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Cognitive neurogenetics is a genetics approach to the cellular and molecular neurobiology of cogni-
tive mechanisms. It is predicated on the discovery (forward genetics)or production (reverse genet-
ics) of mutant strains with a genetically based abnormality in a basic mechanism of cognition. The 
key to a successful prosecution of this approach is an effective behavioral screen for specific func-
tional effects from genetic manipulations. An effective screen should have the following properties:

●● It should focus on specified mechanisms of cognition (e.g., odometry, interval timing, circa-
dian timing), not on categories of phenomena (e.g., spatial learning, temporal learning, fear 
learning) or on experimental procedures (e.g., fear conditioning).

●● It should deliver functionally specific measurements, measurements that reflect the func-
tioning of one particular mechanism, not the many different mechanisms that contribute to 
the measured strength or duration of a behavior.

●● It should give a clear phenotype for each animal screened, not a group average.
●● It should give physiologically meaningful measurements (e.g., the period of a circadian clock, 

the precision of interval timing), not quantities that have no physiological meaning 
(e.g., responses per minute).

●● It should make it possible to screen large numbers of animals in reasonable periods of time 
with a reasonable investment of investigator/technician time and cost, and with minimal 
handling of the mice.

●● It should archive the data in such a way that others can explore it in the light of future discov-
eries that pose new questions using old data. Put another way, it should contribute to a publi-
cally available and useable behavioral phenotype database.

●● It should produce an intact data trail that enables others to trace the connection back from 
published summary statistics and graphs to the raw data.

We have developed and successfully used such a system. A major part of the development was 
the creation of an open source Matlab™ toolbox that facilitates the analysis of the rich time-
stamped event records that modern computerized behavioral testing generates. The toolbox puts 
in the hands of investigators with limited programming experience the ability to extract from 
such records sophisticated statistics using only a few high level commands. The design of the 
toolbox ensures an intact data trail. Before presenting the system and the toolbox and some of the 
results obtained using them, we elaborate on the properties of an effective cognitive phenotype.
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Handbook of Neurobehavioral Genetics and Phenotyping 508

Mechanisms, Not Procedures

In the experimental literature on the neurobiology of learning and memory, there is a tendency 
to assume something like a one-to-one mapping between various experimental procedures and 
underlying mechanisms. Classical (aka Pavlovian) conditioning and instrumental (aka operant) 
conditioning are different procedures. The behavioral changes produced by these two proce-
dures are often assumed to depend on two different underlying mechanisms. Fear conditioning 
and appetitive conditioning are different procedures. These differences in procedures are 
sometimes taken to reflect different underlying mechanisms, so that one speaks of the mecha-
nism of fear conditioning versus the mechanism of appetitive conditioning. Delay condition-
ing – teaching the subject to fear a brief light or tone – and context conditioning – teaching a 
subject to fear the experimental chamber – are also different procedures, and here again, inves-
tigators speak as if the learning that occurs in these different procedures were mediated by 
different mechanisms. And, for a final example, even such subtle differences in procedure as 
the difference between delay and trace conditioning procedures lead some investigators to 
write as if these procedures reflected the functioning of two different mechanisms.

In our view, no learning procedure maps to any single underlying mechanism. They all reflect 
the operation of many different mechanisms, where by mechanism we understand some rea-
sonably self-contained machinery whose principal components are specified by a modest num-
ber of genes. The Krebs cycle is one example of what we have in mind by “mechanism”. We 
mention it because it is, on the one hand, a fairly complex chunk of molecular biological 
machinery, but, nonetheless, it is a self-contained functional unit, whose basic components are 
specified by a modest number of genes (on the order of 20). The circadian clock is a more 
behaviorally relevant example.

Mechanisms are clearly distinct from traits. Height is a trait, not a mechanism, and we men-
tion it because we doubt that anyone imagines that there is a corresponding height mechanism, 
whereas we do imagine that there is a mechanism underlying aerobic metabolism. The behav-
ioral measures commonly made in the above mentioned learning protocols are analogous to 
measurements of traits, not measurements of signature quantitative properties of underlying 
mechanisms.

Associative learning is a procedure insofar as it presents to the subject two distinct events 
(e.g., tone onsets and shock onsets) that are, at least in the mind of the investigator, temporally 
paired. However, associative learning is almost universally taken to be not just a procedure but 
also a mechanism. From an historical perspective, the belief in association formation as a basic 
mechanism of learning gave rise to the experimental procedures. They were devised in order 
to determine the laws that governed the operation of the presumed mechanism. One reason for 
questioning whether the procedures cited earlier (classical, instrumental, delay, trace, context, 
appetitive, and fear conditioning procedures) each depend on a distinct underlying mechanism 
is that the behavioral changes in all of these procedures are generally taken to be instances of 
associative learning. If that is true, and if association formation is in fact a mechanism, then 
those other procedures presumably measure various manifestations of one and the same 
underlying mechanism, not different mechanisms.

Functional Specificity

Genetic alterations are notoriously pleiotropic. Therefore, one wants to be as confident as con-
ditions permit that one’s measure reflects primarily (or, in the best cases, exclusively) the prop-
erties of a single target mechanism. One does not want it to be the case that many different, 
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20  A Cognitive Neurogenetics Screening System with a Data-Analysis Toolbox 509

quite unrelated mechanisms could affect one’s measurement in the same way. In short, there is 
a salient competence/performance distinction to be made. To make this distinction, it is impor-
tant to be able to show that many other measures that also clearly involve basic mechanisms of 
cognition are not affected by the genetic manipulation. The reasoning here is that these differ-
ent mechanisms will all invoke highly overlapping performance mechanisms when their opera-
tion is translated into observable behavior, so that if an altered measurement arises from 
changes in those performance factors rather than in the mechanism whose characteristics one 
intends to measure.

No Group Averages

It is not uncommon for investigators to average the trial-by-trial performance of the −/+ mice 
and of the +/+ mice in a learning protocol and compare the two group-average learning curves. 
The rationale for this is that the trial-by-trial performance of individual subjects within a group 
of a given genotype is highly variable. The averaging is intended to take out this “noise” and 
reveal the underlying “signal”. The problem is that if the underlying signal (the time course of 
the change in performance) is different in each of the subjects, then the resulting average is 
meaningless. In particular, as was pointed out more than half a century ago(Estes 1956), if each 
individual subject makes a step transition in performance (one trial learning) but different sub-
jects make steps of different sizes after differing numbers of trials, then averaging across sub-
jects produces a smooth, continuous, negatively accelerated learning curve that bears no 
resemblance to the learning curve in the individual subjects. Examination of learning curves in 
both human and animal subjects in a wide variety of experimental paradigms shows that this is 
often the case (Estes 1956; Rock 1957; Estes 1960; Gallistel, Balsam et al. 2004; Roediger and 
Arnold 2012). Therefore, it is essential to compute summary statistics for each subject rather 
than after averaging across subjects. And, it is best practice to report not simply the mean and 
standard deviation of these summary statistics but rather the entire distribution. This is easily 
done by giving cumulative distributions instead of bar graphs. The cumulative distributions of 
the statistics from each subject within a group take up no more room, make visual comparisons 
at least as easy, and convey much more information than do the bar graphs commonly used to 
compare group means.

Physiologically Meaningful Measures

A physiologically meaningful behavioral measure is a measure extracted from behavioral data 
that may be compared to neurobiological measures. The paradigmatic example is the scotopic 
spectral sensitivity curve of the human observer. This measure may be compared to the absorp-
tion spectrum of rhodopsin in the outer segments of rods (a photochemical measurement). 
The fact that the in situ absorption spectrum of rhodopsin superimposes on the behaviorally 
determined spectral sensitivity curve is an almost conclusive proof that the mechanism of light 
transduction in the dark-adapted observer is the isomerization of rhodopsin (because absorp-
tion spectra are molecular signatures; every compound has a different signature). Another 
example is the behavioral measurement of the period and phase of the free-running circadian 
clock. These measures may be compared to the measurement of, for example, the period and 
phase of the transcription of the pergene in the suprachiasmatic nucleus, as visualized by fluo-
rescence. Other examples are behavioral measurement of the refractory periods and conduc-
tion velocities of the reward neurons in the medial forebrain bundle of the rat (Gallistel, Shizgal 
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et al. 1981; Shizgal and Murray 1989). Examples of behavioral measures that cannot be com-
pared to neurobiological measurements are the mean time that a mouse takes to swim to the 
hidden platform in a water maze or the percentage of time that it spends in the quadrant where 
the hidden platform used to be.

An example of a physiologically meaningful behavioral measure in the study of the associa-
tive learning mechanism is the measurement of the width of the window of associability (cf 
Gluck and Thompson 1987): How close in time do two events have to be in order for an asso-
ciation to form? Schneiderman and Gormezano (1964) made such measurements in the rabbit 
eye-blink preparation. They measured variation in the trials to the acquisition of a conditioned 
blink as a function of variation in the interval between the conditioned stimulus (CS for short) 
and the unconditioned stimulus (US). Their results suggested that associability peaked when 
US onset followed CS onset at a latency of 0.5 s and fell to near 0 when the CS–US interval was 
increased to 2 s. In the early publications on the associative conditioning of the sensory syn-
apses on Aplysia gill-withdrawal motor neurons, it was reported that the electrophysiologically 
measured process of alteration in synaptic conductance showed a quantitatively similar win-
dow of associability. This was taken as evidence that what was being measured at those 
Aplysiasynapses was the mechanism of association(Hawkins, Carew et  al. 1986). In other 
words, the measurements made by Schneiderman and Gromezano in the rabbit eye-blink 
preparation were taken to be those of an association-forming process at the synaptic level that 
was quantitatively the same in Aplysia and the rabbit. This strongly suggested an essentially 
universal, evolutionarily conserved synaptic mechanism of association formation.

Although the Schneiderman and Gormezano measures continue to be cited in recent elec-
trophysiological work on the cerebellar substrate for eye-blink conditioning (Kalmbach, Voicu 
et al. 2011), their results are now known to be not generally valid. Schneiderman and Gromezano 
failed to take account of the critical role of the US–US interval in determining the effect of the 
CS–US interval on the rate at which conditioning progresses (Gallistel and Gibbon 2000). 
Increasing the US–US interval in rabbit eye-blink conditioning can reduce trials to acquisition 
by two orders of magnitude. It can render conditioning with a 2 s CS–US interval considerably 
faster than conditioning with a 0.5 s CS–US interval measured by Schneiderman and 
Gormezano(Brelsford and Theios 1965; Levinthal 1973; Levinthal, Tartell et al. 1985).

More generally, the data on the window of associability for long-term potentiation (LTP) and 
long-term depression (LTD) and other quantitative properties of processes that modify synap-
tic conductances are in wide disagreement with the behaviorally measured properties of asso-
ciation formation (Gallistel and Matzel 2013; Hesslow, Jirenhed et al. 2013). This is a reason for 
skepticism about the claim that these synaptic processes are the mechanism of association.

A more promising example of a physiologically meaningful measure is the measurement of 
the accuracy and precision with which the conditioned response (CR) is timed. It has, for exam-
ple, long been known that the conditioned eye-blink is like other conditioned responses in that 
the latency between CS onset and the conditioned response is proportional to the CS–US inter-
val, with the result that the blink occurs at the time at which the US is expected, that is, it pro-
tects the eye at just the moment at which experience indicates that protection is most 
needed(Schneiderman and Gormezano 1964; Kehoe, Graham-Clarke et  al. 1989; Kehoe and 
Napier 1991; White, Kehoe et al. 2000). As with the timing of other conditioned responses, the 
trial-to-trial variability in the latency of the CR increases in proportion to the mean latency 
(White, Kehoe et al. 2000). This is an example of the ubiquitous scalar variability in CR timing 
(Gibbon 1977). Scalar variability in response timing is an aspect of the more general phenome-
non of time scale invariance in conditioning (Gallistel and Gibbon 2000).

The Purkinje cells in the second layer of the cerebellar cortex play a critical role in the condi-
tioned eye-blink(Jirenhed, Bengtsson et  al. 2007). Signals generated by the CS arrive at the 
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Purkinje cell by way of the parallel fibers. These parallel fibers are the axons of the tiny densely 
packed granule cells in the lowest of the three layers of the cerebellar cortex (the granular layer). 
The axons from the granule cells rise upward through the overlying two layers to branch in the 
top layer, forming the dense parallel fiber system that runs along the folds of the cerebellar cortex. 
The enormous, flattened dendritic tree of the Purkinje cells straddles these parallel fibers, so that 
each Purkinje cell gets inputs from tens of thousands of granule cells. By contrast, the signal from 
the US arrives at a Purkinje cell by way of a single climbing fiber from the olivary nucleus.

The Purkinje cell has a high rate of spontaneous activity, even when the excitatory input from 
the parallel fibers is blocked (Cerminara and Rawson 2004). Stimulating pulses from an elec-
trode on the mossy fibers driving the granule cell input to a given Purkinje cell elicit an addi-
tional spike at a 1–4 ms latency following each pulse, with a probability of about 0.5 (Hesslow, 
Jirenhed et al. 2013, Figure 3C).

When the onset of mossy fiber stimulation repeatedly predicts a stimulus to the climbing 
fiber innervating the same Purkinje cell, after a fixed CS interval in the range from 150 ms to at 
least 400 ms, there eventually appears a pronounced pause in the firing of the Purkinje cell. The 
conditioned pause lasts only as long as the CS–US interval, even on probe trials with no US, 
and even though the CS stimulation of the mossy fibers continues for several hundred ms after 
the end of the CS–US interval(Jirenhed, Bengtsson et al. 2007; Svensson, Jirenhed et al. 2010; 
Jirenhed and Hesslow 2011; Jirenhed and Hesslow 2011; Wetmore, Jirenhed et al. 2014). In 
other words, the output of the Purkinje cell shows a timed conditioned response. Therefore, it 
is possible to compare the accuracy and precision of the electrophysiologically measured pause 
in Purkinje cell firing to the accuracy and precision of the behaviorally measured timing of the 
conditioned response (although this has yet to be done).

Because the scalar timing of conditioned responses is a ubiquitous feature of conditioned 
behavior, extending over orders of magnitude variation in the CS–US interval, measuring the 
mean and coefficient of variation in CR latenciesis a promising means of forging strong links 
between the behavioral phenomenon and the underlying neurobiological mechanisms. So, too, 
are other timing-based measures, such as the function relating trials to acquisition to the ratio 
between the CS–US interval and the average US–US interval (Gallistel and Gibbon 2000; 
Balsam and Gallistel 2009; Ward, Gallistel et al. 2012).

Importance of Large-scale Screening and Minimal Handling

A genetic approach, particularly a forward genetics approach, requires screening mutant mice 
on a large scale. Practical, large-scale behavioral screening, like large-scale gene sequencing, 
requires highly automated methods that make minimal demands on human labor. Because 
handling of the mice is highly stressful to them, and because stress has ubiquitous behavioral 
and physiological effects, the screening method should minimize the handling of the subjects 
while maximizing the amount and number of physiologically meaningful quantitative meas-
ures obtained.

Utilizable Archived Data with Intact Data Trails

Phenotyping data are like genotyping data in that when properly gathered and archived they 
are likely to be useful well into the future, in ways not foreseen when they were first gathered 
and analyzed. Large-scale highly automated phenotyping generates massive electronic data 
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Figure 20.1  Schematic of the automated cognitive neurogenetics screening system. Each mouse lives in a test 
environment consisting of a polypropylene nest tub connected to a Med Associates™ mouse test chamber by 
an acrylic tube. Eight environments are housed in a steel cabinet 1.22 m wide, 0.61 m deep and 1.98 m high. 
A Windows™ PC running MedPC™ controls two cabinets (16 test environments). A local area network (LAN) 
connects the experiment-control computers to a remote server running a data-analysis and graphing program 
written in TSsystem©, an open source Matlab™ toolbox. The control computers update the data files for each 
mouse every 10 minutes. The server reads those files every 15 minutes, copying the data into files that live “in 
the cloud” as well as on the server’s hard disk. Two or more times per day, the TSsystem© software analyzes 
and graphs the data, giving investigators quasi real time access to the progress of each mouse wherever and 
whenever there is internet access. The server software applies investigator-specified decision code to the 
incoming data to decide when a mouse has completed a given protocol. If so, it automatically advances the 
mouse to the next protocol by writing to a parameter file (Param File) that is read by the MedPC™ code every 
few minutes. Source: Gallistel, Balci et al. 2014.

files. Extracting meaningful results requires extensive computerized analysis of the raw data. 
Investigators who direct a laboratory that depends on computerized analysis of masses of raw 
data are likely to be familiar with the obstacles to the maintenance of clear data trails under 
these conditions. The computer code to do the analysis is often produced by several different 
programmers, with varying degrees of skill at code development and error checking. The code 
is often poorly documented and hence almost unusable by anyone but the author, who may 
have left the lab years ago. There is an accumulation of results files, produced by code at vary-
ing stages of development, applied to varying subsets of the data. It often becomes unclear 
which code applied to which data generated which results, which is to say that the trail from 
published summaries and graphs back to the raw data becomes messy and obscured. It is there-
fore highly desirable that the data-analysis environment be so designed that all the results, both 
intermediate, and published, remain together in a single file with the raw data from which they 
were extracted, organized in such a way as to make clear the trail from the published results 
back to the raw data and in such a way as to give subsequent investigators in other labs effective 
access to the raw data and various intermediate statistics extracted from it.

The System

The system is schematized in Fig. 20.1. The salient features are:

●● Each mouse lives 24/7 in a test environment consisting of a standard polypropylene tub con-
nected to a Med Associates™ mouse test chamber by an acrylic tube. It moves back and 
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20  A Cognitive Neurogenetics Screening System with a Data-Analysis Toolbox 513

forth between the tub and test chamber at will, obtaining its daily ration of food pellets by 
performing the programmed tasks.

●● There is no handling of the mouse in the course of testing it with several different protocols
●● Each mouse is individually advanced from protocol to protocol by decision software that 

applies user-specified decision criteria to the incoming data from the current protocol.
●● The TS system software is so designed that the raw data, the MedPC code that controlled the 

protocols, and all of the results derived from the raw data are automatically stored in a single 
Matlab™ structure, insuring an intact data trail and greatly facilitating the archiving of the 
experimental results in a form accessible by and intelligible to others.

●● Commercial cloud-based automatic file synchronization provides state-of-the-art back-up, 
off-site storage, and ready access to the latest results for investigators in the lab and off site.

The Toolbox

The principles that guided the development of the toolbox are:

●● Keep it all together. The raw data and the results extracted from them should be processed in 
such a way that they are inseparable one from the other and from the code that governed the 
operation of the testing equipment and the logging of the data when the data were gathered. This 
latter process-control code is in essence the protocol for the experiment that generated the data.

●● Make a clear trail. It must be possible to regenerate the published analyses from the raw data, 
that is, the trail from the raw data to the figures and tables and numerical values that appear 
in the published reports should be retraceable without difficulty.

●● Make complex analyses easy. One can pose many different questions when one has a rich 
time-stamped database, discovering important results that were not foreseen when the 
experiment was designed. However, this is only likely to happen when it is relatively easy and 
quick for an appropriately trained researcher to pose a question to the data and quickly get 
an answer. If one has to write more than a few lines of code to get an answer to a new ques-
tion, there will be many fewer questions posed to the data.

●● Better buy than build. The analytic software should be embedded in a powerful general pur-
pose, widely used, securely and extensively supported programming, statistics, and graphing 
system, such as Matlab™, Python, Mathematica™, or R.

In conformity to the last principle, we decided to have our data-analysis software take the 
form of a Matlab™ open source toolbox.

In conformity to our first principle – keep it all together – the software system puts the raw 
data and all the results that come from analyses of that raw data into a single “structure”. 
A structure in Matlab™ is a data type that gives flexibility and intelligibility in organizing vast 
and diverse data, while making all the data, both numerical and textual, accessible to computa-
tion. A Matlab™ structure is a hierarchically structured set of data fields with user-chosen 
names. The flexibility comes from the hierarchical structuring and from the fact that there are 
no restrictions on what can be put into a field; one can put in anything from a single number to 
a long text to another complex structure (that is, structures may be embedded within other 
structures). The intelligibility comes from the hierarchical arrangement of numerically index-
able fields and from the fact that the user creates the field names, just as they would create 
headings in a spreadsheet.

The accessibility comes from the fact that the hierarchically structured field names are used 
to access the data to be processed. For example, the command:

mean(Experiment.Subject(3).Session(5).VisitDurations)
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Handbook of Neurobehavioral Genetics and Phenotyping 514

computes the mean of the column (that is, field) of visit durations during the fifth session for 
the third subject. “Experiment” is the name of the entire structure. “Subject” is an indexed field, 
with a different index number for each subject. Under each “Subject” field, there are indexed 
“Session” fields. Each of these session fields often has arrayed under it a large structure with 
many additional layers of fields. In this simple example, one of those fields gives the durations 
of successive visits to some location of interest, such as a feeding hopper. As this command 
illustrates, the data are accessed by way of the field hierarchy.

A Matlab™ structure is analogous to the hierarchically organized data arrays that users cre-
ate in spreadsheets. The headings above the columns of numbers in a spreadsheet tell you what 
the numbers in a column represent and the hierarchical arrangement of the headings tells you 
how the columns of numbers are related to one another. Spreadsheet treatment of voluminous 
time-stamped data is not feasible. There are too many columns; they are too long; the hierar-
chical structure is too complex; the computations provided by the spreadsheet are not diverse 
and powerful enough; those provided take much too long when they operate on really large 
masses of data; and the graphic presentation resources are not sufficient.

The numbers specifying visit durations in the above example are not in the raw data. The 
durations of visits, like essentially all numbers of any interest, must be computed from the raw 
data. These computations generally begin by finding sequences of (generally non-contiguous) 
events. Whenever a sought-for sequence is found, a statistic, such as an event-duration, is com-
puted from the time stamps associated with the events that compose the sequence. The statis-
tic is stored within the same structure that contains the data from which it was computed – in 
a field created by the user. Suppose, for example, that one wants to know the durations of suc-
cessive pokes into a feeding hopper. The onset of each poke is indicated by a time-stamped 
beam interruption. The offset of the poke is indicated by the next occurring beam-completion 
event (when the mouse withdraws its head from the hopper). This latter event will often not be 
the next event in the sequence of recorded events. Other events, such as pellet deliveries or 
light offsets or onsets, may intervene. To compute the duration of single poke, the data-analysis 
program must find the onset event, find the next later offset event, and then subtract the time 
stamp of the former from the time stamp of the latter. It must do this for each of the thousands 
of pokes that may well occur in the course of 24 hours.

Behavioral events have hierarchical structure. A sequence of pokes into the same hopper 
uninterrupted by any events that happened elsewhere (for example, a poke into another hopper 
or an exit from the test box) constitutes a visit event. The duration of the visit event encom-
passes the durations of all the pokes and interpoke intervals that comprise that visit. The data 
analysis code must make it easy to abstract multiple levels of structure from the sequence of 
time-stamped microevents, and compute statistics for each level of behavioral structure. Our 
system accomplishes this by allowing users to define different kinds of “trials” in extremely 
versatile ways and then to look for substructure within a kind of trial.

Our concept of a trial was introduced in scare quotes, because, although it was inspired by 
the practice common in learning experiments of organizing events into trials, we have general-
ized the notion to any sequence of events or even any of several disjointed such sequences. 
Thus, “trial” simply means “interesting stretch of data”. To a good approximation, any sequence 
of non-contiguous events and non-events that a human record scorer could be instructed to 
look for can define a trial and become the basis for the automated parsing of the raw data into 
“trials”. For example, a visit to Feeding Hopper 1 might define a trial. It might be defined by the 
OR of the following two sequences:

[PokeOn1 PokeOff 1 – PokeOn1 PokeOn2] or [Poke On1 PokeOff1 – PokeOn1 Tube1]

AQ9

c20.indd   514 9/24/2016   5:49:46 PM

galliste
Cross-Out

galliste
Cross-Out



20  A Cognitive Neurogenetics Screening System with a Data-Analysis Toolbox 515

The first sequence detects the mouse coming to Hopper 1, making a sequence of pokes, and 
then going to Hopper 2, while the second detects the mouse coming to Hopper 1, making a 
sequence of pokes, and then leaving the test box. The detection of either sequence detects a 
visit to Hopper 1. Figure 20.2 illustrates the progress of the computation that detects the first 
of these two trial-defining defining sequences. Detection of either sequence serves to define 
(this particular kind of ) trial.

The sequence of trials of any given kind forms an indexed array of fields under the field for 
that kind of trial. Suppose, for example, that we have defined two kinds of trials, Hopper1_
Visits and Hopper2_Visits. Suppose further that there were 48 visits to Hopper 1 and 27 visits 
to Hopper 2 in a given session (say, Session(3)) by a given subject (say, Subject(8)). Then, sub-
ordinate to “Experiment.Subject(8).Session(3).TrialHopper1_Visits”, one would find:

Trial (1)
Trial (2)

al (48)

•
•
•
Tri

State of
Search Event

Codes

LightOn1

LightOff1

LightOn2
Tube1
Tube2
PokeOn1
PokeOff1

PokeOff1
PokeOn1

PokeOff1
PokeOn1

PokeOn1

PokeOn2

Feed1

time(1)

PokeOff1 time(2)

3210
Time
Stamps

Figure 20.2  The progress of the computation that detects one of the two different sequences that define a visit 
to Hopper 1 (see text for the defining sequences) is illustrated by the steps in the solid line to the left of the 
hypothetical sequence of events. When the first event in the definition is encountered, the search steps from the 
0 state to the 1 state; when the second is encountered, it steps to the 2 state. When a negating event (in this case, 
PokeOn1) is encountered, it steps back to the previous state. When the third (positive) event is detected while the 
search is in State 2, it steps to State 3, which, in this example, is the terminal state. Attainment of a terminal state 
signifies the discovery of a stretch of data constituting a user-specified “trial” of a particular kind. The user may 
specify any number of different kinds of trials. Any one kind may be defined by the ORing of any number of 
different trial-defining sequences. A trial-defining sequence may have several negating events in between any 
two positive events anywhere in the sequence. Encountering any one of the negating events steps the search 
back to its preceding state. Once that backward step has been made, further encounters with negating events in 
that same sequence of negating events will not step the search back to a still earlier state. All of the events have 
time stamps, but we indicate here only the two that may be used to compute the duration of the visit.
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and subordinate to “Experiment.Subject(8).Session(3).TrialHopper2_Visits”, one would find:

Trial (1)
Tr al (2)

Trial (27)

i
•
•
•

Each of these indexed subfields (one for each instance of a given kind of trial in a given ses-
sion with a given subject) would itself contain a structure of user-specified fields. These fields 
would contain user-specified statistics computed from the sequence of the events falling 
between the initial event and the final event in one of the sequences that defined that kind of 
trial – all of the events in that stretch of data, not just the events used to define the trial, that is, 
to pick out that stretch of data.

Core Commands
The TS (for time-stamped) toolbox has over 50 commands. However, the core commands, 
which do most of the work, and which the user must master in order to use the toolbox, num-
ber only eight. Several of these functions routinely call helper functions. A helper function 

●● TSmatch. This is a largely hidden workhorse. The user rarely calls it directly, but other core 
commands often call it. It does the above-described searching for sequences of not-necessarily-
contiguous events. TSmatch can search simultaneously for more than one sequence. When it 
finds any one of the sequences that it is searching for, it returns a number indicating which 
sequence it found and it returns the row numbers for all of the positive events in that sequence.

●● TSparse. This command computes first-order statistics from the sequences found by 
TSmatch. For example, the computation of the durations of the intervals between two events 
within a found sequence (e.g., Visit Duration = [time of EndVisitEven]  –  [time of 
StartVisitEvent]). The user specifies the computation to be performed. This command is 
usually the user-specified helper function for TSsessionstat and TStrialstat. Those com-
mands specify the fields into which the results of its computations are put.

●● TSsessionstat. This command computes user-specified session-level statistics, such as the 
times of occurrence of every feeding or every poke or peck or lever press in a session (and 
considerably more complex statistics). It puts the results in a field whose name is specified by 
the user. This command often calls TSparse as a helper function, but it can call any user-
specified function instead, including user-created functions that do arbitrarily complex 
computations.

●● TStrialstat. This command does the same thing as TSsessionstat but it operates on the 
sequences demarcated by user-defined “trials” instead of operating on the data from entire 
sessions. It extracts statistics from sequences found within data stretches demarcated by 
trial-defining sequences (for example, from sequences with stretches of data that constitute 
“visits”). This allows the user to find and extract statistics from hierarchical structure in 
behavior (for example, how far into each visit a given event occurs).

●● TSapplystat. This command computes one or more higher-order statistics from one or more 
lower-order statistics. For example, the poking rate during a trial is computed from the num-
ber of pokes and the duration of the trial ([number pokes during trial]/[duration of trial]). 
The user specifies the fields containing the input statistic(s), the names of the fields to contain 
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the output statistic(s), and the computation that extracts the output statistics from the input 
statistics.

●● TScombineover. This command compiles statistics from lower levels (e.g., the trial level or 
session level) into fields at higher levels (e.g., the session, subject, or experiment level), which 
contain, for example, the poking rates from every trial of a given kind in a given session, or 
across all sessions for a given subject.

●● TSlimit. This command limits the scope of the other commands. Many analyses only make 
sense when conducted on a subset of the data or the available statistics. One can limit the 
scope to a range of trial index numbers, to a range of session index numbers, to a range of 
subject index numbers, or on the basis of the phase (experimental condition/protocol) dur-
ing a given session.

The core commands permit the user to specify, in powerful and flexible ways, the statistics 
that are to be computed, using the immense resources of the Matlab™ platform – in conform-
ity with our better buy than build principle. They operate on data contained in previously 
created fields within the overarching “Experiment” structure, and they store the results in a 
newly created field within the same structure – in conformity to our keep it all together prin-
ciple. Each trial-oriented command operates on every trial (of a specified kind) in every ses-
sion for every subject – unless the user restricts the range of application. The ability to restrict 
the range of application is also powerful, flexible, and general. The commands themselves may 
be elaborated in small sets, indeed, even as single commands, using the “cell” feature of the 
Matlab™ script editor. This feature allows the user to issue subsets of commands (“cells”) 
without leaving the script editor. Thus, there is only one code file for the entire experiment. 
The code in that file is a sequence of (mostly) core commands. These sequences of core com-
mands are grouped into more or less self-contained small cells, containing as few as one com-
mand or, rarely, as many as perhaps 10 commands. Each cell answers a question that the 
experimenter has posed to the data. The commands are so high level that they are almost 
self-documenting; that is, it is generally obvious what the command is computing from which 
data and where it is putting the result. The script grows naturally one cell at a time as the 
investigator poses one question after another.

Although the data-analysis script grows one small cell at a time, calling the script from the 
Matlab™ command window executes the entire analysis, creating de novo the Experiment 
structure, filling it with the raw data (assuming that those files themselves are still accessible), 
creating and filling all the fields within the Experiment structure that contain statistics derived 
from the raw data. This conforms to our keep it all together and our keep a clear trail principles. 
If the archived raw data files have themselves been lost – it has been known to happen! – there 
is no problem, because the raw data are obligatorily(!) copied into the Experiment structure 
prior to any analysis of them. The script file enables the user or anyone else to reconstruct the 
analysis that led to the published results.

Powerful Graphics Commands
The toolbox contains three powerful graphics commands that enable users to create graphics 
such as the raster plots in Figs 20.3 and 20.4, which we have found particularly useful for visual-
izing behavior while sticking very close to the raw data. In addition to the TSraster command, 
the TSplotcumrecs command plots cumulative records, and TSplotcdf plots cumulative distri-
butions and. Cumulative records are a powerful and versatile way of visualizing changes in a 
measure over time or over trials, such as occur, for example, in individual-subject learning 
curves (see Figs 20.5 and 20.6). Cumulative distributions provide a much more powerful and 
information-rich way of comparing measures from different conditions or different strains 
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(see Figs 20.7 and 20.8). The high-level graphics commands in the Toolbox supplement the 
immense graphical resources provided by the Matlab™ platform.

Results
The mechanisms that enable animals to locate themselves in time and space are among the 
most basic mechanisms of cognition. Konopka and Benzer (1971)showed the way to a forward 
genetics approach to temporal localization mechanisms when they successfully screened for 
genetic abnormalities in the circadian clock of Drosophilamelanogaster. The circadian clock is 
a mechanism of cognition because one way in which animals locate themselves in time is by 
reading the phase of their circadian clock and because one way in which they localize events in 
time is by remembering the phase of their circadian clock at the time the event occurred 
(Gallistel 1990). Computing the difference between the current phase of their clock and the 

100

CLOCK +/+ CLOCK −/+

Trial Time (s)

CLOCK −/−

90

80

70

60

Tr
ia

l N
um

be
r

50

40

30

20

10

90

80

70

60

50

40

30

20

10

0 10 20

100

90

80

70

60

50

40

30

10

20

0 10 200 10 20

Figure 20.3  The command TSraster in our Matlab™ toolbox generates raster plots like these. Each plot shows 
the performance of a mouse over approximately 100 trials in a “peak procedure” protocol. In this protocol, a 
pellet is delivered into the hopper in response to any beam interruption at or after 10 s has elapsed since the 
illumination of the hopper, which illumination serves as a signal that food is to become available at the end of 
the fixed 10-s interval. On some trials, called probe trials, the food is not delivered. These plots are computer 
generated but they are best understood by imagining that there is a pen that traverses the paper horizontally 
from left to right on each trial, moving at an unvarying speed. When the mouse’s head is in the hopper, 
interrupting the infrared beam across the hopper opening, the pen is “down”, writing on the paper; whenever 
the head is not in the hopper (not interrupting the beam), the pen is “up”, not writing on the paper. Thus, the 
black lines show the intervals when the head was in the hopper; the white interruptions, the intervals when it 
was not. When food is delivered, a small circle is superposed on the black line. On food trials, the head is 
withdrawn soon after the pellet is released. On probe trials, there is no pellet and the mouse keeps its head in 
the hopper well beyond the expected time of pellet release. The variations in the well marked onset of poking 
may be automatically extracted to constitute the so-called start times statistic. The variations in the times of 
last head withdrawal on probe trials may be automatically extracted to constitute the so-called stop-times 
statistic. Together these statistics define the peak interval, the interval that brackets the time when the mouse 
expects food delivery. The +/+ mouse was a wild-type C57/B6; the +/− and −/− mice were, respectively, 
heterozygous and homozygous CLOCK null mutants. These are in plots of the raw data, yet they enable one to 
see at a glance that the differences between the strains are at best very small. They are all timing the pellet 
release with the same degree of accuracy and precision (Cordes and Gallistel 2008). Plots like these may be 
automatically generated and emailed to the researchers while the testing is in progress.
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remembered phase at which food becomes available makes possible the circadian food-antici-
patory activity shown in Fig. 20.4 (Gallistel 1990).

Computing the difference between the times at which two events occurred enables the tim-
ing of intervals, which underlies most forms of conditioned behavior (Gallistel and Gibbon 
2000; Balsam and Gallistel 2009; Gallistel and Balsam 2014).Just as one can measure the phase 
and period of a clock both behaviorally and neurobiologically, so, too, one can measure the 
accuracy and imprecision of interval timing both behaviorally and at the sites in the nervous 
system where the intervals between events are remembered and used to time conditioned 
responses. As reviewed in the introduction, one such site has already been discovered: the 
Purkinje cells in the cerebellum show a pause in their firing whose duration is approximately 
that of the CS–US interval used to artificially condition the cerebellar eye-blink circuit, using 
electrical stimulation of mossy fibers and climbing fibers in place of the CS and the US, respec-
tively. It has also been shown that the firing of place cells in the hippocampus signals both the 
rat’s location within a familiar environment and its location within a familiar temporal interval 
(MacDonald, Lepage et al. 2011; Eichenbaum 2013).
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Figure 20.4  Raster plot used to visualize the development of circadian food-anticipatory activity in a mouse with 
two periods of access to food (dawn feeding and dusk feeding) in each 24-hour period. The automatically scored 
daily onsets of activity anticipating the dusk feeding are marked by purple asterisks. Each line records every poke 
made into either of two feeding hoppers (black dots) throughout a 24-hour day/night cycle. The red and green 
dots mark every pellet delivery. The base-left black triangles mark the daily offsets of the house light in the test 
box; the base-right black triangles mark the daily onsets of the house light. Similarly, the cyan triangles mark the 
(silent) onsets and offsets of food availability in a 4-hour period beginning one hour before dusk and the 
magenta triangles mark the onsets and offsets of food availability in the 4-hour period beginning 2 hours before 
dawn. During these intervals, the mouse earned pellets delivered into the two hoppers by performing the tasks 
required by our experimental protocols (the matching, 2-hopper autoshaping, and switch protocols). Thus, the 
gathering of data on the learning of the time of day at which important changes occur proceeds concurrently 
with the gathering of other measures. This complex data-rich plot was produced by a single command in the 
Toolbox (the TSraster command). (See color plate section for the color representation of this figure.)
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We use the switch protocol (Balci, Papachristos et al. 2008; Balci, Freestone et al. 2009) to 
measure the accuracy and imprecision of interval timing. In this protocol, the center hopper 
(see Fig. 20.1) lights up to signal the mouse that it can start a trial. When the mouse pokes into 
the illuminated center hopper, the light there extinguishes and the two flanking hoppers light 
up. The computer randomly selects one of the flanking hoppers to be the hot hopper. If the 
“short” hopper is selected, then a pellet is delivered there in response to the first poke at or after 
4 s; if the “long” hopper is selected, then a pellet is delivered there in response to the first poke 
at or after 12 s. The mouse soon learns to go first to the short hopper, and then to switch to the 
long hopper on the long trials, when a pellet is not forthcoming at the short hopper at the end 
of 4 s. If the mouse switches from the short to the long hopper on a short trial so that its first 
poke at or after 4 s is into the long hopper, the trial ends without a pellet delivery. If it switches 
too late on a long trial, so that its first poke at or after the long latency is into the short hopper, 
the trial again ends without a pellet release. However, the mouse soon learns to switch midway 
between the short and long delivery latencies, so that it gets a pellet on the great majority of 
trials. When it has learned to do this, we shorten the long release-latency to 8 s and then to 7 s 
and then to 6 s, thereby increasing the incentive to make tightly timed switches.

Our measure of its ability to time is the latency to depart from the short hopper on long tri-
als. We call this the switch latency. The extent to which the mean switch latency is accurately 
positioned halfway between the short and long pellet-delivery latencies measures the accuracy 
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Figure 20.5  Cumulative records visualizing the acquisition of autoshaped hopper entry in a 2-hopper 
autoshaping protocol with intermixed trials during which there is either a short (4 s) pellet-delivery latency on 
one hopper (Short) or a long (12 s) delivery latency on the other (Long). In hopper-entry autoshaping, the 
pending delivery of a pellet is signaled by the illumination of the hopper into which the pellet will be delivered. 
The measure plotted in these cumulative records is the difference between the poking rate during the intertrial 
interval when the hopper in question is not illuminated and the poking rate during a trial when it is illuminated. 
The average value of this measure is 0 or negative before a mouse learns to poke into the illuminated hopper in 
anticipation of the pellet delivery and positive after it learns to do so. The automatically detected inflection 
point in each plot, where the slope changes from 0 or negative to positive, is marked by a filled circle. (Note that 
some mice never developed anticipatory poking in one or both hoppers.) Multipanel plots of cumulative 
records are generated with a single command in the Toolbox (the TSplotcumrecs command.) The data are from 
Gallistel, Tucci et al. 2014. Source: Gallistel, Balci et al. 2014, with slight modifications.
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of timing (Balci, Freestone et al. 2009). The coefficient of variation, that is, the ratio between 
the standard deviation of the Gaussian component of the switch-latency distribution and its 
mean (see Fig. 20.7) measures the imprecision of its timing.

Using the fully automated system and three standard protocols: matching (Fig. 20.6), 2-hop-
per autoshaping (Fig. 20.5), and the switch protocol (Fig. 20.7), Gallistel, Tucci and others (2014)
screened two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type 
littermate controls. The Batface (Bfc, MGI:2656734) mouse mutants carry a single point muta-
tion within the β-catenin gene (Ctnnb1), which was identified in a large-scale N-ethyl-N-
nitrosourea (ENU) mutagenized screen (Nolan, Peters et al. 2000). Female L1 heterozygotes (x/
L1I) are heterozygous at the level of the L1-expressing cells, in that each cell expresses either the 
normal or the mutated gene. The L1 glycoprotein is expressed in neurons but not in astrocytes 
or oligodendrocytes in the central nervous system. It plays a role in neuronal migration, neurite 
outgrowth and guidance, fasciculation of axons, and myelination during development(Moos, 
Tacke et al. 1988; Hortsch 1996; Maretzky, Schulte et al. 2005; Maness and Schachner 2007).

The Batface heterozygotes showed reduced interval-timing imprecision (increased impreci-
sion) relative to their littermate controls (Fig. 20.8, bottom right panel, compare dashed versus 
solid plots); that is, the Batface heterozygotes were less precise than their wild-type controls. 
Surprisingly, the L1 heterozygotes showed increased precision (reduced imprecision) relative 
both to their wild-type controls and to the Batface wild-type controls (Fig. 20.8, top right panel) 
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Figure 20.6  Concurrent cumulative records of feeding-by-feeding income imbalance (gray) and feeding-by-
feeding visit duration imbalance (black) reveal matching behavior at a feeding-by-feeding level of resolution. 
The feeding imbalance measure is (F2–F1)/ (F2 + F1), where Fi is the number of pellets obtained from Hopper i. 
The Visit Duration imbalance measure is (T2–T1)/ (T2 + T1), where Ti is the time spent visiting Hopper i. These 
measures are linear transformations of the Herrnstein fractions commonly used to characterize matching. The 
Herrnstein fractions are the percent total income obtained from a given hopper and the percent of total visit 
time spent visiting that hopper. When the slopes of the cumulative imbalance records are the same, the mouse 
is matching the ratio of its average visit durations to the two hoppers to the ratio of the average incomes 
obtained from them. Put another way, the percent time spent visiting a hopper matches the percent income 
obtained from it. “Er” is the difference in the average slopes, which is twice the difference in the Herrnstein 
fractions. The mice are those in Fig. 20.5. The programmed income imbalance was reversed at the dashed gray 
vertical lines, producing the downward inflection in the gray plots. Note the rapid and abrupt answering 
change in time-allocation (the downward inflection in the black plots). The data are from Gallistel, Tucci et al. 
2014. Source: Gallistel, Balci et al. 2014, with modifications.
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and, a fortiori, to the Batface heterozygotes (compare top and bottom panels on the right of 
Fig. 20.8); that is, the L1 heterozygotes were more precise than their wild-type controls.

Our screen showed a high degree of functional specificity for these opposing effects of geno-
type in the two strains in that no other measure was affected by the within-strain differences in 
genotype. As just noted, the effect of genotype was in both cases specific to the imprecision of 
interval timing, not to its accuracy. In this same task, we also extract from the distribution of 
switch latencies, a measure of impulsivity and a measure of trials on task. The measure of impul-
sivity is the percent of the Weibull–Gauss mixture distribution ascribed to the Weibull compo-
nent. This component captures the tendency of some mice not to time their switch on some 
trials; that is, they go first very briefly to the short hopper, but they leave it well before the short 
delivery latency has expired. The little bump at the left of the probability distribution in the bot-
tom panel of Fig. 20.7 is the Weibull component of the mixture. The strength of this tendency 
(the size of the bump at short latencies) varies strikingly from mouse to mouse and also with 
conditions: when the long trials are made highly probable, this bump usually gets larger. We call 
this impulsivity because these short departures are not optimal (unlike the departures that are 
timed to fall after the short delivery latency and before the long one).The measure of trials on 
task is the height of the asymptote in the fit to the mixture distribution. If the mouse were always 
on task, this asymptote would be at 1, but the mouse observer, like the human observer is psy-
chophysical tasks, is rarely on task on every trial. Therefore, it is necessary to include a param-
eter that allows the cumulative distribution to asymptote below 1. Both impulsivity and trials on 
task would seem to be very likely to reflect genetic variation in performance factors, but there 
was the within-strain genotypic differences had no effect on these measures.

The within-strain genotypic differences also had no effect on the accuracy with which the 
mice matched the ratio of their visit durations to the ratio of the incomes in the matching pro-
tocol. And it had no effect on the rapidity with which the experimentally naïve mice began to 
cycle between the two hoppers in that protocol (the first protocol the mice were exposed to). 
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Figure 20.7  Measuring interval timing accuracy and precision using the 
switch paradigm. The slightly wiggly thick blue lines are the cumulative 
distribution of switch latencies. The thin red smooth curves superimposed 
on them are the best-fitting cumulative Weibull–Gauss mixture 
distributions. The thick red bell-shaped curves are the corresponding 
probability density distributions (the derivatives of the best fitting 
cumulative distributions). The thick dashed vertical running across all three 
plots marks the “short” (4 s) delivery latency, which was not varied. The thick 
black vertical within each plot marks the “long” delivery latency, which 
varied from 12 s to 8 s to 7 s in successive blocks of trials and from top to 
bottom panels in this figure. Notice that the Gaussian component of the 
probability density function is positioned approximately midway between 
the short and long latencies and that the precision (σ/μ) improves when the 
interval between the latencies is narrowed. Source: Gallistel, Balci et al. 2014. 
(See color plate section for the color representation of this figure.)
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There was a similar lack of genotypic effects on the speed with which mice learned to initiate 
trials in the 2-hopper autoshaping protocol (a measure of the rate of instrumental, aka operant, 
learning), on the distribution of trial-initiation latencies in that protocol, and on the trials to 
acquisition of anticipatory hopper entries in that protocol (a measure of the rate of classical 
conditioning, aka Pavlovian conditioning).

Summary
A fully automated screening system, using a test environment in which the mice live 24/7, 
makes physiologically meaningful quantitative measures of several different basic mechanisms 
of cognition on many mice simultaneously (high screening volume) with very little demand on 
the time of investigators and technicians (low investment of human time). The mice are not 
handled during the screening (minimizing the effects of handling stress). Many of the measures 
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Figure 20.8  Cumulative distribution of Gaussian means and Gaussian coefficients of variation (s/m) for 
heterozygotes (dashed plots) and wild-type littermate controls (solid plots) for L1 strain (top panels) and 
Batface strain (bottom panels) across successive blocks of trials in which the long delivery latency was reduced 
from 12 s (Blck 1) to 8 s (Blck 2) to 7 s (Blck 3) to 6 s (Blck 4). The p values come from 2-way ANOVAs: pg is for 
main effect of genotype; pb is for main effect of block. Note that the block (that is the variation in long delivery 
latency) had a highly significant effect on the mean of the Gaussian component of the Weibull–Gauss mixture 
distribution: the shorter the long delivery latency, the shorter the mean switch latency, regardless of genotype, 
as shown by the fact that the plots for successive blocks move substantially leftward (toward shorter mean 
switch latencies) in the panels on the left. The genotype had no significant effect on this mean, as shown by 
the fact that the solid and dashed plots more or less superimpose in the panels on the left. Thus, the accuracy 
of interval timing is unaffected by genotype. The main effect of block on precision is also highly significant 
(panels on the right): the narrower the difference between the short and long release latencies, the more 
precisely the mice time their switches. On this measure, however, the main effect of genotype is also 
significant, but in opposite directions: in the L1 strain, the heterozygotic females time their switches more 
precisely than do their wild-type controls; whereas in the Batface strain, the opposite is true (compare solid 
versus dashed plots in the panels on the right).
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are physiologically meaningful in that comparable measures can be made at the neurobiologi-
cal level of analysis. An open source Matlab™ toolbox greatly facilitates the extraction of 
meaningful measures from length records of time-stamped events. The toolbox is designed in 
such a way as to guarantee an intact trail from raw data to published measures. The eight core 
commands in the toolbox operate at such a high level that answers to most questions posed of 
the data are extracted with a small number of commands (1–6), in code that is much more 
transparent than code written in lower-level languages.

The mechanism mediating the measuring of interval durations is a particularly promising 
focus for a genetic approach to basic mechanisms of cognition. Screens made with the here-
described fully automated screening system have revealed functionally specific effects of 
within-strain genotypic differences on the precision with which mice measure intervals meas-
ured in a few seconds. These results may make possible the kind of genetic approach to the 
neurobiology of interval timing that has been conspicuously successful in the case of the circa-
dian clock.
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