Draft 6/1/02 of talk @ SQAB in Toronto 05/24/02, to be published in Behavioural Processes

Conditioning from An Information Processing Perspective
C. R. Gallistel
Abstract

The framework provided by Claude Shannon’s (1948) theory of
information leads to a quantitatively oriented reconceptualization of
the processes that mediate conditioning. The focus shifts from
processes set in motion by individual events to processes sensitive to
the information carried by the flow of events. The conception of what
properties of the conditioned and unconditioned stimuli are
important shifts from the tangible properties to the intangible
properties of number, duration, frequency and contingency. In this
view, a stimulus becomes a CS if it its onset substantially reduces the
subject’s uncertainty about the time of occurrence of the next US.
One way to represent the subject’s knowledge about the time of
occurrence of the CS is by the cumulative probability function. This
function has two limiting forms: 1) The state of maximal uncertainty
(minimal knowledge) is represented by the inverse exponential
function associated with the random rate condition in which the US
is equally likely at any moment. 2) The state of maximal certainty is
represented by the cumulative normal function whose expectation is
equal to the CS-US latency minus the time elapsed since CS onset
and whose standard deviation is the Weber fraction times the CS-US
latency.

The late 1960s saw the publication of three experimental papers that demanded
far reaching revision in our conception of conditioning. Rescorla (1968) showed
that if one removed the contingency between a to-be-conditioned stimulus (CS)
and the unconditioned stimulus (US) without altering the temporal pairing, the
subject never developed a conditioned response to the CS (Figure 1). This result
implied that it was contingency not the temporal pairing that generated
conditioned responding.
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Figure 1. Rescorla’s (1968) truly random control experiment. The temporal pairing of
USs with CSs is identical in the two groups but in the second group, there is no CS_US
contingency. Subjects in the second group do not develop a conditioned response to the
CS.
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Kamin (1969) showed that pairing a CS and a US did not produce a conditioned
response to the CS if it was always presented together with another, already
conditioned CS (Figure 2). The already conditioned CS blocked conditioning to
the newly introduced CS. This implied that when a subject "expected"” the US,
that is when it was not "surprised” by it, then pairing it with a CS did not
produce a conditioned response. | have followed Kamin in putting scare quotes
around 'surprise.' He did so presumably to warn that it was unclear what the
scientific meaning of the word might be. And, as a behaviorist, he was chary of
the notion of expectation, without which there can be no surprise.
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Figure 2. Kamin's blocking protocol. Subjects are conditioned with one CS in Phase 1.
In Phase 2, a second CS is given coincident with the already conditioned CS. Subjects do
not develop a conditioned response to the second CS.

Kamin (1969) further showed that when two CSs were presented together from
the outset of conditioning, the conditioned response that developed to one of
them was much stronger than the conditioned response that developed to the
other. Kamin called this 'overshadowing.' A striking example of it had been
published some years before by Reynolds (1961, see Figure 3). He interpreted it
in terms of selective attention, an interpretation that has continued to be popular
(Mackintosh, 1975; Pearce & Hall, 1980). These experiments showed that when
two stimuli are redundant predictors the conditioning process eliminates one of
them from consideration. And, of course, they also show that temporal pairing is
not sufficient to produce conditioning.
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Wagner and his collaborators (Wagner, Logan, Haberlandt, & Price, 1968)
showed that when one CS is more reliably informative of US delivery, it is the
only one to which the conditioned response develops (Figure 3). It does not
develop to the other less reliably informative CSs, even though they are
frequently paired with the US. Once again, this showed that it is informational
considerations determine conditioning not processes set in motion by temporal
pairing.
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Figure 4. For both groups, there are an infinity of rates of US occurrence that could be
ascribed to the different CSs to give rates indistinguishable from the experimentally
programmed rates, under the assumption that the rates predicted by the different CSs are
additive. However, in both groups, subjects settle on the only solution that ascribes
everything to one CS. That is, a conditioned response develops only to the relatively more
valid predictor.

When the history of this period is written, it will be a challenge to explain why
psychologists were surprised to discover that temporally pairing a CS and US
was not sufficient to produce conditioned behavior because it had long been
known that this was not necessary. When a CS predicts the omission of an
otherwise to be expected US, a conditioned response develops just as readily as it
does when a CS predicts a not otherwise to be expected US (Figure 4). This is
called inhibitory conditioning, because a CS that predicts the omission of the US
suppresses the conditioned response to a CS that predicts that CS. The effects of
inhibitory conditioning are not, however, limited to antagonizing the effects of
excitatory conditionings. Inhibitory conditioning produces conditioned
responses of its own (Hearst & Jenkins, 1974; Wasserman, Franklin, & Hearst,
1974). In inhibitory conditioning, the CS and US are never paired, so this
phenomenon demonstrates that CS-US pairing is not necessary.
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Figure 5. Two protocols for producing conditioned inhibition. In both, the US is never
paired with the CS. Nonetheless a conditioned response develops.

Contingency Not Temporal Pairing

In summary, by 1970, it was known that temporal pairing is neither necessary
nor sufficient to produce conditioned responding. What is necessary and
sufficient is CS-US contingency, the CS must provide information about the US.
The importance of the experimental findings just reviewed was immediately
recognized; they have been frequently and widely replicated, and they are
recounted at length in every textbook on conditioning and learning written in the
last quarter century. Nonetheless, the conviction that temporal pairing is the key
requirement in associative learning persists undiminished (Krasne, Hndbk chap.,
(Gluck & Thompson, 1987; Hawkins & Kandel, 1984; Miller & Escobar, 2002;
Usherwood, 1993)). Why?

Rescorla (1972, p. 10) put his finger on the problem that has blocked our progress
in coming to terms with the implications of these experiments, whne he wrote,
"We provide the animal with individual events, not correlations or information,
and an adequate theory must detail how these events individually affect the
animal. That is to say that we need a theory based on individual events."

He could not, on reflection, have meant to say that we do not provide the animal
with correlations and information, because when we construct our experimental
protocols we manipulate the correlations between the various CSs and the US so
as to vary the information that the CSs provide about the US. What he
presumably meant was that we take it for granted that the conditioning process
does not operate at this level of abstraction, because we take it for granted that it
involves the creation or modification of associative connections. Events—and
more particularly the temporal and spatial convergence of events—are what
increment associations, not information.

For most psychologists and neurobiologists, information does not seem
substantial enough to do the job of making connections. Information must be
extracted from the flow of events by computational processes that are driven by
the intervals between events and the numbers of events--rather than by their
more tangible properties, the properties that excite sensory receptors and are
therefore the natural focus of empiricist theories of mind and brain.
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Information Drives Conditioning

From an information-processing perspective, however, it is the information in
the protocol that drives the conditioning process. The assumption that
conditioning involves the forging of connections is a conceptual roadblock. It
prevents our coming to terms with the implications of these experiments and the
many other experimental results which imply that conditioned behavior is a
manifestation of the brain's information processing activity.

About the time he published his paper on blocking and overshadowing, Leon
Kamin moved from Macmaster to Princeton. Fifty miles to the north of him
there, Claude Shannon worked in the Bell Laboratories, where, twenty years
earlier, he published a famous paper that could have enabled Kamin to remove
the scare quotes from around surprise (Shannon, 1948). In it, he showed how to
define information in such a way as to make it quantifiable. This made it a
respectable scientific concept. It also laid a foundation for the modern
communications industry, for computer science, and for the modern
understanding of thermodynamics. It should, | argue, also become a foundation
for our understanding of the brain (cf Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997) and the process of conditioning (Gallistel & Gibbon, 2002).

In Shannon's definition, a signal conveys information to the extent that it reduces
the receiver's uncertainty about the state of the world. This leads directly to a
rigorous quantification of information. It also accords with two everyday
intuitions: 1) The more information we have, the less uncertain we are. 2)
Something that tells us what we already know does not convey information to
us.

This definition introduces what, for some, is a discomfiting subjectivity into the
foundations of the science. The information conveyed by a signal cannot be
measured in the absence of knowledge about the receiver's (that is, the subject's)
state of uncertainty before and after the signal. To apply Shannon's insight to our
understanding of conditioning, we have to consider what it is about the world
that the subject represents (knows), what the limits are on the precision with
which the subject knows it, and how those limits are captured in the subject's
representation, that is, how the subject represents its uncertainty about the state
of the world.

Some Simple Principles

In a first pass, the application of Shannon's definition to conditioning might
adopt the following principles: 1) Only informative CSs elicit conditioned
responses. 2) A CS informs a subject to the extent that it reduces the subject's
uncertainty about the timing of the next US. 3) The brain's information
processing is efficient; it maximizes bandwidth—the amount of information
carried by a given signal. 4) The information provided by a CS is not a property
of the CS itself but rather of its temporal and numerical distribution relative to
the US. Thus, the brain needs timers and counters in order to extract from an
experimental protocol the information that the CS carries about the timing of the
US. This is the level of abstraction at which the conditioning process operates. 5)
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The uncertainty in the representation of temporal and numerical magnitudes is
proportional to their magnitude (Weber's law). 6) Poisson (random rate)
processes provide the other limit, the limit on uncertainty. In a random rate
process, the US is equally likely at every moment.

Some Simply Constructed Functions

The cumulative probability function is a felicitous way for a subject to represent
what it knows about the timing of the next US (Figure 5). It emerges naturally
from the cumulative distribution of US experiences, which is a simple tabulation
of intervals and counts. It is the fraction of experiences as a function of the
durations of the intervals from one experience to the next.

The simplest case to consider is when the US functions as its own CS, that is,
when the timing of the previous US provides all the information that the subject
has about when to expect the next US. In a fixed time schedule, the next US is
delivered at a fixed interval after the previous one. In such a schedule, each US is
fully informative about when the next US will occur. The subject’'s uncertainty is
limited not by uncertainty in the world but by the precision with which it can
represent the world--in this case, by the precision with which it can represent the
US-US interval. In a random rate schedule, the next occurrence of the US is
equally likely at any moment after the previous occurrence, the US. In such a
schedule, one US is completely uninformative about the timing of the next US.

We know that subjects distinguish between these two cases. When the timing of
the next US is predictable, the conditioned response anticipates it (LaBarbera &
Church, 1974). The question from an information processing perspective is, What
representation of its experience and what processing of that representation
would be required in order for the subject to distinguish between the two cases?

Figure 5A gives the cumulative record from the case in which the US occurs at
random (heavy line) and the case it which it occurs at a fixed interval. The
expectations of the generating processes were 60 seconds in both cases. The
slopes (I and m) of the cumulative records estimate those expectations. The
slopes of the lines drawn from the origins of these cumulative records to points
somewhere on them differ somewhat depending on where in the record those
termination points are, because these slopes are estimates of the expectations not
the expectations themselves. On average, the longer the cumulative records, that
IS, the more events they record, the less these slopes differ from one another and
from the expectations of which they are estimates. Put another way, the longer
the subject's experience with the event-generating process is, the more accurate
its estimate of its expectation will tend to be.

Figure 5B shows the construction of the cumulative distribution functions—by
sorting the intervals between events, stacking (cumulating) the sorted intervals,
and dividing the stack by the number of intervals in it (normalizing).

The inverse exponential curve in Figure 5B is the limit to which the cumulative
distribution function for the random rate process converges as the number of
intervals in the stack becomes arbitrarily large. The curve is entirely specified by
the expectation of the random rate process, that is, by the quantity estimated by |.
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Figure 5. A. Two cumulative records. The dashed line is the cumulative record of the
first 10 events generated by a fixed time schedule. The solid line is from a random rate
schedule with the same expectation. B. Empirical and theoretical cumulative distribution
functions. The dashed line is the empirical distribution for the fixed time process, the
solid black line with steps is for the random rate process. Each event produces a unit step
in the cumulative record. These unit step functions differ only in the length of the
interval before the step. Sorting the empirical functions on the basis of the length of these
intervals and then stacking the steps produces the cumulative distribution function.
Arrows from A to B show fate of two of the intervals. The black curve is the inverse
exponential function, which the empirical function approaches in the limit as the number
of events goes to infinity. The gray curve is the limit on the representation of a step
function imposed by the scalar variability (Weber-law characteristic) in the brain’s
representation of magnitudes.



Gallistel Cond from Inform. Proc Perspective Page 8

The cumulative distribution function for the fixed time process would be a step
function if the intervals between events were always exactly the same and if the
subject could represent them with infinite precision—neither of which is true.
With the aid of modern technology, however, it is easy for us to create an event
generating process (scheduling mechanism) in which the variation in the
intervals between USs is much smaller than the variation in the subject's
representation of those intervals, which is roughly +/- 15% in pigeons, rats and
mice (Church, Meck, & Gibbon, 1994; Gibbon & Church, 1992; King, McDonald,
& Gallistel, in press). That the variation in the subject's representation of an
unvarying interval is proportional to the duration of that interval is a central
assumption of Gibbon's (1977) scalar expectancy theory. It is justified by
extensive experimental findings in the animal timing literature (see Gallistel &
Gibbon, 2000, for review). The cumulative Gaussian curve in Figure 5B (gray
sigmoid) is the representation of a fixed interval schedule that results from scalar
variability in the representing process, with a Weber fraction (coefficient of
variation) of 0.15. It is the cumulative Gaussian distribution with a standard
deviation equal to 15% of its mean.

Acquisition of a Timed CR

The decision whether the timing of one US provides information about the
timing of the next US can be based on a comparison of the cumulative
distribution function to its exponential approximation, because the odds against
the no-information assumption are an a priori knowable function of the
maximum deviation between the function and that approximation together with
the number of events represented in the distribution function (Gallistel &
Gibbon, 2002). This gives an acquisition theory for timed responding.

Once it has been decided that the time of occurrence of the next US can be
estimated from the time of occurrence of the last US, the cumulative distribution
function can be used to set decision criteria for when to anticipate the next US. If
a US predicts the time of occurrence of the next US then it constitutes a temporal
landmark, by reference to which the animal can locate itself in time. Once, it has
perceived the landmark it can estimate its progress through time toward the next
occurrence of the US, and it can use the cumulative distribution function to set
decision criteria (response thresholds) that enable it to anticipate the next US
with whatever degree of certainty it wants. In Figure 6, it has set its start criterion
so as to be 90% certain that it has begun to respond before the next US occurs. It
has advanced past the point in time corresponding to this criterion, and so it has
begun to respond. Its location in time corresponds approximately to the location
of the steepest portion of the distribution function, so its expectation of the US is
maximal at this location in time.

The past is (alas!) a fallible guide to the future, and so the subject's expectation
may be disappointed. It must therefore have a stop criterion as well as a start
criterion; otherwise it would continue to respond indefinitely if and when the US
failed to materialize. In Figure 6, it has set its stop criterion at a level such that it
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stops responding when there is less than 1 chance in 20 that the anticipated US is
going to happen within the limits of its uncertainty regarding the anticipated
time. That is, it stops only when it becomes highly likely that its expectation has
been violated. This account of the timing of a conditioned response is Gibbon's
(1977) Scalar Expectancy Theory for the peak procedure.
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Figure 6. Cumulative distribution functions as temporal frameworks. When the next US
is located in time (gray Gaussian) , then the subject (the mouse on the time axis) can use
its timer to measure its advance toward and past that time and it can set decision criteria
that govern the timing of its anticipatory behavior (conditioned behavior). When the next
US has not been temporally localized, the mouse remains always at the origin of the
function (black inverse exponential) as the mouse advances through time; it never catches
up with it.

When, by contrast, the time of occurrence of a US does not predict the time of
occurrence of the next US, then it does not serve as a landmark by reference to
which the subject may assess its approach to the next US. The subject has only an
egocentric temporal framework, so its relation to the cumulative US distribution
function does not change as it advances through time (Figure 6, inverse
exponential curve). This is a counterintuitive property of random rate processes:
the expected time to the next event is independent of how long it has been since
the last event. That is why, the time between the onset of observation and the
first occurrence of an event gives an unbiased (but, of course, noisy) estimate of
the expectation of the process (the interval between events). All of these are
corollaries of the fact that in a random rate process, the time at which one event
occurs provides no information about the time at which the next event will occur.

Detecting Changes in the Rate of US Occurrence

To say that the occurrence of an event in a random rate process provides no
information about when the next event will occur is not to say that it provides no
information about anything. It provides information about the value of I. The
objective uncertainty about the true value of | is inversely proportional to the
square root of the number of USs so far experienced. The more events, the less
the uncertainty; hence the more information the subject has acquired from the
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stream of events. But this holds true only so long as the precision with which the
subject can represent an estimate of I's value is not the limiting factor. The
decrease in the inherent or unavoidable uncertainty or a rate estimate as the
square root of the number of events increases means that the first few events the
subject observes convey substantial information about the value of |, but the
amount conveyed by further events diminishes rapidly.

Of course, the rate may change. This violation of expectation cannot be detected
by the just described process for detecting the failure of the US to occur at an
expected time, because the defining feature of a random time schedule is that
there is no expected time; the US is equally likely at every moment. This poses an
interesting conceptual challenge to associative theories of extinction and
conditioned inhibition, because they are driven by events rather than by the
information conveyed by a stream of events. In an associative theory, whether
trial based (Rescorla & Wagner, 1972) or real time ( see also Brandon, Vogel, &
Wagner, 2002, this volume; Wagner, 1981), the mechanism of extinction is
activated by the failure of an expected event to occur. This "event"—the
failure—must itself have a time of occurrence. But when there is no expected
time of occurrence for an expected event, how can its failure to occur have a time
of occurrence?

In one information processing approach, changes in the rate of US occurrence are
hypothesized to be detected by a simple ongoing computation (Gallistel &
Gibbon, 2002, p. ? ff). Despite its simplicity, it has been shown to be an ideal
detector of such changes (Gallistel, Mark, King, & Latham, 2001); it uses all the
information available in the sequence of interevent intervals. What it does is look
for seeming changes in the slope of the cumulative record and calculate how
unlikely they would be to have arisen through chance fluctuations (Figure 7).
Comparing the behavior predicted by this ideal detector to the behavior
observed when rats adjust to unexpected but frequent changes in the relative
rates of reward in a Herrnstein matching paradigm show that the rat is an ideal
detector of changes in random rates (Gallistel et al., 2001). It adjusts to them
about as fast as is in principle possible.

Explaining Cue Competition

The explanations of basic conditioning so far outlined all assume that the brain
has built into it mechanisms that embody in their structure the statistics of
random rate processes and mechanisms that detect systematic deviations from
randomness. This assumption constitutes a much stronger commitment to
rationalism and nativism than empiricist learning theorists have traditionally
been comfortable with. However, to the biologically inclined, at least, it seems no
more exceptional than saying that the eye embodies in its structure the laws of
optics. Why should not the structure of learning mechanisms reflect the structure
of the problems they solve just as much as does the structure of sensory or
metabolic organs (see Gallistel, 1999, for an elaboration of this argument).
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Figure 7. Changing the rate of a random rate process creates an inflection point (IP) in
the cumulative record, which will be at the maximum deviation (d,.,) from the

straight line approximation to the record (dashed line with slope N/T). The
creditworthiness of the hypothesis that a putative inflection point corresponds to a
genuine change in rate is a simple calculation of binomial likelihood ratios. The
calculation compares the proportion N,/N to the proportion T_/T to test whether they
differ by more than is to be expected from chance fluctuations.

Everything that has been developed above for the univariate case—the case
where the US serves as its own predictor—applies with minimal modification to
the multivariate case, where the US is predicted by other stimuli (conventionally
called CSs). However, when we allow other predictors, we confront the essential
problem in multivariate time series analysis—determining what predicts what.
The classic experiments on the truly random control (or background
conditioning), blocking, overshadowing, and relative validity (reviewed in the
introduction) show that subjects do a sophisticated job of solving this problem.
The assumption that the information processing mechanisms that mediate
conditioned behavior are structured by the properties of random rate processes
leads once again to a simple model for the mechanism that solves what is
commonly called the cue competition problem, because random rates are
additive.

Rate Estimation Theory (Gallistel, 1990, Chap. 13) assumes that for the purpose
of determining which CSs predict which US rates, the brain treats all rates as
random rates. It does so, because under that assumption—which renders the
effects of CSs additive-- there is a simple universal solution to the problem of
estimating the rates of US occurrence to be associated with each CS, that is, with
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each possible predictor of those rates. The essence of the solution is given by the
matrix algebra formula for the vector (list), | {, of true rate estimates

| =T,
where
Nl
T
- N,
I = T,
Ny,
Tm
and
Tl T1
=T, T
Tn Ty

This formula assigns to each CS an estimate of the rate of US occurrence that
would be observed if that CS were the sole determinant of I, the rate of US
occurrence, except in cases where there are redundant predictors, as there are in
the overshadowing and relative validity protocols. In those cases, the additive
solution to the rate estimation is not unique, that is, there are an infinity of
solutions consistent with the assumption of additivity. When that happens, the
determinant of the matrix is zero. In such cases, the bandwidth maximization
principle comes into play. The rate estimating mechanism eliminates possible
predictors so as to find the smallest set of predictors that can fully account for the
observed rates of US occurrence. In cases, where there is more than one such set
(e.g., in overshadowing), it either "flips a coin”, as was apparently done by the
process that generated the results shown in Figure 3, or it relies on other criteria
to decide among predictors that are, from an information processing standpoint,
equally valid potential predictors. (An Excel spreadsheet implementing this
calculation and the calculation that detects a change in the rate of US occurrence
ascribed to the influence of a CS may be downloaded from the SQAB website.)



Gallistel Cond from Inform. Proc Perspective Page 13

Analyticity, Simplicity, and Intuitiveness

Two attractions of the information processing approach are that its predictions
are analytically determined and they do not depend on free parameters. By
traditional scientific criteria, this means that these models are simpler than
associative models. Associative models abound in free parameters (see, for
example, Brandon et al., 2002), and their predictions can generally be determined
only by numerical methods, that is, by computer simulation, the details of which
are rarely available for scrutiny and are hard to comprehend when they are
available. A further attraction is that the predictions of the information
processing models follow from information processing principles in an
intuitively obvious way. It does not require neither mathematics nor faith in
inscrutable computer simulations to see why the theory predicts what it predicts:

Background conditioning (truly random control) The CS does not affect expected
time to the next US. Therefore, the information conveyed by the CS is zero. This
follows directly from the application of Shannon's definition of information to
conditioning and the principle that only informative CSs elicited conditioned
responses.

Blocking. Again, the addition of the second CS, in compound with the already
conditioned CS, does not add any information. The US occurs at the time already
predicted by the first CS. Because only informative CSs elicit conditioned
responses, there is no response to the second CS, no matter how often it is paired
with the US.

Overshadowing. The CSs are redundant; either CS alone can reduce the subject's
uncertainty about the time of US occurrence by as much as the two together.
Bandwidth maximization (aka parsimony or Occam's razor) applies: the amount
of information conveyed per conveying signal is maximized by letting one of
them do all the work.

Relative validity. Again, the CSs are redundant. One could partition the
information conveyed among two or more of the CSs, but bandwidth is
maximized by letting one do all the work.

Conditioned inhibition. When the CS comes on, the time at which cumulative
probability function rises moves away from the subject's current location in time.
This, too, is informative. When there is no information about when the next US
will occur, all moments are equally likely. When an inhibitory CS comes on,
more proximal temporal moments become much less likely than later moments.

The importance of temporal pairing. Temporal pairing is neither necessary nor
sufficient for conditioning, but that does not mean that it is unimportant. It is
important because the degree to which a temporal landmark like CS onset
reduces a subject's uncertainty about the timing of the next US is proportional to
it proximity to the US. The closer it is, the more it reduces the subject's
uncertainty. This follows from the fact that the degree of imprecision in a
subject's representation of an interval is proportional to the duration of the
interval—Gibbon's (1977) principle of scalar variability in the representation of
temporal intervals.
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Time scale invariance. Gallistel and Gibbon (2000) review a variety of findings that
suggest that the conditioning process is, within broad limits, time scale invariant.
Changing the intervals in a conditioning protocol has no effect on the results,
provided they are all changed by the same factor (the scaling factor). Information
processing models are naturally time scale invariant because the information in
the flow of events is carried by the proportions among the intervals not by their
absolute durations. Scaling the flow up or down changes the amount of time it
takes to deliver the information, but it does not change the amount of
information delivered by a given number of events.

Associative models, by contrast, are not time scale invariant. If they are trial
based models, then they must assume a trial duration. Rescaling the protocol will
then move events (e.g., CS and US onsets) that were within the same trial into
different trials, or vice versa, with strong consequences for the predictions of the
model. Real-time associative models make complex assumptions about the
dynamics of stimulus traces (see, for example, Brandon et al., 2002). Rescaling the
protocol changes where events fall relative to these trace dynamics, again with
strong consequences for the predictions of the model.

Summary

Shannon's definition of the information conveyed by a signal in terms of the
reduction in the subject's uncertainty about the state of the world applies
naturally to conditioning paradigms, where CSs (and/or the subject's responses)
reduce its uncertainty about when the next US (next reinforcer) will occur.
Simple principles rooted in conventional information theoretic considerations,
such as bandwidth maximization, give intuitively obvious predictions for
phenomena that are generally agreed to be central to our understanding of the
conditioning process—the effects of background conditioning, inhibitory
conditioning, blocking, overshadowing, and relative validity. They also explain
aspects of conditioned behavior that associative theories rarely attempt to
explain, for example, the rarely emphasized fact that the latency of the
conditioned response is proportional to the CS-US interval (Gallistel & Gibbon,
2000, for review). Finally, they explain something that it appears deeply difficult
for associative models to explain, the time scale invariance of the conditioning
process (Gallistel & Gibbon, 2000, for review).
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