 = 0.75), and 8 subjects (80%) in session 2 
( M2 = 2.22, SD2 = 0.92).

Incongruent human performance.Overall, Bayes fac-
tors exceeded 1 for the ideal incongruent observer ( s = 
1) in a total of 22 blocks (45%), and the average Bayes 
factor was 2.50 (SD = 0.84), suggesting searchers per-
formed similarly to the ideal incongruent observer in 
the incongruent condition half of the time. Only 5 (10%) 
Bayes factors exceeded 1 ( M = 2.05, SD = 0.54) when 
human performance was compared to the ideal congru-
ent observer, and 4 (8%) supported the null when subject 
data was compared performance of the ideal observer 
with partial world knowledge ( s = 60) in the incongruent 
condition ( M = 2.76, SD = 1.27). Consistent with human 
performance in the congruent condition, 0 Bayes factors 
supported the null when subject data was compared to 

simulated performance that relied solely on world knowl-
edge in the incongruent condition ( s = 300).

When human data was compared to performance of 
the ideal incongruent observer ( s = 1), evidence favoring 
the null increased over sessions: Bayes factors for 2 sub-
jects supported the null in session 1 ( M1 = 2.21, SD1 = 
0.93), 5 subjects (50%) in sessions 2 and 3 ( M2 = 2.15, 
SD2 = 0.68, M3 = 2.43, SD3 = 0.92), 3 subjects (30%) in 
session 4 ( M4 = 3.35, SD4 = 0.39), and 7 subjects (78%) 
in session 5 ( M5 = 2.51, SD5 = 0.95). Bayes factors only 
supported the null when human data was compared to 
the ideal congruent observer twice (20%) in sessions 3 
and 4 ( M3 = 2.20, SD3 = 0.23, M4 = 2.11, SD4 = 0.94), 
and only one occurred in session 5 ( BF01 = 1.64). Two 
subjects performed similarly to the ideal incongruent 
observer that relied partially on world knowledge ( s = 
60) in sessions 1 and 2 only ( M1 = 2.42, SD1 = 1.93, 
M2 = 3.10, SD2 = 0.82), suggesting some subjects had 
learned some of the incongruent target locations in part 
during the first two sessions.

Overall, performance for most human searchers was 
comparable to ideal observers that learned target loca-
tions optimally, which suggests our subjects integrated 
world knowledge and recent experience in a near-opti-
mal fashion. Human searchers became more similar 
to the ideal incongruent observer over experimental 
sessions, suggesting subjects learned to search in the 
semantically incongruent search environment over 
time. Human searchers did not perform as well as the 
ideal congruent observer in the semantically congruent 
experimental condition, despite the fact that the simu-
lated searcher incurred point penalties for searching a 
location or switching rooms that were twice as high as 
those incurred by human searchers. These results suggest 
that human searchers learned from recent experience in 
ways that were near-optimal. That is, on the whole, both 
human and simulated searchers were able to learn to 
search effectively in the semantically incongruent search 
environment.

Experiment 2: Discussion
Experiment 2 examined trade-offs between prior knowl-
edge about scenes and recent experience during active 
visual search. We used the prior knowledge derived 
empirically in Experiment 1 to place targets in scenes 
and tested active search performance under conditions 
in which the locations of targets were either congruent 
with scene semantics, incongruent with respect to scene 
semantics, or random. A Bayesian ideal observer model 

3 One subject did not complete session 5.
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was used to predict ideal search performance. Human 
search performance was compared to ideal observer sim-
ulations to evaluate how well searchers could learn the 
probabilistic structure of the task.

We found that, although search decisions were initially 
dominated by prior knowledge about scenes, approxi-
mately half of the searchers learned to prioritize informa-
tion gained from recent experience in order to optimize 
search performance when prior knowledge was sub-
optimal, as evidenced performance for half of the sub-
jects that was comparable to that of the Bayesian ideal 
observer according to Bayes factors for the comparison 
(44% on average, 78% by the last session).4 For those 
searchers who were able to prioritize recent experience 
over prior knowledge for scenes to guide search deci-
sions, performance in the incongruent condition was 
never as good as in the congruent condition, indicating 
that it may be difficult to learn where to search for the 
target in a semantically incongruent environment. These 
findings show that there is some ability to learn to search 
incongruent locations in a near-optimal fashion using 
recent experience, and that the incongruent locations can 
be difficult to learn for certain targets.

Furthermore, our results demonstrate that human 
observers searched less effectively than simulated observ-
ers. Human observers earned fewer points on average in 
the congruent condition than simulated observers in the 
same condition, even though simulated observers paid 
higher penalties for searching a location and switching 
rooms. When human search performance was compared 
to the simulations, Bayes factors indicated that human 
observers in the congruent condition—when prior 
knowledge should have guided search—were more simi-
lar to the simulated observer in the incongruent condi-
tion, which should rely exclusively on recent experience. 
In other words, our results suggest that while human 
observers used prior knowledge to guide search decisions 
in our task, they did not do so perfectly—however, this 
is not surprising as human performance is generally not 
expected to be as good as that of ideal observers (Geisler 
2011).

General discussion
In the present work, we developed a novel search para-
digm to investigate search decisions under the guidance 
of scene semantics and recent experience. We used a 
rating task (Experiment 1) to quantify prior seman-
tic knowledge for the locations of common house-
hold objects in the specific scenes used in a search task 
(Experiment 2). The ratings were used to construct sam-
pling distributions for target locations that were either 

congruent or incongruent with scene semantics, to select 
a subset of the objects to serve as targets in the search 
task, and to quantify scene semantics for the stimuli in a 
Bayesian ideal observer model. In Experiment 2, we used 
an active search task to investigate whether search deci-
sions were guided by prior knowledge for scenes, recent 
experience, or a combination of both. Scenes were held 
constant and only the probability of target locations were 
manipulated. Our search task expanded on the search 
literature in three ways: (1) we determined semantically 
congruent and incongruent target locations empirically, 
(2) we investigated search in scenes where scene gram-
mar was preserved, and (3) to determine whether scene 
semantics and recent experience are used optimally in 
visual search, we developed an ideal observer model that 
predicted ideal search performance when both informa-
tion sources were used optimally. We compared subjects’ 
search performance against a Bayesian ideal observer 
model, which predicted optimal search behavior. While 
human search performance did improve over repeated 
experimental sessions, comparisons between the per-
formance of human subjects and simulated observ-
ers revealed that subjects searched near-optimally on 
the whole, and revealed that about half of the subjects 
learned to prioritize recent experience to search effec-
tively when target locations were incongruent with scene 
semantics. Overall, the results indicate that it is possible 
to negotiate between recent experience and prior knowl-
edge for scenes to guide search in a near-optimal fash-
ion when evidence that recent experience will facilitate 
search is strong.

Search for targets was not perfectly optimal for human 
subjects, as evidenced by fewer points earned in all con-
ditions for human subjects than simulated searchers, 
despite the higher point penalties that were applied in 
the simulations. While human performance in general 
should not be equivalent to that of ideal observer mod-
els (Geisler 2011), there may be additional factors that 
explain the reported difference in performance. One pos-
sible explanation for these findings is that human observ-
ers may have required more observations than they were 
given ( N = 30 trials/block) to infer which search envi-
ronment they were in (congruent, incongruent, or ran-
dom) and then employ the appropriate search strategy, 
whereas ideal observers were given hundreds of obser-
vations. It is possible that telling observers which search 
environment they are in (e.g., “Someone has hid objects 
from you in the scene.” for the incongruent condition) 
would result in more efficient search performance; how-
ever, given that explicit feedback about the target’s loca-
tion after each trial did not affect search performance, 
explicit instruction may not have benefited the subjects. 

4 See the OSF project repository for supplemental visualizations that show 
individual subjects’ performance.
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We leave further investigation of this possibility to future 
work.

It might seem surprising that searchers did not learn 
from recent experience more successfully, especially 
given that the search task was artificial. Rather than 
searching real-world scenes, which are processed more 
efficiently than drawings (Henderson and Ferreira 2004), 
subjects in the present study searched through computer-
illustrated depictions of a room scene using sequences of 
mouse clicks to reveal the hidden contents of locations. 
Given the artificial nature of this task, one might expect 
subjects to quickly abandon their real-world prior knowl-
edge in favor of recent experience, since target locations 
in both the congruent and incongruent conditions could 
be learned this way (as evidenced by the simulations), yet 
none of the subjects used such a strategy. While human 
searchers were able to learn to search in incongruent 
locations for the target to some extent, some search-
ers never showed that they could prioritize information 
gained from recent experience to guide search, even 
though most subjects were able to search effectively in 
the congruent condition. This suggests that semantic 
guidance was difficult to dismiss for those subjects, and 
that lower performance is best explained by the difficulty 
of learning to search in locations that conflict with scene 
semantics, and not by any lack of understanding of the 
task.

The difficulty of searching for the mug in the incon-
gruent condition likely emerged from the difference in 
the number of locations that should be searched in the 
incongruent search environment as opposed to the cor-
responding congruent environment. That is, in the con-
gruent environment, there was only one highly probable 
location (the cabinets) for the mug to be in, but in the 
incongruent environment, there were several highly 
probable locations (e.g., trash can, coat, backpack, 
couch). The fact that even the ideal observer was unable 
to learn to search for the mug in the incongruent con-
dition suggests the incongruent target locations were 
not learnable. It is thus possible that both subjects and 
ideal observers would have learned more readily if the 
number of likely locations in the semantically congru-
ent and incongruent sampling distributions were equal. 
The discrepancy between the number of probable loca-
tions under the semantically congruent and incongruent 
sampling distributions was a limitation of the current 
study. We intentionally selected targets for the active 
search task that were not strongly believed to be found 
in any one location (the keys and the batteries), and for 
a target that was strongly expected to be found in one 
location (the mug), to determine whether strong beliefs 
about where a target should be found would affect search 
decisions. Future research using a similar active search 

paradigm could address the aforementioned confound 
by testing only targets that are not strongly expected to 
occur in only one or two locations, and for which there 
are an equal number of probable sampling locations in 
the congruent and incongruent environments.

Comparison to prior work
Our results provide additional evidence that incidental 
learning can occur in real-world scenes with intact scene 
semantics and grammar (Brockmole et  al. 2006; Brock-
mole and Vo 2010; Brockmole and Henderson 2006a, b), 
even for meaningful targets (objects instead of letters), 
and expands on prior work by demonstrating that observ-
ers can use information learned from recent experience 
in a near-optimal fashion. In other respects, the findings 
of our active search task, in which search was carried out 
via sequences of mouse-clicks, differed from some of the 
results reported for gaze-directed search in which strong 
reliance on semantic knowledge was reported (Bieder-
man et  al. 1973; Castelhano and Heaven 2011; Vo and 
Wolfe 2013a, b). Differences between gaze-directed vis-
ual search and the present results could reflect the search 
modality (mouse click vs. gaze shift), the preservation of 
scene grammar in our display, or other task factors, such 
as the large number of observations (e.g., at least 60) that 
were required to learn.

The strategy of using recent experience rather than 
world knowledge to inform search decisions might be 
influenced by a desire to minimize search costs, where 
costs include the time or effort needed to search loca-
tions (Oliva et al. 2004; Kibbe and Kowler 2011; Ruben-
stein and Kowler 2018; Shenhav et al. 2017). In the search 
task, costs associated with search included the effort to 
operate the mouse, and the time delay between clicking 
a location and seeing its contents. Both of these costs 
provide incentives to improve search performance. For 
those subjects who did not learn in our search task, it is 
possible that the benefit of learning to search in incon-
gruent target locations to improve performance was not 
worth the mental effort required to maintain informa-
tion from recent experience in memory (Shenhav et  al. 
2017). Another possibility is that, for these searchers, 
search costs prompted the use of an encoding strategy 
that reduced processing demands during learning (e.g., 
by encoding summary statistics, not full distributions), 
but also limited accuracy (Dasgupta et al. 2018).

Implications
Our results are consistent with two overarching ideas. 
First, search strategies, like other types of decision-mak-
ing, involve the use of prior knowledge, and the strategy 
to rely on prior knowledge is, in most cases, an opti-
mal one. Use of prior knowledge compensates for noisy 
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input, and avoids taxing episodic memory (Steyvers et al. 
2006; Hemmer and Steyvers 2009; Hemmer and Persaud 
2014; Conci and Müller 2012) or motor resources (San-
tos and Kowler 2017). Second, search is Bayesian in that 
it was predicted by a Bayesian ideal observer model that 
included both prior knowledge and recent experience, 
and that recent experience informed search decisions 
(for all targets but the mug). Learning required multi-
ple observations that contradicted prior knowledge, as 
evidenced by only two subjects learning to search in the 
incongruent condition effectively within the first session. 
One or a few occurrences of a target in an unusual place 
might not be sufficient to rely less on prior knowledge 
about scenes. For example, it may not be realistic for a 
subject to believe that mugs ought to be located in trash 
cans after only one observation. After accumulating suf-
ficient evidence, however, we found that observers could 
use recent experience to guide search in a near-optimal 
fashion. It is unclear whether the individuals who did 
not learn from recent experience were unable to do so, if 
their evidence thresholds differed from those who did, or 
if the reward for doing so in the search task (points) was 
not sufficient to motivate learning. The latter, however, 
seems unlikely given that adaptive learning can take place 
with no reinforcement whatsoever (Kheifets and Gallistel 
2012).

The formation of prior knowledge about scenes must 
involve, to some degree, the integration of episodic infor-
mation. It is unclear when prior knowledge about scenes 
forms and solidifies, but there is some developmental 
evidence to suggest that they are early-emerging. At 24 
months of age, children only notice semantic inconsisten-
cies when inconsistent objects are visually salient, which 
suggests that scene semantics do not inform attention in 
scenes until later in development (Helo et  al. 2017). By 
three years of age, children demonstrate sensitivity to 
the semantic context in a visual search paradigm (Öhls-
chläger and Vo 2016), suggesting that prior knowledge 
about scenes forms in the first four years of life. Semantic 
guidance seems to only be revealed in tasks where chil-
dren’s eye-gaze is measured. Specifically, Öhlschläger and 
Vo (2016) found that although three-year-olds’ eye gaze 
is affected by semantic congruency, the same age group’s 
explicit response in a manual placing task was not. The 
performance contrast between tasks appears in other 
domains of child development research (e.g., physical 
reasoning, see Hood et al. 2000; theory of mind, see Bail-
largeon et  al. 2010) and may result from task demands 
where an implicit response (i.e., eye-gaze) requires fewer 
cognitive resources than an explicit response (i.e., verbal 
response, manual response). It is possible that, for chil-
dren, semantic guidance is influenced by the task costs.

The current findings also have implications for an atyp-
ical population where memory loss is a primary diagnos-
tic characteristic (e.g., dementia). Healthy older adults 
rely on long-term semantic memory more heavily in 
visual search than younger adults do when new episodic 
information contradicts their world knowledge (Wynn 
et  al. 2019). Individuals with dementia, such as patients 
with Alzheimer’s Disease, show deficits in both forms of 
memory (Hodges and Patterson 1995; see Nebes 1989 for 
review), which are often challenging to tease apart. The 
active search task may be able to discriminate between 
the two types of deficits by examining how patients with 
Alzheimer’s Disease perform in the semantically con-
gruent condition (semantic recall) and the semantically 
incongruent condition (episodic recall) as compared to 
an ideal observer with varying dependence on the two. By 
distinguishing the type of memory deficit a patient has, 
clinicians would be better informed, and thereby, could 
implement a more targeted intervention to improve the 
patient’s cognitive processing. In addition, because our 
current findings suggest that neurotypical searchers 
learned over sessions, and previous research has shown 
that patients with Alzheimer’s Disease and amnesic 
patients are capable of implicitly learning new informa-
tion across various domains: arbitrary letter configura-
tions (Chun 2000; Chun and Phelps 1999), color-word 
associations (Musen and Squire 1993a), and word-pairs 
(Gabrieli et al. 1997; Moscovitch et al. 1986; Musen and 
Squire 1993b), individuals with memory deficits may do 
the same in both the semantically incongruent condition 
and the semantically congruent condition. Furthermore, 
research has found that the semantic memory impair-
ment of patients with Alzheimer’s Disease appears to be 
caused by deficits in storage, and not a complete impair-
ment in semantic memory itself (Hodges et  al. 1992). 
This implication is especially relevant because implicit 
learning of semantic representations in this population 
may reduce the patients’ dependency on others to help 
them navigate the world.

Conclusion
As in previous studies, searchers in the current experi-
ment used prior semantic knowledge and recent experi-
ence to guide their search. After observing information 
that contradicted their prior semantic knowledge, search-
ers varied in their ability to integrate new episodic infor-
mation into a probability distribution of target locations. 
Namely, some searchers learned quickly to prioritize 
recent experience (by the second session) while others 
learned at a slower rate (by the last session), or not at all. 
Even the observers who learned best did not achieve per-
formance in the semantically incongruent condition that 
rivaled their use of prior knowledge in the semantically 
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congruent condition. When target locations were incon-
gruent with the semantics of the scene, scene semantics 
were not simply unhelpful (as was the case in Biederman 
et  al. 1973; Neider and Zelinsky 2006; Henderson et  al. 
1999; Malcolm and Henderson 2009; Vo and Wolfe 2012, 
2013b; Wu et al. 2014), they were actively detrimental to 
search performance because targets occurred in the least 
likely locations under guidance from their prior knowl-
edge about scenes alone. As a result, observers who 
used scene semantics to inform their search decisions 
were set up to fail. Those who did not learn successfully 
may have relied more strongly on long-standing seman-
tic beliefs, and therefore, recent experience that contra-
dicted their beliefs may have been dismissed as events 
that were too unlikely to be repeated. The current find-
ings are unable to differentiate between whether subjects 
constructed a new prior through learning from recent 
experience that targets occur in incongruent locations, 
or used scene semantics in an unconventional way (i.e., 
predicting incongruent target locations from locations 
that would be improbable based on scene semantics). 
Future work could compare search behavior for a target 
object with no previous semantic associations with the 
scene (e.g., the blicket) as a comparison: if observers are 
able to search equally well for a known object and a novel 
object in the incongruent condition, that would suggest 
observers constructed a new distribution of target loca-
tion probabilities from scratch rather than using existing 
knowledge representations in an unconventional manner.

Our findings support the utility of Bayesian inference 
in visual search. The strategy to rely on prior knowledge 
for scene semantics to inform search in natural scenes 
is a rational one, which can be used efficiently and reli-
ably in the majority of cases. Indeed, this strategy would 
be beneficial at best and harmless at worst 66.67% of the 
time in the present study: when target locations were 
consistent with scene semantics (semantically congru-
ent), because semantic guidance would yield optimal 
inferences in this case, and when target locations were 
random, because no available strategy was better than 
another. It is also important to note that the incongru-
ent sampling distribution was noisier than the congru-
ent distribution in that there were more high probability 
locations for targets under the incongruent distribution 
than under the congruent distribution. The preference to 
rely on world knowledge about scene semantics therefore 
may also reflect a perfectly rational strategy to rely pri-
marily on the more informative prior, even when doing 
so results in less efficient search behavior.

The current study has demonstrated that visual search 
is Bayesian: both prior knowledge and recent experi-
ence are used guide search in a near-optimal fashion. 
The degree to which recent experience can inform search 

decisions in the face of compelling evidence is influenced 
by how difficult it is to learn a statistical distribution from 
the evidence presented. An active search task like the one 
used in the current study provides a platform for under-
standing the nature of these trade-offs.

Appendix: Simulation methods
Design
Performance of the ideal observers was simulated with 3 
levels of semantic congruence: (1) semantically congru-
ent: target probabilities were completely congruent with 
the semantics of the scene, selected using the congru-
ent sampling distribution obtained in Experiment 1 (see 
Eq. 1), (2) random: target location probabilities were uni-
form across all locations; and (3) semantically incongru-
ent: target location probabilities were selected from the 
incongruent sampling distribution computed in Experi-
ment 1 (Eq.  2), and thus were incongruent with scene 
semantics. The three levels of semantic congruence, the 
sampling distributions for the three targets (as found in 
Experiment 1), and the target location sampling method 
were all identical to those to be used in the search task.

Six different ideal observers were tested, varying in 
dependence on prior knowledge. The dependence was 
quantified as a quantity we named prior strength and 
denoted sk for ideal observer k. Low values for prior 
strength represented a strong reliance on recent experi-
ence, while high values represented a strong reliance on 
prior beliefs. Prior strength values (1, 30, 60, 90, 150, 300) 
were selected to simulate the full range of ideal observers.

Procedure
The initial belief state of the ideal observers, shown in 
Eq.  A.1, quantifies the probability of targets appearing in 
locations before any observations. This initial belief state 
was partly derived from the data obtained in Experiment 
1 using Eq. A.2 as the mean probability of the Beta distri-
bution. Eqs.  A.3 and A.4 explain how the the shape and 
scale parameters of the Beta distribution’s parameters were 
scaled using the prior strength parameter, sk.

(A.1)P(θt,l |w) = Beta(α0
t,l ,β

0
t,l)

(A.2)p̂0t,l =
L̄t,l

7

(A.3)α0
t,l = p̂0t,l ∗ s

k

(A.4)β0
t,l = (1− p̂0t,l) ∗ s

k
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As in the search task, a simulated searcher earned points 
for finding the target early within a trial. Points were set 
to the maximum possible (30) at the beginning of a trial, 
and were reduced as the searcher acted: 4 points were 
deducted for searching a location, and 2 points were 
deducted for switching between rooms. At the beginning 
of a trial, all 12 locations were unexplored. Locations to 
search were then sampled from the multinomial distri-
bution (multinomial sampling) over all locations using 
Eq. A.5. By conducting multinomial sampling, the simu-
lated searcher looked for the target in locations propor-
tional to their probability. If the target was not found, the 
searched location was removed from consideration and 
the multinomial distribution recomputed. Each location 
could only be searched once. A trial terminated when 
either the target was found or the number of possible 
points earned reached 0.

The belief state of the searcher was updated at the end of 
each trial using Eq. A.6.5 Each trial is mathematically rep-
resented as a Bernoulli trial and thus combines with the 
Beta distribution of the belief to result in a new belief 
state. In practice, this requires updating the shape ( α ) and 
scale ( β ) parameters of the distribution using the obser-
vation of success or observation of failure. To be more 
explicit, let the variable for the ith trial be tif ,l and it has 
value 1 if location l is searched and the target is found, 
otherwise if location l is searched and the target is not 
found, it has value 0. Shown in Eq. A.7, αi

t,l and β i
t,l are 

updated from αi−1
t,l  and β i−1

t,l  using tif ,l.

With a little algebra, we rearrange the equation to con-
struct a new p̂it,l that takes into consideration the obser-
vation of success or failure for trial i, location l, and target 
t.6 This is shown in Eq. A.8.

(A.5)

P(Searching l′|t ′) =
P(θt ′,l′ |r,w)∑
l′′ P(θt ′,l′′ |r,w)

=
p̂0t ′,l′

∑
l′′ p̂

0
t ′,l′′

(A.6)
P(θ it,l |r,w) = P(tif |θ

i−1
t,l )P(θ i−1

t,l |αi−1
t,l ,β i−1

t,l )

= P(tif |θ
i−1
t,l )P(θ i−1

t,l |p̂i−1
t,l , sk)

(A.7)
αi
t,l = αi−1

t,l + tif

β i
t,l = β i−1

t,l + (1− tif )
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