
Volitional Control of Neural A
Current Biology 23, 353–361, March 4, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.01.027
Article
ctivity

Relies on the Natural Motor Repertoire
Eun Jung Hwang,1,* Paul M. Bailey,1,2

and Richard A. Andersen1

1Division of Biology, California Institute of Technology,
Pasadena, CA 91125, USA
2Beth Israel Deaconess Medical Center, Boston, MA 02215,
USA

Summary

Background: The results from recent brain-machine interface
(BMI) studies suggest that it may be more efficient to use
simple arbitrary relationships between individual neuron
activity and BMI movements than the complex relationship
observed between neuron activity and natural movements.
This idea is based on the assumption that individual neurons
can be conditioned independently regardless of their natural
movement association.
Results:We tested this assumption in the parietal reach region
(PRR), an important candidate area for BMIs in which neurons
encode the target location for reaching movements. Monkeys
could learn to elicit arbitrarily assigned activity patterns, but
the seemingly arbitrary patterns always belonged to the
response set for natural reaching movements. Moreover,
neurons that are free from conditioning showed correlated
responses with the conditioned neurons as if they encoded
common reach targets. Thus, learning was accomplished by
finding reach targets (intrinsic variable of PRR neurons) for
which the natural response of reach planning could approxi-
mate the arbitrary patterns.
Conclusions: Our results suggest that animals learn to voli-
tionally control single-neuron activity in PRR by preferentially
exploring and exploiting their natural movement repertoire.
Thus, for optimal performance, BMIs utilizing neural signals
in PRR should harness, not disregard, the activity patterns in
the natural sensorimotor repertoire.

Introduction

With brain-machine interfaces (BMIs), the neural activity
directly controls a machine (e.g., prosthetic arms for para-
lyzed patients) via decoders that translate the neural activity
to movements of the machine. Subjects can learn to control
BMIs, sometimes even for arbitrarily determined decoding
rules [1–6]. Moritz et al. [1] showed that monkeys learned to
volitionally control the activity of any two neurons in the
primary motor cortex (M1) for a BMI in which the activation
of one neuron stimulated their paralyzed wrist flexor, while
the activation of the other stimulated the wrist extensor.
Based on this finding, it was proposed that the use of
decoders to implement simple arbitrary rules between indi-
vidual neuron activity and BMI movements may be a more
efficient approach than implementing the complex rules
observed between the neural activity and natural movements
[1, 7].
*Correspondence: eunjung@caltech.edu
In a related study, Jarosiewicz et al. [3] examined the
learning mechanism in a BMI task in which a subset of the
M1 neurons that were used for the decoder were decoded
incorrectly to produce a visuomotor rotation between the
desired and the decoded cursor movements. As the monkey
learned to offset the visuomotor rotation, preferred directions
(PDs) shifted in the direction of the visuomotor rotation across
the correctly and incorrectly decoded neurons. However, the
incorrectly decoded neurons showed a slightly larger shift in
their PDs. A subsequent modeling study [8] showed that these
results could be replicated by a single learning mechanism in
which the activation of each neuron is updated to a newly
explored value whenever the explored value produced a BMI
output associated with a larger reward. Key features of this
model are that the explorative signal is randomly and indepen-
dently assigned to each neuron and that individual neurons
independently adapt according to their own activation-reward
experience. Such a learning mechanism that facilitates the
independent adaptation of individual neurons will be hereafter
referred to as ‘‘individual-neuron.’’
Although an individual-neuron mechanism could elegantly

reproduce the observed neural changes, the same group orig-
inally suggested an alternative, equally viable learning mecha-
nism: the slightly larger change for the incorrectly decoded
subset reflects individual-neuron learning, but the dominant
global shift of the PDs reflects the behavioral strategy of reaim-
ing to counter the applied rotation. A cognitive strategy of
manipulating an intrinsic variable of natural movements,
such as target direction, prevents independent adaptation of
individual neurons because the strategy influences a global
network of neurons that are sensitive to the manipulated vari-
able. We will hereafter refer to this learning mechanism as
‘‘intrinsic-variable.’’ Thus far, it is unclear whether different
mechanisms coexist, whether there is a preference for one
mechanism over another, or whether such a preference
changes depending on the circumstances.
Elucidating the predominant forms of learning can help to

build optimal BMI decoders [9]. If intrinsic-variable learning
predominates, decoders implementing simple arbitrary rules,
as suggested by some studies, would not be optimal because
learning arbitrary patterns is not guaranteed due to the limited
repertoire of activity patterns associated with natural move-
ments. In contrast, if individual-neuron learning predominates,
animals would learn to produce virtually any arbitrary activity
pattern through the independent adaptation of individual
neurons, and thus decoders implementing simple arbitrary
rules might indeed be efficacious. At the extreme, each neuron
could be individually trained, and essentially no decoder
would be required at all. Elucidating the learning mechanisms
could address the even larger issue of whether the brain is so
plastic that any area can be trained to operate a BMI. If there
are few or no limits on learning BMI tasks across the cortex,
as suggested by individual-neuron learning, then there is no
need to select particular areas for particular types of BMIs.
A straightforward way to distinguish between individual-

neuron versus intrinsic-variable learning is to test whether
BMI subjects can learn to produce neural activity patterns
that cannot be associated with any natural movement.
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Figure 1. The Task Event Sequence and the Stimulus-Response Rule

(A) The temporal event sequence in successful trials for two stimulus locations in the reach, BMI-pro, and BMI-anti1 tasks.

(B) The activity pattern (mean 6 SEM) of a hypothetical neuron for successful trials in each of the three tasks.
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However, this approach has the shortcoming of requiring
complete knowledge of the parameters that are encoded in
a brain area to determine the activity patterns that cannot be
learned. A less direct but efficient approach is to examine
the behavior of neurons that are observed but are not used
for decoding. These neurons are referred to as ‘‘untrained
neurons,’’ as opposed to ‘‘trained neurons,’’ which are used
for decoding and thus directly contribute to the BMI output.
When intrinsic-variable learning is a possible solution (i.e.,
a cognitive strategy of manipulating intrinsic variables can
produce the appropriate activity pattern), intrinsic-variable
learning would influence untrained neurons in a predictable
way based on the cognitive strategy. In contrast, under indi-
vidual-neuron learning, the activity changes of untrained
neurons would be negligible on average because the activity
of untrained neurons, which is explored independently from
the activity of trained neurons, has no systematic relationship
with reward.

Consider the following thought experiment to better under-
stand this approach. Suppose that trained and untrained
neurons respond identically in a reach task: both neurons fire
more spikes when reaches are made toward a stimulus on
the right than on the left. Now consider an arbitrary BMI
decoder rule: the trained neuron must fire more spikes to
move the cursor to the left stimulus than to the right, opposite
to the reach task. The individual-neuron mechanism allows the
trained neuron to adapt to this decoder rule. Intrinsic-variable
learning is also possible in this case because the cognitive
strategy of planning a reach in the opposite direction of the
stimulus (anti reach) is a viable solution. Thus, both mecha-
nisms can account for the trained neuron to produce the
appropriate activity pattern, flipping its tuning preference for
the two stimulus locations. However, the untrained neuron
will behave differently between the two mechanisms. Under
intrinsic-variable learning, via anti reach planning, both the
trained and the untrained neuron would flip their preferred
stimulus locations. In contrast, under individual-neuron
learning, the untrained neuron would not flip its preferred stim-
ulus because untrained neurons are not reinforced in any
consistent way during their independent activity explorations,
and thus their net activity change should be near zero.
Based on this rationale, we investigated the BMI learning

mechanism in the parietal reach region (PRR), an important
candidate area to provide control signals for BMIs [6, 10–12].
PRR neurons primarily encode the planned reach target loca-
tion in visual coordinates [13–16]. Thus, if intrinsic-variable
learning occurs, the main cognitive strategy to change PRR
neuronal activity would involve manipulations of the reach
target location, such as target reaiming. We observed that
untrained neuron activity in BMI tasks was correlated with
trained neuron activity, similar to reach tasks, indicating a
cognitive strategy obtained by intrinsic-variable learning.
Thus, intrinsic-variable learning predominated in PRR, sug-
gesting that not all brain areas or all arbitrary decoders can
be trained to operate a BMI.

Results

In the first study, examining the BMI learning mechanism in
PRR, we tested the thought experiment described in the Intro-
duction using macaque monkeys. Each experimental session
consisted of three task blocks in the following order: reach,
BMI-pro, and BMI-anti1 (Figure 1A). The individual reach
trials consisted of three epochs: stimulus, delay, and reach-
reward. During the stimulus period (0.3 s), one of two diamet-
rically opposing locations (stimulus 1 or 2) was randomly
illuminated. The delay period (approximately 1.3 s) was initi-
ated with the stimulus offset and ended with a ‘‘go’’ signal.
During the reach-reward period, the monkeys made a reach
and received a juice reward if the reach was made to the previ-
ously presented stimulus location. The BMI trials followed a
similar sequence, replacing the reach-reward period with
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a feedback-reward period. During the delay period, the cursor
feedback location was decoded from the firing rate of the
trained neuron. If the firing rate conformed to the stimulus-
response rule of a given BMI task (i.e., successful trials), the
feedback cursor was placed at the same location as the stim-
ulus cue, and the monkeys were rewarded during the feed-
back-reward period. Otherwise, the cursor feedback was
placed opposite the stimulus and no reward was given.

The following stimulus-response rules were used in the BMI
tasks (Figure 1B). If the firing rate of the trained neuron was
lower for stimulus 1 than for stimulus 2 in the reach task, the
BMI-pro task rule was that lower firing rates for stimulus 1
than for 2 would result in a reward. The firing-rate threshold,
dividing the high and low firing rates, was computed using
the maximum-likelihood classifier (see Experimental Proce-
dures). The BMI-anti task enforced the opposite rule of higher
firing rates for stimulus 1 than for 2, similar to the thought
experiment described in the Introduction. This rule forces the
trained neuron to flip its preferred stimulus, associated with
higher firing rates, between the BMI-pro and BMI-anti tasks.
Notably, although we use the term ‘‘stimulus-response,’’ the
delay period activity is not a sensory response but rather
reflects the monkey’s movement plan [17, 18].

Neither of the monkeys had been exposed to any target re-
aiming task, such as the anti reach task, until the BMI-anti task
block was performed in this study. Thus, the monkeys were
not biased in advance to favor a target reaiming strategy
over individual-neuron learning. We first describe the findings
from monkey Y, followed by those of monkey G.

Trained Neurons Flip Their Tuning in the BMI-Anti1 Task

Monkey Y performed the first ten experimental sessions, each
on different days, with the same pair of stimuli. The same
trained neuron was used across sessions 2–10 (see Figure S1
available online). The activity of this trained neuron in early,
intermediate, and late sessions is shown in Figures 2A and
2B. In the BMI-pro task, as expected from the stimulus-
response rule consistent with the tuning property in the
familiar natural reach task, the firing rate of the trained neuron
was properly discriminated between the two stimuli from the
earliest session for that neuron (Figure 2A). In contrast, the
firing rate in the BMI-anti1 task was indiscriminate between
the two stimuli in the earliest session and only gradually
became more discriminate with the opposite pattern from
the BMI-pro task (Figure 2B). The tuning of the trained neuron
for the two stimuli differed between the two BMI tasks, as
measured using the neural adaptation index (NAI; see Experi-
mental Procedures). If the tuning did not change, the index
was 0. If the tuning for the two stimuli perfectly flipped, the
index was 1. Consistent with the firing-rate histograms in
Figures 2A and 2B, the NAI gradually increased toward 1 in
parallel with task performance accuracy across sessions
2–10 (Figure 2C).

After the first ten sessions with one stimulus pair, monkey Y
performed 18 more sessions, up to two per day, with three
additional pairs of stimuli (Figure 2D). The additional 18
sessions used different sets of neurons. For two of the new
stimulus pairs, the task performance accuracy was over
80%, even in their first sessions. For the remaining new stim-
ulus pair, performance accuracy gradually increased with
training, similar to the original stimulus pair. The average
peak performance of monkey Y in the BMI-anti1 task across
all 28 sessions was 77% 6 16.5% (mean 6 SD), and the
average NAI was 0.85 6 0.288.
Untrained Neurons Also Flip Their Tuning in the
BMI-Anti1 Task

To determine which mechanism was primarily responsible for
the BMI-anti1 task learning, we examined the activity of the
untrained neurons. Previously, we discussed how intrinsic-
variable learning and not individual-neuron learning would
drive untrained neurons to flip their preferred stimulus, similar
to the trained neuron. Figure 3A displays the activity of a
trained neuron and three untrained neurons simultaneously
recorded in a typical session for monkey Y (session 23). The
activity in the decoding window clearly changed, flipping the
preferred stimulus between the two BMI tasks for both trained
and untrained neurons (see Supplemental Results for details
about the temporal dynamics of neuronal activity).
To quantify the changes in activity of the untrained neurons

associated with BMI-anti1 task learning, we computed their
NAI for successful trials in which the trained neuron flipped
the firing rate for two stimuli. An NAI greater than 0.5 indicates
that the preferred stimulus was flipped, whereas an NAI less
than 0.5 indicates that it was not. Thus, under intrinsic-variable
learning, the NAI of untrained neurons for successful trials
would be greater than 0.5, whereas the NAI for unsuccessful
trials would be less than 0.5. In contrast, under individual-
neuron learning, the tuning of untrained neurons would not
change, and thus the NAI would be near zero for both success-
ful and unsuccessful trials. Themajority (74 of 124) of untrained
neurons exhibited an NAI greater than 0.5 for successful trials
as they flipped their preferred stimulus, and the median index
(0.70) was significantly greater than 0.5 (Wilcoxon signed-rank
test, p < 1.0 3 10211) (Figure 3B). By comparison, the median
NAI of the same untrained neurons for unsuccessful trials in
which the trained neuron did not flip its firing rate was 0.38,
which was significantly smaller than 0.5 (Wilcoxon signed-
rank test, p < 1.0 3 1027). These results are consistent with
the intrinsic-variable learning hypothesis.

Trained and Untrained Neurons Fluctuate Their Activity

Together Irrespective of Performance Level
Monkey G performed the BMI-anti1 task in 12 sessions, each
on different days, with the same stimulus pair, using different
trained neurons. In contrast to monkey Y, the performance of
monkey G showed initial improvement and became saturated
at relatively low levels, even after performing 12 sessions with
more than 5,000 trials (Figure 4A). The initial improvement from
approximately 0% to 50% suggests that the monkey stopped
planning pro reaches, which would have resulted in a perfor-
mance accuracy near zero. However, the average perfor-
mance accuracy and NAI of the last 1,000 trials were only
57% and 0.58, respectively, indicating no further improve-
ment. Despite the lack of improvement, if the monkey had
pursued intrinsic-variable learning, not only trained but also
untrained neurons would have flipped their preferred stimulus
in successful trials. However, if the monkey had pursued indi-
vidual-neuron learning, then untrained neuronswould not have
flipped their preferred stimulus. Therefore, we examined the
NAI of untrained neurons in successful trials. The majority of
untrained neurons (22 of 32) had an NAI greater than 0.5, and
the median index (0.64) was significantly greater than 0.5
(Wilcoxon signed-rank test, p < 1.0 3 1026) (Figure 4B). The
same analysis of the untrained neurons in monkey Y during
the first seven sessions, over which the average performance
accuracy was 57%, produced similar results: the majority
(17 of 26) had an NAI greater than 0.5, and the median
index (0.66) was significantly greater than 0.5 (Wilcoxon
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Figure 2. Monkey Y Learned the BMI-Anti1 Task with Long-Term Training over Ten Days

(A) The firing-rate distributions of a single neuron for each of the two stimuli in the BMI-pro task of sessions 2, 6, and 10, recorded from monkey Y.

(B) The firing-rate distributions of the same single neuron in the BMI-anti task.

(C) The percent correct and neural adaptation index (NAI) in the BMI-anti1 task from the first ten sessions. The dashed vertical lines indicate the end of each

session. The horizontal bars indicate the percent correct in the BMI-pro task in the corresponding sessions.

(D) The peak performance in each of the 28 BMI-anti1 task sessions for monkey Y. The different symbols indicate different stimulus pairs. The configuration

for each stimulus pair is illustrated in the inset.

See also Figure S1.
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(A) The temporal dynamics of the firing rates (mean 6 SEM) for a trained

neuron that directly contributed to the BMI output and three untrained

neurons in session 23 for monkey Y.

(B) The distribution of the NAI of untrained neurons (n = 124) in monkey Y for

all successful trials.

See also Figure S2.
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signed-rank test, p < 1.03 1024). This result indicates that both
monkeys pursued intrinsic-variable learning in the BMI-anti1
task, regardless of their performance level.

Further Evidence for the Intrinsic-Variable Learning
Hypothesis

If intrinsic-variable learning is pursued, then facilitating the
discovery of a successful cognitive strategy might help
learning. We confirmed this idea using a slightly modified
form of the BMI-anti1 task, BMI-anti2, in which the stimulus-
response rule was the same as the BMI-anti1 task but the
opposite feedback cursor policy was employed (Figures S3A
and S3B). Unlike in the BMI-anti1 task, monkey G achieved
a stable high performance level in the BMI-anti2 task within
the first six sessions and showed consistent learning after-
ward (Figures S3C–S3E; Supplemental Results).
Further supporting the intrinsic-variable hypothesis, the
preferred stimulus also flipped for local field potentials in the
BMI-anti tasks, which reflect the average activity of the local
neural ensemble comprising mostly untrained neurons
(Figures S2A–S2C). Another finding suggestive of intrinsic-
variable learning is that the monkeys generalized the BMI-
anti task learning to different stimulus pairs and different
neurons (Figures S2D and S2E). Individual-neuron learning
cannot explain this generalization because each time a new
trained neuron is used or new stimuli are introduced, new
neural activity explorations are necessary, which would
require a similar amount of training across different neurons
or stimuli. In contrast, intrinsic-variable learning with a cogni-
tive strategy, such as planning the anti reach, can be general-
ized across different neurons and stimuli [19].

The Relationship between BMI Task Complexity and the

Preferred Learning Mechanism: BMI-Mix Task
One might wonder whether a preferred learning mechanism
would vary depending on the complexity of a cognitive solu-
tion for the task. In other words, would individual-neuron
learning be more likely to be pursued if the task becomes
more cognitively complex to solve? To address this question,
we conducted a second study using a BMI-mix task in which
the reward was contingent on two neurons and the two
neurons were specifically reinforced to respond indepen-
dently. Only monkey Y performed the BMI-mix task. Fourteen
different sessions were recorded on 14 different days with
different sets of neurons (2 trained and 4 6 1.0 untrained
neurons per session).
Before each session, the monkey performed a reach task

with eight equidistant targets around a fixation point. Based
on the tuning properties of the two trained neurons in the
eight-target reach task, a pair of diametrically opposing stim-
ulus locations was selected. Subsequently, with the selected
pair of stimuli, each session proceeded with the reach, BMI-
pro, and BMI-mix task blocks, in the same way as the BMI-
anti study but with new stimulus-response rules.
The following stimulus-response rules were applied. The

two-dimensional space, with each axis representing the firing
rate of each trained neuron during the delay period, was
divided into two regions by a linear boundary (Figure 5A; see
Experimental Procedures). To be successful, the delay period
activity of the trained neurons should fall on the correct side of
the boundary, which differed between the two stimuli. The
linear boundary for the BMI-pro task was the one that best
separated the two firing-rate clusters, each formed by the
delay period activity for each stimulus in the reach task.
Thus, in the BMI-pro task, if the monkey planned a reach to
the stimulus, the delay period activity of the trained neurons
would conform to the stimulus-response rule. The linear
boundary for the BMI-mix task was the one that best sepa-
rated the two clusters formed by swapping the two stimuli
for the reach task activity of the second trained neuron.
Thus, the BMI-mix task was part BMI-pro, in that the first
trained neuron must respond as in the reach task, and part
BMI-anti, in that the second trained neuron must respond in
the opposite way from the reach task.
In the BMI-pro task, the monkey immediately produced

the appropriate activity pattern for both trained neurons,
achieving 97% 6 3.0% peak performance on average across
the sessions (Figure 5B). For the BMI-mix task, in 9 of 14
sessions, the monkey remarkably learned to produce rule-
complying activity patterns, achieving performance accuracy
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greater than 80% (91% 6 6.4%). Thus, in these BMI-mix
sessions, the first trained neuron maintained the same
preferred stimulus as the reach task, while the second trained
neuron flipped its preferred stimulus (Figure 5C).

Intrinsic-Variable Learning Is Possible in the BMI-Mix Task

If the newly emerged activity pattern of the trained neurons in
these high performance sessions cannot be produced by en-
coding their intrinsic variable (i.e., reach target location), then
we can rule out the possibility of intrinsic-variable learning.
Thus, in each session, we examined the activity pattern of
the trained neurons during the eight-target reach task to deter-
mine whether planning reaches to any of the eight targets
could have produced the new activity pattern in the BMI-mix
task. For the example session, the activity for stimulus 1 in
the BMI-mix task matched the reach-planning activity for the
target at 45� counterclockwise from the stimulus, whereas
the activity for stimulus 2 matched the reach-planning activity
for the target at 135� counterclockwise from the stimulus (Fig-
ure 5D). Similarly, in all other sessions we found reach targets
for which reach-planning activity matched the activity in the
BMI-mix task (Figure S4A; Supplemental Results). Thus, the
new activity patterns in the BMI-mix task could be elicited
through target reaiming, i.e., planning reaches to matching
targets transformed from stimuli locations.

Untrained Neurons Indicate Intrinsic-Variable Learning in

the BMI-Mix Task
If an intrinsic-variable mechanism indeed underlies the BMI-
mix task learning, not only the trained neurons but also the
untrained neurons would encode the same matching targets
in successful trials. To address this possibility, we compared
the target location encoded by the trained versus untrained
neurons for each successful BMI-mix trial. The target that
any neural ensemble encoded was inferred using the near-
est-neighbor decoding algorithm, which selected the target
associated with the ensemble activity in the eight-target reach
task that was closest to the ensemble
activity of a given BMI-mix trial in terms
of Mahalanobis distance. Thus, the de-
coded target varied among the eight
target locations. Figure 5E shows the
eight-target decoding result for the
example BMI-mix session in Figures
5A–5D. The two bright squares on the
diagonal indicate that the trained and
untrained neurons concurrently en-
coded the two specific targets most
frequently. Intriguingly, the two specific
targets were the same two best-matching targets inferred
from the activity pattern of the trained neurons as previously
described. In 37% of the trials in which the trained neurons en-
coded a matching target, the untrained neurons also encoded
the same matching target in this example session (30% 6
5.1% across all nine sessions; Figure 5F). This apparently
low number, due to the limited decoder accuracy, is expected
as shown in the two-target reach task: in 28% 6 6.0% trials in
which the trained neurons encoded the reach target, the
untrained neurons also encode the same target. Even in the
five sessions with performance < 80%, the trained and
untrained neurons encoded the same targets in the BMI-mix
task (Figure S4B). These results suggest that the monkey
achieved success in the BMI-mix task by planning reaches
to matching targets, a form of intrinsic-variable learning.

Discussion

The Repertoire of Natural Movement-Associated Activity
in Paralyzed Patients

Our results show that the brain, at least in PRR, explores an ex-
isting repertoire of movement-associated activity patterns to
control BMIs. This constraint raises a question of how rich a
repertoire paralyzed patients can have. BMIs based on PRR
are conceived to be cognitive prostheses for which the dis-
crete target location of movements, a cognitive variable, is
decoded from the neural activity [10–12]. The representation
of cognitive variables is most likely intact, even after long-
term paralysis, although this has not been directly tested in
PRR [20]. Thus, it is expected that paralyzed patients can
readily control PRR-based BMIs as long as the decoder is
tuned to reinforce the neural activity patterns observed while
the patients vary their intended movement targets.

Learning Mechanisms in Other Areas of the Brain

We do not claim that intrinsic-variable learning must predom-
inate in all brain areas, or that intrinsic-variable learning must
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session shown in (C). The proportion of trials is

shown in grayscale.

(F) The black line shows the probability distribu-

tion of the difference between the targets de-

coded from the trained and untrained neurons in

the BMI-mix task when the target decoded from

the trained neurons is a matching target (mean 6

SEM, across nine BMI-mix sessions). The peak

at zero indicates thatwhen trained neurons encode amatching target, untrained neurons also encode the samematching target. The red line shows the prob-

ability distributionof thedifferencebetween the targetsdecoded from the trainedanduntrainedneurons in the two-target reach taskwhen the target decoded

from the trained neurons is the reach target.

See also Figure S4.
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occur only in PRR. Intrinsic-variable learning does seem to
play a significant role in the frontal eye field (FEF). When
a monkey volitionally controlled the activity of a FEF neuron,
the increased activity shifted the spatial attention of the
monkey (intrinsic variable of FEF neurons) to the response field
of the neuron, indicating that the monkey learned to produce
reward-associated activity by directing spatial attention to
specific locations [21–24].

The learning mechanism that plays a dominant role in M1,
the primary target of BMI studies, remains unknown. Ganguly
et al. [25] reported that the tuning modulation depth of trained
neurons became sharper and the modulation depth of
untrained neurons became shallower as the subject monkey
became better at controlling the cursor (driven by the activity
of the trained neurons inM1). However, this result alone cannot
support one mechanism over another, because it is unknown
whether or not the newly emerged activity belongs to the
natural sensorimotor repertoire. A critical test is to examine
the behavior of untrained neurons in tasks for which
intrinsic-variable learning is a viable solution. For instance,
the task in the study of Jarosiewicz et al. is solvable, at least
in large part, by target reaiming. If untrained neurons in M1
were observed in that task and had shifted their PDs in the
same direction as all of their trained neurons, then intrinsic-
variable learning in M1 would be strongly supported.

Differences between M1 and PRR

Understanding the difference in intrinsic variables betweenM1
and PRRmight provide a useful insight into the open question
of area-dependent learningmechanisms. The issue ofwhatM1
neurons intrinsically encode has been contentious, because
M1 neurons are sensitive to a wide range of movement param-
eters, such as position, velocity, force, and torque, and their
tuning properties are highly heterogeneous in terms of
kinematic versus kinetic features, joint versus extrinsic
coordinates, etc. [26–30]. At the extreme, Churchland et al.
[31] proposed that the preparatory activity of M1 neurons
exists not to represent specific movement features but to
initialize a dynamical system whose evolution will produce
movement activity. According to this view, there are no
intrinsic variables in M1.
Although movement parameter coding in the parietal cortex

has not been examined as extensively as in M1, a few studies
that directly compared neuronal activity between the parietal
area 5 and M1 observed that area 5 neurons were much less
sensitive to kinetic variables, such as torque and force, than
M1 neurons [32, 33]. PRR appears to represent movements
at an even more abstract level than area 5, because it encodes
the static reach target more strongly than the dynamically
changing reach direction during movement as compared to
area 5 [16]. Furthermore, PRR encodes the spatial goal loca-
tions largely in visual coordinates [13, 34, 35], suggesting
that the spatial reference frame used by PRR is simpler
than M1. These differences between M1 and PRR might lead
to different learning mechanisms. Future studies directly
comparing the intrinsic variables and the dominant learning
mechanisms among different brain areas will provide valuable
information on the effective design strategies for BMIs in each
area [9].

Limitations of the Current Study
The current study cannot rule out the possibility that indi-
vidual-neuron learning may play a role under different experi-
mental settings (e.g., longer training periods than we tested,
or different decoders that the intrinsic-variable mechanism
cannot possibly learn). Testing decoders that the intrinsic-
variable mechanism cannot learn is an interesting topic for
future study, although it is a formidable task given that such
an experiment requires complete knowledge of the intrinsic
response repertoire of a cortical area.
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We examined learning involving up to two trained neurons,
fewer than many practical BMI applications would use. An
important topic for future study is the examination of learning
involving more trained neurons, i.e., more degrees of freedom.

Finally, our premise that untrained neuronswould not exhibit
activity change on average if neurons can adjust their activity
independently might appear too strong an idealization of indi-
vidual-neuron learning. However, some studies have indeed
proposed BMI learning models that meet this strict premise
[8, 36]. Moreover, the strict premise is useful to test the
emerging view that reinforcing arbitrary mappings between
neural activity patterns and movements is an efficacious
approach to facilitating BMI learning. Less strict premises
inevitably limit the capacity of individual-neuron learning
such that not all arbitrary activity patterns are producible,
making it less distinguishable from intrinsic-variable learning.

Experimental Procedures

The California Institute of Technology Institutional Animal Care and Use

Committee approved the animal procedures used in this study, which

were performed in accordance with NIH guidelines. Details of the behavioral

tasks and neural recording procedures are described in the Supplemental

Experimental Procedures.

Neural Adaptation Index

The NAI was computed as f12 ðFRanti;s1 2FRanti;s2Þ=ðFRpro;s1 2FRpro;s2Þg=2,
where FRanti;s1 denotes the mean firing rate in the delay period following

stimulus 1 in the BMI-anti task, and the same notation applies to the other

variables.

Linear Discriminants in the BMI Tasks

For the BMI-pro task using one trained neuron, the threshold dividing the

high and low firing rates was computed as the maximum-likelihood classi-

fier under the assumptions of uniform prior and Poisson distribution as

x = ðM1 2M2Þ=logðM1=M2Þ, where x is the trained neuron firing rate and Mi

is the mean firing rate for stimulus i during the reach task. The same

threshold was used for the BMI-anti task, but the stimuli associated with

the high versus low firing rates were flipped.

For the BMI-pro task using two trained neurons, the linear boundary

dividing the two firing-rate zones was computed as themaximum-likelihood

classifier under the assumptions of uniform prior and independent Poisson

distributions as y = flogðM21=M11Þ=logðM12=M22Þg,x + fM11 +M12 2M21 2

M22g=logðM12=M22Þ, where y is the firing rate of the first neuron, x for the

second neuron, and Mij for the mean firing rate of neuron j for stimulus i

during the reach task.

For the BMI-mix task, a linear boundary was computed in the same way

as the BMI-pro task boundary, except the mean firing rates of the

second neuron were flipped between the two stimuli: y = flogðM21=M11Þ=
logðM22=M12Þg,x + fM11 +M22 2M21 2M12g=logðM22=M12Þ.

Supplemental Information

Supplemental Information includes four figures, Supplemental Results, and

Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.cub.2013.01.027.
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