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A paradox of psychology is that the analytic difficulty of a problem may be
inversely related to the phenomenological difficulty. Things that seem trivially
easy to do are often the most difficult to understand analytically; whereas things
that seem difficult--things that require "real brains"--have been rather
successfully modeled with modest effort. We can program computers to do
many things that we find conceptually challenging--inverting matrices, solving
partial differential equations--while we are a long way from being able to
program machines to do what we find so easy that it requires no thought--for
example, reaching out to pick up a pencil.

The deep difficulty in understanding basic aspects of perception is widely
appreciated. It has proved extraordinarily difficult to program a computer to
segment a visual image into components that correspond to objects in the three-
dimensional space from which the image is projected. Thus, the first deep
problem that prevents the manufacture of robots that can pick up pencils is
getting them to pick out the relevant portion(s) from the image of a scene. Less
widely appreciated are the deep difficulties that confront us when we try to
understand how the brain generates simple directed actions. Given that it has
somehow determined where it wants the end of a limb to go, how can it control
the pattern of motor neuron firing in such a way as to make something as
mechanically intractable as a vertebrate forelimb move to where it is supposed to
go?

I will attempt to bring conceptual order and coherence to some interesting
recent findings by arguing that: 1) The problem of controlling the trajectory of a
limb is a problem in computing a series of coordinate transformations. 2) There is
evidence that anatomically localized stages of the neural circuitry perform
computationally distinct coordinate transformations. This suggests that the
nervous system itself also treats the problem as if it had the sub-structure of a
series of coordinate transformations. 3) The control of the eye's movement is the
most intensively studied simple movement for good reasons, namely, moving
the eye is mechanically simpler than moving a limb, yet several of the
fundamental problems that arise in considering the muscular control of simple
directed movements appear to be present even within the simplified mechanical
situation provided by the eye. Thus, the study of oculomotor control is of central
interest in developing and refining our understanding of the control of directed
actions. 4) Finally, the computation of coordinate transformations is the
foundation of other important capacities, for example, the capacity to navigate.
An understanding of the neurobiological basis of the brain's ability to compute
coordinate transformations in the control of simple directed actions may yield
principles that have broad application in cognitive neuroscience.

Coordinate Transformations

A coordinate transformation, in the very general sense in which I will use it here,
is an operation that maps or relates points specified by coordinates in one 'space'
to points specified by coordinates in a different framework. 'Space' is in quotes
because it will often refer to something that is a space only in the mathematical
sense of a metric space. A metric space is a collection of points on which a
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distance relation is defined, so that it is possible to say how far apart points in the
space are1. The dimensionality of a metric space is the number of variables
whose values must be specified in order to specify a point in that space--one for a
one-dimensional space (a line), two for a plane, three for ordinary physical space,
and n for an n-dimensional space. The dimensions of an abstract space need not
and often do not correspond to the dimensions of a physical space. Coordinate
transformations take the vector (string of numbers or quantities) that specifies a
point in one space and generate the vector for a corresponding point in another
space. The only restriction on the transformations I consider under the heading
of coordinate transformations is that the transformation carries nearby points in
one framework to nearby points in the other framework. Thus, points that lie
close to each other in the first space cannot correspond to points that are
sprinkled all over the place in the second space.

In directed limb movements, the primary sensory input arises in one
framework while the movement is effected in a different framework, which is,
generally speaking, of higher dimensionality than the primary sensory space.
This is illustrated in Figure 1, which is based on a well known experiment by
(Fukson, Berkinblit, & Feldman, 1980) demonstrating that the spinal frog
solves a variable coordinate transformation problem when it directs its
scratching action of its hind foot toward an irritated spot on the skin of its
foreleg. The sensory signal from the irritation specifies the location of the target
in a coordinate framework anchored to the forelimb. The axes of this 2-
dimensional forelimb-skin space are indicated by the lines labeled d and c in
Figure 1, for distance down the limb and position around its circumference. A
coordinate system like this, which is defined by (or anchored to) a one or two-
dimensional sensory surface such as the skin of a forelimb or the retina or the
basilar membrane, I will call a sensory space.

The coordinate system within which the action must be effected is
suggested by the angles of the hind limb joint, labeled a, b, g, d. Such a system,
where points are defined by joint angles (or, in reference to the eye, rotation
angles) will hereafter be called a joint space (even when speaking of the eye,
which, of course, has no joints, but behaves like the ball part of a ball joint). In the
present case, the real joint space is only suggested by the illustration, because it
shows each hind limb joint as having only one variable angle. As a result, the
joint space portrayed in Figure 1 has only four dimensions, four angles that must
be controlled or specified by the motor outflow. The actual joint space of the hind
limb would be four-dimensional only if the joints were all hinge joints, that is,
only if there were only one possible axis of rotation per joint. In fact however,
some of the joints have more degrees of freedom than a hinge. For example, in
the figure, it appears that the upper leg can only move forward and backward at
the hip joint, but in fact it can also be raised and lowered, and it can be rotated.
(In other words, the hip joint is a ball joint with three degrees of freedom.) Thus,
during a movement of the real hind limb, three angles must be controlled at the

                                    
1 A distance is defined if there is a procedure that, given any two points p, q in the space,
specifies a quantity (a scalar) d ≥ 0, such that d(p,q) = d(q,p), d(p,q) + d(q,r) ≥ d(p,r) and d(p,q) =
0 iff p = q.
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first joint alone. The diagram of all the variable angles in a multi-jointed limb is
too complex for present purposes, so let us pretend that this is a two-dimensional
frog, in which case the angles of the four joints of its hind limb define a four-
dimensional metric space.2

Figure 1. Tracings from film strips of the wiping motions of the hind limb of a high
spinal frog wiping at an irritation of the elbow of its forelimb (small black square). The
generation of the movements shown in the lower
two panels requires a coordinate transformation
that combines a skin surface position signal with
signals indicating the positions of the limbs
relative to the body. Redrawn from Fukson, et al.
(1980) with permission of the author and
publisher.

To scratch the right spot, the frog must
adjust the angles a, b, g, and d so as to place
the tip of its hind foot on the irritated patch.
In the language of coordinate transforms, its
neuromuscular system must effect a
transformation that maps the point <d   i   , c   i   > in
sensory space to an appropriate point <ai, bi,
gi, di> in joint space. What makes this particularly challenging is that, as
indicated in the lower half of Figure 1, the relation between these two coordinate
frameworks changes as the position of the forelimb changes. The transformation
that maps points in forelimb-skin space into hind limb-joint space must vary as a
function of the position of the forelimb.

The experiment of (Fukson et al., 1980) shows that the spinal cord of
the frog adjusts the motor output to the hind limb to compensate for the change
in the position of the forelimb, that is, it in effect computes this variable
coordinate transformation (lower part of Figure 1). The problem is to understand
                                    
2 This simplification is the more appropriate in that in some of the
work to be discussed later, involving microstimulation of motor
centers in the spinal frog, the movements of the leg were (generally
but not always) constrained to the horizontal plane.
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how it does so. Are the neural processes in the spinal cord organized in terms of
a series of coordinate transforms? If so, which coordinate transforms are
performed, and where? When the transformations go from a space of lower
dimensionality to a space of higher dimensionality, what further constraints does
the nervous system impose in order to obtain a unique mapping? What
structural aspects of the circuitry and what properties of the cellular level events
within that circuitry effect the transformation (the mapping)?

Or, if the nervous system does not organize its operations in terms of a
series of coordinate transformations, then by what principles can we understand
what the nervous system is doing?

Two Contrasting Conceptions

While it may be natural for someone with a standard mathematical training to
think about the frog's problem in terms of coordinate transformations, it does not
follow that this conceptualization of what is happening will lead to an
understanding of how the nervous system accomplishes what it accomplishes. In
fact, theories about how the nervous system solves this problem may be
contrasted on the basis of the extent to which they assume that conceptualizing
the problem this way leads to valid insights about the underlying processes. This
may be illustrated by considering two extreme positions. Although the views
here to be contrasted are more extreme than would probably be defended by any
contemporary theorist, the first view is roughly the view that an engineer with
experience in the design of robot arms might bring to the problem (e.g.,
(Hollerbach, 1982)), while the second view would be more congenial to a
connectionist modeler (e.g., Smolensky, 1988). In fact, of course, the views of
individual scientists are apt to evolve over time, so variants of both views may be
found in the work of a single influential figure (Robinson, 1975, 1985;
Robinson, 1992).

One Transformation After the Other: An Engineer's View

In this conceptualization, there is a separate stage of computation for each of the
stages that arise in a conventional physical analysis of the problem, such as
would be made by an engineer trying to make a robot that did what the neural
tissue in the spinal cord of a frog so readily does.

First, both the primary sensory coordinates for the irritation (in forelimb-
skin space) and the primary sensory coordinates that specify the position of the
hind foot in joint space are mapped (transformed) into the same three-
dimensional space, for example, the Cartesian coordinate framework with the
rostro-caudal, medio-lateral, and dorso-ventral axes used by anatomists to
describe positions relative to a body. Hereafter, I refer to this coordinate system
as body-centered space. Coordinate frameworks like the framework for body-
centered space are also called extrinsic coordinates to distinguish them from
intrinsic coordinates systems, which are defined by joints or muscles. The
transformation of the forelimb-skin point into a point in body-centered space
requires, in addition to the signal from the irritated patch of skin, signals that



Gallistel: Coordinate Transformations in Action Page 5

specify a point in forelimb-joint space, the point defined by the current position
of the forelimb. Thus, this sensory transformation combines a point in forelimb-
joint space with a point in forelimb-skin space to yield a point in extrinsic space.

In this conception, mapping the two points into a common extrinsic
system of coordinates (body-centered space) is a precondition for planning the
path of the movement that will bring the tip of the hind foot to the irritated patch
of skin. The planning algorithm must also specify the time course of the
movement, where it will be along the path at successive moments. The path in
body-centered space is a set of points in that three-dimensional space
constituting what a geometer would call the 'curve' connecting the starting point
to the end point (curves in this usage include straight lines), while the trajectory
in body-centered space is a set of points (curve) in 4-dimensional space, the
fourth dimension being the temporal dimension. Thus, a path has no temporal
dimension, while a trajectory does. The planning of the trajectory of a movement
is commonly called kinematic planning, at least in robotics (the engineers' use of
the terms kinematic and kinetic differs somewhat from that of physicists).

When a trajectory in body-centered space has been specified, the planned
trajectory is realized by means of a series of transformations, each of which may
be conceived of as a mapping from points specified in one system of coordinates
to points specified in a different system of coordinates, in other words, as a
coordinate transformation. First, there is the inverse kinematics transformation of
the trajectory. This transformation carries a trajectory in body-centered space,
which by definition has three non-temporal dimensions, into a trajectory in the
higher-dimensional joint space. This transformation poses a knotty problem,
because it carries points into a higher dimensional space. All of the
transformations considered so far carried points from a space of higher
dimensionality into a space of lower dimensionality. These higher-to-lower
transformations were realizable by functions, in the mathematical sense, that is,
operations or processes that produce for any given input one and only one
output. For a point in hind limb-joint space (that is, for specified values of the
variable angles of the joints of the hind limb), there is one and only one point
where the tip of the foot can be in body-centered space. Thus, there is a function
that carries points in the joint space into points in the body-centered space. (This
is the forward kinematics transformation.) The reverse is not true. For a point in
body-centered space, there are many corresponding points in hind limb-joint
space, that is, there are many different combinations of angles for the hind limb
joints all of which place the tip of the foot at the same point in body-centered
space. You can verify this by reaching out to touch a point on your desk, then
varying the configuration (hence, the joint angles) of your forearm while keeping
your finger on that same point.

This lower-to-higher mapping problem, first highlighted by (Bernstein,
1967), is called the degrees of freedom problem. It means that the problem of
finding 'the' trajectory in joint space corresponding to a trajectory in body-
centered space is not well defined. The nervous system must make it well
defined by imposing restrictions on trajectories in joint space, restrictions that
reduce the variety of possible trajectories to one actual trajectory. The question
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then becomes, what restrictions does the nervous system impose in computing
this transformation?

The inverse kinematic transformation specifies the values of the joint
angles as a function of time. The final stage in computing the time course of the
signals to be sent to the muscles is to solve the inverse dynamics problem, which
is: given the time courses of the desired changes in joint angles, find the time
course of the force to be exerted by each relevant muscle. The pulling forces
exerted by muscles are not pure torques, that is, they are not directed
perpendicular to the direction of joint rotation. And, they are related in
extremely complicated ways to the torques that do develop (Zajac & Gordon,
1989). Finding the inverse dynamics can also be thought of as a coordinate
transformation problem, this time from trajectories in joint space to trajectories in
muscle space. The dimensionality of muscle space is the number of muscles that
move the limb. Because this number is greater than the dimensionality of joint
space--there are more muscles controlling a limb than there are degrees of
freedom in its joints--the degrees of freedom problem arises again. The
reappearance of the degrees of freedom problem, together with the strong non-
linearities in the biomechanics of limb and muscle, makes the inverse dynamics
an intimidating problem(Saltzman, 1979). It is impossible to derive analytic
expressions for the requisite functions[Hazan, 1991 #2511]. It is at this point
that the engineer may begin to wonder how the nervous system could compute
this particular, very messy transformation and whether it can in some sense
avoid doing so.

One Big Look-Up Table: A Radical Connectionist's View

Because the inverse transformations required in the above conceptualization of
the problem are refractory to analytic treatment, one is led to question whether
the conceptualization in terms of a series of coordinate transformations conforms
at all to what actually occurs in the nervous system. A connectionist modeler
might be inclined to reject this kind of computational decomposition of the
problem into a sequence of transformations and think instead of a single overall
mapping from sensory vectors (the array of signals in the first-order sensory
axons) to motor vectors (the array of signals in the motor neurons). On this view,
the connections in the network of interneurons (the hidden layer) intervening
between the sensory neurons( input layer) and the motor neurons (output layer)
have been adjusted by error-correcting feedback processes so that different
patterns of input evoke optimized outputs (by some criterion defined by the
feedback process). The nervous system may act as a gigantic look-up table, a
table that specifies outputs given inputs, but does not do so by means of any
analytically describable process.

In this view, the relevant inputs--primary visual afferents, primary
somatosensory afferents, primary muscle and joint afferents, etc.--come from
many different frameworks, so they cannot be conceived of as together defining
points in any one space. Also, one school of connectionism has tended to
emphasize the possibility that within the hidden layer (the network of
interneurons), there may be no pattern to the activity of individual neurons or of
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pools of neurons that would relate in any systematic way to the kinds of
coordinate frameworks that an engineer uses to conceptualize the problem
[Hazan, 1991 #2511; Kalaska, 1992 #1545; Lehky, 1992 #1698;
Lockery, 1993 #1982; Smolensky, 1988 #2506].. Indeed, the pattern of
connectivity and of interneuron activity that arises under the influence of error-
correcting feedback may vary radically from one network to the next due to
variations in the initial conditions of the network. In this case, knowledge of the
pattern of intervening neuronal activity in one network that solves the problem
might offer no insight into what is going on in another network that solves the
same problem, even though both networks developed their structure under the
impact of the same experiences and the same error-correcting feedback process.

If the radical connectionist vision gives an accurate conception of how the
nervous system solves the problem of directed action, then the attempt to
describe what is going on in the nervous system in terms of a series of coordinate
transformations is doomed from the outset. Einstein once remarked that the most
incomprehensible thing about the universe was that it was comprehensible--by
which he meant mathematically describable. Perhaps the nervous system's way
of solving difficult problems is not mathematically describable.

There are, of course, compromises between the two extremes just
described. One interesting compromise treats connectionist networks as non-
analytic function approximators, that is, physical devices that can be tuned to
approximate almost any function, including functions for which it is impossible
to derive an analytic expression, such as the inverse dynamics function in the
control of a multi-joint limb. Networks may even be conceived of as linearizing
strongly nonlinear dynamic control problems, so as to present to the higher
levels of the nervous system a set of basis functions from which any desired
kinetics may be realized by additive composition (about which more later).

Directed Limb Movements

Kinematics

Path Characteristics

The kinematics of the wrist during directed human arm movements have been
studied in a variety of experiments. For a movement between two points, there is
very little variability in the trajectory, regardless of the speed of the motion or the
load (weight) carried by the hand (C.G. Atkeson & Hollerbach, 1985; Flash
& Hogan, 1985; Lacquaniti, Soechting, & Terzuolo, 1982, 1986;
Morasso, 1981; Soechting & acquaniti, 1981). The trajectories are usually
straight (or at least only moderately curved) lines in either body-centered space
(Morasso, 1981) or joint space(Hollerbach & Atkeson, 1987). (A straight
line in joint space means that the ratios of the angular velocities of the joints are
maintained throughout the movement.) In general, a trajectory cannot be straight
in joint space if it is straight in body-centered space, and vice versa, although
there is an important exception, namely, when the trajectory in body-centered
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space lies along a straight line through the shoulder (Hollerbach & Atkeson,
1987).

Because maximum kinematic smoothness is realized by straight paths
(Hogan & Flash, 1987) , one might hope to deduce from the straightness or lack
of straightness of the trajectories in the two kinematic spaces whether the
trajectory is planned in body-centered space or joint space (or neither). The fact
that the trajectory can be strongly curved in either one space or the other
depending on the work space (the region of body-centered space within which
the starting and ending points of a trajectory are found) does not permit an
unequivocal decision in favor of either planning space (Hollerbach, et al., 1987) .

The fact that freely chosen trajectories are curved in some parts of either
body-centered space or joint space might even be thought to favor the third
alternative--that is, there is no planning space, the radical connectionist view.
However, it is not clear why on a radical connectionist view, the trajectories
should tend toward straightness in most of the work space, nor why they should
be so similar between subjects. The answer would presumably lie in something
about the criteria that the error-correcting feedback process uses to determine
error. One suspects, however, that the specification of this criterion would
amount to assuming that the "teacher" (the feedback determining process) has a
space in which it evaluates trajectories, that is, the teacher does more than assess
whether or not the desired endpoint was reached. There is also a question
whether the teacher can teach in the absence of internal models of the dynamics
(Atkeson, 1989; Jordan, 1994a). Internal models are the sort of thing that a radical
connectionist eschews, but they are the sort of thing that a moderate
connectionist might imagine that a neural network provides.

It has also been suggested that the variety of trajectories observed in body-
centered and joint space might be a byproduct of optimizing the smoothness of
joint torques (Uno, Kawato, & Suzuki, 1989), that is, it may be a byproduct
of a dynamic rather than kinematic planning. (Maximizing smoothness means
minimizing jerk, which is the third derivative of position as a function of time.)
In short, the data on kinematics per se do not point unequivocally to a particular
system of coordinates in which the planning of limb trajectories are carried out.

Evidence from End-Point Variability

Recent results by(Gordon, Ghilardi, & Ghez, 1994) on the variability of
movement end points suggest a stage in which the trajectory is planned in body-
centered space, rather than joint space. Gordon, et al. found that the directional
variability in the endpoint (that is, the dispersion of the directions of the
endpoints of repeated trajectories around the mean direction relative to the
starting point) was constant and independent of the length of the trajectory. This
constancy held for patterns involving different joints and for both slow and fast
movements. By contrast, end point variability along the axis of the trajectory
(that is, variability in the length of a repeated trajectory) increased markedly but
non-linearly with distance. Gordon, et al. argue that their results imply that the
direction and extent of the movement in body-centered space are independently
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computed. In vector terms, the orientation and length of the movement vector in
body-centered space are separately computed and make separable contributions
to the error in the endpoint.

Trajectory Adaptation Experiments

Strong evidence that trajectories are planned in body-centered space comes from
recent adaptation experiments by(Wolpert, Ghahramani, & Jordan, 1994,
1995). They used an ingenious set-up in which the subjects moved a computer
mouse on a digitizing tablet. While doing so, they looked at an illusory view of a
spot that seemingly marked the position of their hand relative to the target
square (the square that marked the end point of the movement they were to
make). The target and the hand-spot were projected via a computer-controlled
onto a mirror interposed between the subject's head and hand, creating a virtual
image in the plane of the hand's movement (an image that appeared to originate
from the surface of the digitizing tablet along which the hand was moving). This
arrangement enabled them to provide erroneous visual information about the
hand's position during the course of the movement without an error at the
beginning and end of the movement. That is, they were able to make straight
trajectories appear curved and vice versa, while keeping the perception of the
location of the beginning and ends of the trajectories constant. They had subjects
make repeated back and forth movements that were either transverse (for some
subjects) or sagittal (for other subjects)--that is, either perpendicular to or in the
sagittal plane of body-centered space. During the first 80 such movements, the
trajectory was made to appear more curved. During the final 20 trials, the
subjects made the same movement in the absence of visual feedback, so that the
experimenter's could assess the aftereffect of the adaptation experience.

A purely dynamic planning process--a process that computed the time-
course of the muscle forces required to bring the hand from its starting position
to its ending position without regard to the trajectory through 3-dimensional
body-centered space--would not be affected by this artificial alteration in the
apparent trajectory of the hand during the adaptation phase. If, however, there is
a stage that plans the trajectory in body-centered space, and if that stage takes
visual input as a reliable indicator of position in body-centered space, then this
stage should register a trajectory error. This trajectory error might then be used
to make adjustments in the inverse kinematics transformation so as to offset the
error in the trajectory through body-centered space. This was what they in fact
found: In the twenty movements made in the absence of visual feedback
following the adaptation phase, the subjects' trajectories showed a significant
increase in curvature, an increase in the direction that would offset the visual
curvature, that is, straighten the apparent trajectory. This is strong evidence for a
stage that plans a trajectory in body-centered space.

In these experiments the pre-adaptation trajectories conditions were
gently curved. In companion experiments(Wolpert et al., 1994, 1995), the
authors show that this curvature is predicted by errors in the visual perception of
the straightness of the trajectory. Subjects perceived a straight trajectory of a
moving spot as in fact curved; to get them to perceive the trajectory as straight,
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the actual trajectory had to be curved. There was a highly significant correlation
between the curvature a subject perceived as straight and the curvature of the
subject's actual hand movements.

Not all trajectory curvature can be explained as a consequence of the
misperception of straightness in body-centered space. When subjects move their
hand from a position in front of them to a position not far above their shoulder,
the curvature in the trajectory is much too great to be explained in this way. The
pronounced curvature in the trajectory through body-centered space that is
observed in this case (arguably a special case) is presumably dictated by the
greater simplicity or smoothness of the trajectory in joint space. Thus, it appears,
that planning in body-centered space is not obligatory; plans may be constructed
in joint space.

Velocity Profiles

The velocity profiles of directed trajectories are bell shaped: the wrist accelerates
smoothly along its path to reach a maximal tangential velocity midway in the
movement, then decelerates just as smoothly, so that the second half of the
velocity profile is nearly the mirror image of the first (Figure 2). These Gaussian
velocity profiles minimize the jerk ((N. Hogan & Flash, 1987), which
suggests that smoothness considerations play an important role in planning the
trajectory. Although, it is not at all intuitively obvious, these smoothness
considerations also dictate straight line trajectories in body-centered space
(Flash & Hogan, 1985) Smoothness considerations in joint space may also
play a fundamental role in specifying unique solutions for the inverse kinematics
transformation, that is, the nervous system may pick out the smoothest trajectory
in joint space that realizes the already planned trajectory in body-centered space.
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Figure 2. Tangential velocity profiles normalized for speed and distance and aligned at their
peaks. (a) Different speeds. (b) Different loads. (c) Different targets. (d) Different subjects.
Reproduced from Hollerbach (1990) with permission of the author and publisher.

Dynamics

A separable stage of dynamic planning, working to achieve a prespecified
kinematics, is suggested by the fact that the velocity profiles are invariant (except
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for scaling) in the face of substantial changes in the speed at which the
movement is executed and the weight carried by the hand (Figure 2). Changing
the speed and the weight carried changes substantially the forces that must be
applied to achieve these profiles. Because of the non-linear biomechanics of the
arm, the changes in the required forces are presumably not a simple scaling up in
the forces required at lower speeds or when carrying less weight. That is, the
pattern of required forces--the relative strengths of the forces that must be
applied and the relative times at which they must be applied--must be altered in
order to maintain the same profile as speed and load vary. This suggests that the
kinematics of the movement are specified independently of the dynamics and
that the mapping from the kinematic specification to the dynamic specification
(the inverse dynamics) is varied so as to take into account the change in load or
overall speed.

Can the Inverse Dynamics Problem Be Finessed by Feedback Control?

Because the inverse dynamics are so nonlinear and therefore difficult to model
(compute), one is motivated to look for a control scheme that does not require the
nervous system to have a model of the dynamics. One way to avoid computing
the inverse dynamics is to use high-gain, error-correcting feedback control to
develop the necessary muscle forces during the course of the movements,
without computing in advance the motor nerve signals required to cause the
muscles to develop the requisite forces. This latter, more computationally
demanding approach to motor signal programming is called feed-forward or
predictive control. (For an introduction to control systems concepts in a motor-
control perspective, see(M.I. Jordan, 1994).)

Can the muscle-spindle organ do the job? At first glance, the muscle spindle
system would seem structurally suited to provide the requisite feedback control.
Muscle spindle organs are embedded in muscles. Each such organ has a
specialized muscle fiber of its own, innervated by a distinct class of motor
neurons (the gamma efferents). The gamma efferents can command the
shortening of the spindle organ's muscle fiber independently of the shortening of
the fibers of the muscle itself. The sensory fibers innervating the spindle organ
respond both to the difference in length between the spindle fibers and the
surrounding muscle fibers and to the rate of change in this difference. Thus, the
spindle organ would appear designed to signal the error and the first derivative
of the error between a muscle length command carried by the gamma efferents
and the actual length of the muscle. This putative error signal is relayed to the
spinal cord by the Ia afferents, the fastest conducting sensory fibers in the body,
and these afferents make monosynaptic connections on the alpha motor neurons,
the neurons whose signaling controls the development of force by the muscle in
which the spindle organ is embedded.

This structure seems to cry out that this organ provides the feedback
control of muscle force required to avoid computing in advance the inverse
dynamics. However, measurements of both the gain and the feedback time in
this loop show that it can be at most a minor player in the determination of
muscle forces(Hasan & Stuart, 1988; Loeb, 1987). The sluggishness of the
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feedback loop prevents its making any contribution to the control of movements
that are executed in roughly half a second or less(N. E. Hogan, Bizzi, &
Mussa-Ivaldi, 1987).

The moving-equilibrium-point hypothesis. Another suggestion is that
increased speed and load compensation is achieved by stiffening the limb during
the execution of its trajectory, allowing the visco-elastic properties of the muscles
to solve the inverse dynamics problem without neural involvement. The general
idea behind this approach to the dynamics problem is that the trajectory is
planned as a series of positions in body-centered space. Corresponding to each
position in body-centered space, there is a motor command that sets the length-
tension curves for the muscles of the limb in such a way that this position is the
equilibrium point of the mechanical system. (Thus, in this model, there is also no
explicit computation of the inverse kinematics, the requisite trajectory in joint-
angle space.) If the limb is not at that point, then the force-field due to the visco-
elastic properties of the muscles (the net force moving the limb as a function of
the limb's deviation from the equilibrium position) drives the limb toward the
equilibrium position. This popular model of limb control was first proposed
by(Feldman, 1974), see also (Berkinblit, Gelfand, & Feldman, 1986). It
has been elaborated and experimentally tested by Emilio Bizzi and his
collaborators. These experiments have demonstrated that the position of the
equilibrium point changes smoothly and consistently during a movement and
that there are invariants in the force fields surrounding equilibrium points(Bizzi
& Mussa-Ivaldi, 1990; Bizzi, Mussa-Ivaldi, & Giszter, 1991; Mussa-
Ivaldi, Giszter, & Bizzi, 1994).

The experimental findings show that the moving-equilibrium-point
hypothesis captures an important aspect of the neurobiological approach to
dealing with the dynamics, namely, that the trajectory and time course of
directed limb movements is stabilized by some co-contraction of opposing
muscles. This co-contraction of opposing visco-elastic elements (muscles) creates
a dynamic force field whose equilibrium point (point where there is no net force)
is centered on the momentary planned position of the limb's endpoint. This
dynamic force field automatically corrects modest deviations from the planned
trajectory.

However, this hypothesis cannot readily explain the fact that the
kinematics of reaching movements are invariant under substantial changes in
speed and substantial changes in load (the weight in the hand). As the movement
is speeded up, the inertial forces that must be overcome, which are modest at low
speeds, increase rapidly, and these forces are complex. It is these nonlinear
reactive inertial forces that make the inverse dynamics problem so formidable.
The force fields seen during low-speed movements are not sufficient to keep the
limb from veering widely away from the usual trajectory in reaction to these
forces. Increasing the stiffness of the limb (that is, the intensity of the force field
at any given deviation from the equilibrium position) by increasing the amount
of co-contraction in opposing muscles is energetically inefficient. It uses much of
the energy that goes into muscle contraction to oppose the contraction of other
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muscles instead of to do work (move loads). Moreover, no plausible amount of
stiffening can keep veering within the small limits actually observed.

There seems to be no escaping the fact that the forces that will oppose the
movement are to some extent anticipated, so that components of the command
signals sent to the muscles in advance function to develop the torques required
to offset these reactive forces. This has led to the suggestion that in order to
generate those components of the motor signal that reflect the need to offset the
reactive forces, the trajectory planning process transiently specifies bogus
equilibrium points well beyond the desired end point(N. Hogan & Flash,
1987). This bogus trajectory, which deviates from the actually intended
trajectory in a manner that generates the torque components required to offset
the reactive forces is called a virtual trajectory. There is no experimental evidence
for this kind of bogus virtual trajectory. And, perhaps more importantly, it is not
clear how the system could choose an appropriate virtual trajectory without
solving the inverse kinematics and inverse dynamics problem, the problems that
this model was intended to finesse.

Another problem with the moving-equilibrium-point hypothesis is that it
does not support efficient adaptive modification of motor commands during
practice, modifications that overcome changes in limb dynamics produced by
growth, pathology, and working with implements that have substantial inertia
(hammers, stones, spears, poles, tennis rackets, etc.--Atkeson, 1989) . The
problem is that because the nervous system has no representation of the relation
between the kinematics and the dynamics, it has no way of relating the errors,
which are kinematic (deviations from planned trajectories), to the dynamics (the
pattern of forces that generated the trajectory). Thus, it cannot use observed
trajectory errors to make goal-directed changes in the planning process; it can
only proceed by random trial and error.

Adaptation to Artificially Manipulated Dynamics

While roboticists have not yet made computer-controlled robots that can reach
and wipe as well as a frog can, they have nonetheless made enough progress to
permit highly instructive experimental manipulations of the forces that a human
arm encounters during a reach.(Shadmehr & Mussa-Ivaldi, 1994) had
subjects make targeted reaching movements while grasping a handle on the end
of a low-inertia robot arm. The robot arm had computer-controlled torque
motors at its joints, which enabled the computer to generate forces on the hand
as it moved. Sensors in the joints gave the computer moment-by-moment
information on the angular position and velocity of its joints, from which it could
calculate the position and velocity of the subject's hand in body-centered space or
the corresponding values in joint-angle space (that is, the angular position and
velocity of the subject's joints) by just the sort of coordinate transformations that
are the focus of this review. This arrangement enabled the experimenters to
program the computer to generate novel velocity-dependent force fields. Because
these forces were velocity-dependent (like the forces that oppose the stirring of
molasses), they did not exist until the hand began to move.
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The subjects made control reaches with the same hand in two different
work spaces, one on their right and one on their left, before the velocity-
dependent force fields were introduced. Then they made 1,000 reaches in the
right work space in the presence (mostly) of the artificial velocity-dependent
force field. When the subjects first encountered the novel forces, their trajectories
veered far from the straight lines characteristic of normal reaches, and the
velocity profiles were multimodal rather than bell shaped. However, as they
practiced making reaches in this bizarre dynamic environment, the trajectories
again became straight and the velocity profiles bell shaped. During the subjects'
adaptation to the artificially imposed force fields, a few trials where inserted on
which the field was turned off. On these trials, the subjects trajectories veered
away from the normative in ways more or less opposite and equal to the veers
induced by the artificial force field when they first encountered it. These veers
are the aftereffects of the adaptation. They show that the nervous system is
sending signals to the muscles that anticipate and counteract forces that will
develop during the course of the planned movement. When the anticipated
forces do not materialize the muscle forces intended to counteract those forces
cause veers.

The aftereffects prove that muscular forces designed to offset forces that
will develop during the movement are programmed in advance into the signals
sent to the muscles. In other words, the problem of generating the requisite
forces is not solved primarily by feedback control; it is solved by feed forward
control. This same conclusion--that trajectory constancy is not obtained by
stiffening the limb-- follows from the finding that as subjects adapt to
experimentally imposed perturbations in limb movements, limb stiffness
declines rather than increases(Milner & Cloutier, 1993; van Emmerik,
1991). The nervous system tries to minimize deviations from programmed
trajectories by increasing the gain of the visco-elastic feedback control loop only
at first, before it has learned to compensate for the new reactive forces by feed-
forward control.

The fact that the nervous system learns to compensate for new reactive
forces by feed-forward control strongly suggests that it has a modifiable dynamic
model of the limb(M.I. Jordan, 1994; M. I. Jordan, 1994), which enables it
to solve the inverse dynamics problem, the problem of calculating the forces
required to implement a given trajectory and velocity profile. The model of the
limb's dynamics has feedback-settable parameters. When the world changes so
as to invalidate the model, the resulting error signals adjust the parameters of the
model to make it once again a usable model of the limb's dynamics. The model
may even be context-specific; that is, when you pick up a familiar implement like
a tennis racket or a hammer, the central nervous system may switch-in a
different model of the limb's dynamics, a model that incorporates the
contributions of the implement.

Perhaps the most elegant aspect of the Shadmehr and Mussa-Ivaldi
experiment is that they trained their subjects with velocity-dependent force fields
defined in the two different kinematic spaces-- body-centered space and joint-
angle space. For one group, the velocities and the resulting artificial forces were
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specified in joint-angle space, while for another group, they were specified in
body-centered space. The force fields were chosen so that they were essentially
identical when the hand was moving in the right work space where the
adaptation training took place. Thus, there was no way for the subject to know
which space defined the artificial force field to which he was adapting. That is,
there was no way of knowing whether a given force (with a certain magnitude
and direction) was evoked by a joint-angle velocity or by the resulting velocity of
the hand in body-centered space. However, when the adapted subjects moved
their hand over into the left work space, the force-fields produced by the two
different programs were no longer identical in body-centered space. In fact, they
were nearly orthogonal, that is, the force produced by one program in response
to a given velocity of the hand in body-centered space was almost perpendicular
to the force produced by the other program in response to the same velocity.

When the subjects shifted their reaches over to the left work space, they
were tested with both field-generating programs and also with the imposed force
field turned off. This allowed a decisive test of two important questions: (1) Did
the adaptation transfer from one work space to another? (2) If so, did the transfer
occur in body-centered space or in joint-angle space?

The adaptation did transfer from the right work space to the left one, and
the transfer clearly occurred in joint-angle space, not body-centered space. When
there was no force-imposing program in the left work space (the space in which
they had not practiced), both groups of subjects showed strong and very similar
veers (adaptation aftereffects). When the force field that depended on velocities
in body-centered space was present in the transfer work space, the subjects
showed strong veers, regardless of which program they had adapted to. The
adaptation they had learned in the training work space did not enable them to
compensate properly for the 'same' forces in the new work space, where 'same'
means same if defined in body-centered space. By contrast, when the force field
that depended on the joint-angle velocity vector was operative in the new work
space, both groups of subjects compensated well. They did not make veers in the
new work space when they encountered the 'same' velocity-dependent forces
they had encountered in the previous work space, where 'same' now means same
if defined in joint-angle space.

The fact that proper compensation transferred only when the force fields
were defined with reference to joint-angle space not body-centered space is
strong evidence that the inverse dynamics are computed after an inverse
kinematics transformation. What the subjects learned were the forces required to
implement a given trajectory (and velocity profile) in joint-angle space. How they
could learn this if the trajectory in joint-angle space were not represented in the
nervous system is unclear. The experiments by Wolpert, et al. (1995) showing
adaptation to false-visual curvature give strong evidence for trajectory planning
in body-centered space. The Shadmehr and Mussa-Ivaldi results give strong
evidence that the dynamics are computed from a trajectory specified in joint
space. Together, these experiments argue for the succession of transformations
envisioned by the engineering analysis: first a trajectory in body-centered space;
then a derived trajectory in joint space (the inverse kinematics computation);
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finally, a derived feed-forward trajectory in muscle-force space (the inverse
dynamics computation).

The transfer of the adaptation to the new work space, implies that the
inverse dynamics are not computed by means of a look-up table. A look-up table
gives an output (e.g., a pattern of motor-neuron signals) for each input (e.g., a set
of sensory signals indicating limb position and velocity and a set of command
signals indicating a desired trajectory). The values of the signals that come into a
look-up table do not define a position in a space, at least if the look-up table is
what is called a 'dumb' look-up table, one that does not do interpolation. With a
dumb look-up table, there is no sense in which one incoming pattern of signals is
close to (similar to) another pattern. Because there is no sense in which patterns
recognized as distinct inputs are close or distant from one another, the dumb
look-up table neither interpolates or extrapolates.

Interpolation implies that inputs may be ordered along various
continuous dimensions, that is, that they are points in a space on which a metric
may be defined. (Look-up tables that do interpolation are called smart look-up
tables.) Extrapolation implies not only that the inputs and outputs to the
mapping are points in metric spaces, but also that the mapping between one
region of the input space and its corresponding region in the output space
defines the mapping for other regions of the input space. This is something akin
to analyticity in the theory of functions, and, indeed, neural networks that
specify a function over its entire domain are called function-approximators. (A
function is analytic if its behavior over any region of its domain (input) defines
its behavior over its entire domain.)

The subjects in the Shadmehr and Mussa-Ivaldi experiment extrapolated
the adaptation they learned during training in the right work space to the left
work space. Moreover, and particularly to be remarked, this extrapolation was
on the mark. The extrapolated control signals enabled them to produce straight
trajectories in body-centered space in a new region of joint-space (and body-
centered space), provided that the force field was programmed in joint space.
Anyone who has used a polynomial function to fit nonlinear data should be
impressed by this, because the best-fitting polynomial generally deviates wildly
from any plausible further data as soon as it gets outside the region for which
one already has data. In other words, polynomial functions fitted to observations
seldom correctly anticipate what will happen in a new region of the space being
experimentally explored; they do not extrapolate correctly. The Shadmehr and
Mussa-Ivaldi transfer results imply that in generating the motor commands from
the joint-space kinetics, the nervous system operates with something akin to
analytic functions, which are sufficiently accurate reflections of the limb's
biomechanics that they yield valid extrapolations.

Dynamic Basis Functions

One of the most important ideas in the theory of metric spaces is the concept of a
basis function, which may be thought of as a generalization of the notion of the
basis for a vector space, one of the fundamental ideas in linear algebra. Recent
experimental results suggest that this idea may have relevance to our
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understanding of how the nervous system generates the muscle commands that
induce a limb to follow a planned trajectory(Giszter, Mussa-Ivaldi, & Bizzi,
1993; Mussa-Ivaldi et al., 1994).

A basis for a vector space is a set of points (that is, vectors) that may be
scaled (multiplied by a scaling factor) and combined (by vector addition) to yield
any point (any vector) in the space. The traditional bases for any three-
dimensional physical space such as the body-centered space are the vectors that
specify a point one arbitrarily chosen metric unit along each of the orthogonal
axes--the x, y, and z axes by reference to which the positions of points in the
space are defined. These orthogonal unit vectors are <1, 0, 0>, <0, 1, 0> and <0, 0,
1>. Scaling one of these vectors means multiplying each of its components by
some scaling factor, which can be any real number. Adding scaled vectors means
adding (in the conventional arithmetic sense) corresponding components (the
first component of one to the first component of the other, the second to the
second, and the third to the third). Obviously, by these two operations applied to
these orthogonal unit vectors, one can generate any sequence of three real
numbers one wants which is to say any point in the space. Thus, for example, the
point <3.2, ÷2, p> is obtained by scaling the first basis vector by 3.2, the second
by √2, and the third by π, then adding these scaled orthogonal unit vectors.

A basis function generalizes this idea to the (infinite) sets of points that
constitute curves, that is, trajectories. ('Curves' in this usage include straight
lines.) Probably the most generally familiar basis for continuous function space
are the sine and cosine curves used in the Fourier decomposition and synthesis
of a function. Roughly speaking, the Fourier theorem asserts that: (1) one may
obtain any continuous curve (thus, any trajectory) by scaling and adding to each
other (superimposing) some set of sine and cosine curves; and (2) for any given
function, the requisite set and the required scaling factors are unique. Thus, the
sine and cosine functions constitute a basis for a trajectory space--you can get any
trajectory you want by scaling them and superimposing them, adding them up
point by point. (For an illustrated introduction to the superimposing of sine and
cosine curves, see (Gallistel, 1980).) Technically, speaking, it requires an
infinite set of sine and cosine curves to make a basis for continuous function
space, but, practically speaking, a good approximation to almost any trajectory
can be achieved by scaling and superimposing a modest fixed set of sine and
cosine curves--a set containing on the order of 50 curves. Thus, a finite set of sine
and cosine curves can serve as a practical basis for generating any trajectory one
wants.

The sine and cosine curves are by no means the only basis for trajectory
space. There are many other possibilities, some of which offer appreciable
advantages over the Fourier set in some contexts (e.g., wavelets, see(Strang,
1994)). The importance of the Fourier basis set in the present context is only to
serve as an illustration of the general idea of a set of basis functions.

This short introduction to the concept of a set of basis functions is by way
of preamble to a review of the results obtained by (Giszter et al., 1993) and
(Mussa-Ivaldi et al., 1994)., working with the spinal frog. They mapped out
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the force-fields produced by brief (0.3 s) trains of low intensity (1-10 mA, 1 ms
wide) anodal stimulating pulses delivered (at 40 Hz) through a microelectrode to
interneuron pools in the spinal cord. To map the force field induced by the
stimulation (the active force field), they anchored the ankle to a 6-axis force
transducer on an x-y positioning stage and moved the foot to different points in
body-centered space. At each position of the foot, they noted the force vector
exerted by the limb before and during stimulation. By subtracting the force
vector before stimulation from the force vector that developed during
stimulation, they derived the active force vector as a function of time since the
onset of stimulation.

The force vectors obtained from a grid-work of points in body-centered
space define a force field. The static force field observed in the absence of
stimulation and the active field developed during stimulation were generally
convergent. That is, there was a point in space at which there was no force--the
equilibrium point--and at all other points the force vectors pointed along curves
that converged on this equilibrium point. The static equilibrium point was the
position to which the unstimulated frog's ankle would return if released from the
positioning device, in other words, its resting posture. The active equilibrium
point was the point to which the ankle would move during stimulation if it were
free to move and if the static, prestimulation force field were absent. Not
surprisingly, the strength of the vectors in the active field increased during
stimulation.

The total force field acting on the ankle at any moment during the
stimulating train was the superimposition (sum) of the static field and of the
active field. The active field grew stronger over time since the onset of
stimulation. Therefore, the equilibrium point of the summated force field moved
during stimulation--to a point that was intermediate between the static and the
active equilibrium points. The stronger the active field became relative to the
static field, the nearer the equilibrium point of the summated field approached
that of the active field. The authors term the trajectory of this moving equilibrium
point of the summated field the virtual trajectory, to distinguish it from an actual
trajectory the ankle would trace out if it were free to move. When they did allow
the ankle to move from its resting position during stimulation, its actual
trajectory was generally close to this virtual trajectory.

When they determined the active force fields produced at different depths
as they moved the stimulating electrode deeper into the lateral portion of the
cord at any given point along the anterior-posterior axis of the cord, they found
that the force fields were very similar at different depths--a finding reminiscent
of the columnar structure of receptive fields in sensory areas of the cortex. When
they varied the strength (stimulating current) or duration of the train of pulses,
they found that both of these manipulations served chiefly to change the lengths
of the force vectors not their orientation nor the time course of their
development. If the stimulating train is itself conceived of as a 'pulse' input
whose height is defined by the strength of stimulation (current x pulse
frequency) and whose width is defined by train duration, then we can say that
varying the energy in the pulse (its area) by varying either its width or its height
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scales the active force field. The importance of this is that scaling the basis
functions is one of the two basic operations by which other functions are
synthesized from basis functions.

More interestingly--from the standpoint of where we are headed, which is
toward a concept of a dynamic basis set --they found that the active force fields
from many different stimulating sites fell into only about four distinct classes of
fields. Stimulation at sites in one class created a force field that moved the tip of
the leg forward and out, stimulation at sites in another class moved it back and
in, and so on. Most interestingly, when (Mussa-Ivaldi et al., 1994). measured
the force fields produced by stimulating simultaneously through two different
electrodes that produced different classes of force fields, they found that the
resulting active force field was the superimposition (the adding up) of the
component active force fields. That is, for any given position of the frog's ankle in
space and at any moment in time after stimulation onset, they could predict the
active force vector by adding the active force vectors at that point and time
obtained when stimulating at each field individually.3

Because the force fields superimposed, (Mussa-Ivaldi et al., 1994).
could predict the virtual trajectory produced by stimulating the two classes of
interneuron pools simultaneously. Note, however, that it was not the virtual
trajectory itself that could be obtained by superimposing the two virtual
trajectories; rather it was the force field that could be obtained by superimposing
the two force fields. Thus, if these different classes of force-field producing
interneuron pools are basis functions for the generation of trajectories--which is
what (Mussa-Ivaldi et al., 1994) suggest they are--then the space for which
they constitute a basis set is a dynamic space not a trajectory space.

These interneuron pools in the spinal cord may be a fundamental part of
the neural machinery that computes the inverse dynamics. In fact, they could be
the part whose output is modified during adaptation to novel dynamics,
although it should be borne in mind that evidence of such adaptations has not
been obtained in the frog. The system could use information about how previous
trajectories deviated from those specified to alter the parameters of the circuits
that create these force fields in ways that compensated for the novel dynamics.
This adaptive capacity at the level of the dynamic basis functions would make
changes in the dynamics "transparent" to higher planning stages--something that
they did not have to take into consideration in carrying out their coordinate
                                    
3 A surprising finding in this research was the superimposition
(additive combination) of the force fields elicited by direct
stimulation of muscles in a limb whose inverse kinematics were not
experimentally constrained (i.e., where many different points in
joint space could correspond to a single point in anatomical space).
This suggests that the biomechanics of limbs are not as intractably
non-linear as they are sometimes supposed to be. The muscles
appear to insert in such a way that their effects combine additively
even though they need not.
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transformations. However, as already noted, this kind of adaptation requires that
the nervous system have a model of the limb's dynamics.

Dynamic basis functions may simplify the control problem from the
standpoint of the higher stages of motor planning in two ways: (1) by reducing
the degrees of freedom, the number of variables whose values need to be
specified in order to obtain the desired output; and (2) by linearizing the
'apparent' dynamics. They may, in effect, give the next stage up four control
levers (assuming four basis functions) to "pull" on--for example, one giving a
forward-and-outward force field converging on a stable position at the
forwardmost and outermost limit of reach; a second giving a backward-and-
outward force also converging on a stable limb position, that is, an equilibrium
point; a third giving a backward-and-inward force (likewise convergent); and a
fourth giving a forward-and-inward force (again convergent). Because the force
fields superimpose when the next stage up pulls on more than one lever at a
time, the consequences of various combinations of lever pulls are easily
computed or modeled. This is the advantage of having a stage that linearizes the
apparent dynamics.

Conclusions

The behavioral evidence--particularly the evidence from adaptation experiments-
-favors the view that there are separable stages in the planning of a directed limb
movement--a stage that plans the trajectory in three-dimensional body-centered
space; an inverse kinematics stage, which translates this into a trajectory in joint
space; and, finally, an inverse dynamics stage, which translates the joint-space
trajectory into a dynamic, convergent force field.

A convergent force field is defined in that sub-space of body-centered
space consisting of all the positions that may be occupied by the end point of the
limb. The force vectors acting on the end point of the limb at the positions in this
space are all directed along curves that converge on a single equilibrium point, a
point where the force vector is zero. In a dynamic, convergent force field, the
equilibrium point traces out a trajectory, that is, it changes position over time.

Evidence from spinal cord microstimulation in the frog suggests that the
inverse dynamics may be implemented by means of a modest set of interneuron
pools, with each pool producing a dynamic basis function. These basis functions
are the primitives from which all dynamic convergent force fields are
synthesized by superimposition--the point-by-point addition of the force vectors.
Concurrent activation of these interneuron pools generates the dynamic,
convergent force field required to implement a joint-space trajectory. Thus, the
problem of computing the inverse dynamics becomes the problem of
determining which combinations of these basis functions must be activated and
in what temporal sequence in order to produce the joint-space trajectory.

In humans at least, the system that computes the inverse dynamics adapts
to an altered dynamic environment. This adaptation is not realized by stiffening
the limb, as is required by the moving-equilibrium-point hypothesis. Nor is it
realized by computing a virtual trajectory that deviates from the desired
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trajectory in such a way as to realize the desired trajectory in the face of the
altered dynamics. The adaptation is invariant under translations of the altered
dynamics computed in joint space but not under translations computed in body-
centered space, which appears to be strong evidence that the joint-space
trajectory is explicitly computed in the course of generating a movement.
Moreover, the ability of the system to adapt to these perturbations with feed-
forward corrections--that is by programming forces that are calculated in
advance to offset the altered dynamics--is thought to require at least a crude
internal model of the dynamics, called a model of the "plant" (C. G. Atkeson,
1989; M.I. Jordan, 1994). An internal model of the plant is a neural network
that generates from a copy of the control signals sent to the muscles the expected
pattern of signals from the sensors that report the limb trajectory actually
achieved. In other words, the neural model is a stand-in for the limb itself; it
mimics the manner in which the limb converts motor signals into sensory
signals, signals that indicate the consequences of the muscle forces developed in
response to the motor signals. Such a model is thought to be required in order for
the system to make appropriate adjustments in the inverse dynamics mapping
when the trajectories actually achieved deviate systematically and repeatedly
from the trajectories specified by the planning process.

In planning trajectories in body-centered space, the system generally
adopts trajectories that maximize smoothness, which is to say trajectories that
minimize the jerk (the first derivative of acceleration). Jerk-minimizing
trajectories are straight lines. This straightness is not a by-product of some other
planning goal (e.g., a purely dynamic goal), because if the trajectories actually
produced are made to appear curved when they in fact are not, the subject
adapts, that is, he begins to produce trajectories that are in fact curved but appear
straight.

In computing the inverse kinematics, the nervous system must impose
additional constraints on the solution to make the problem well posed, that is, to
insure that there is a unique solution, because there are infinitely many joint-
space trajectories that will implement any given trajectory in body-centered
space (the degrees of freedom problem). The further constraint that is imposed
may again be a smoothness constraint, that is, the inverse kinematics
transformation may pick out from this infinitude of joint-space trajectories the
one that minimizes the jerk in joint space. It should be noted that this joint-space
trajectory will not (necessarily) be the smoothest possible joint-space trajectory;
rather, it will be the smoothest joint-space trajectory that implements the
required body-centered trajectory. In other words, the system may first plan the
smoothest possible body-centered trajectory, then plan the smoothest joint-space
trajectory consistent with this body-centered trajectory (sequential constraint
satisfaction).

Saccadic Eye Movements

A saccadic eye movement is a high-speed ballistic movement of the eyes from
one direction of gaze to another direction of gaze. It may be directed to a
punctate visual target; or it may be elicited by an auditory stimulus and directed
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toward the computed position of the source; or its direction may be specified by
purely internal processes in the absence of any punctate target stimulus. It
functions to bring the image of the source position (the position of the distal
stimulus in head-centered space) onto the fovea. The movement is ballistic in the
sense that it is not influenced by the movement of the visual field across the
retina that ordinarily occurs during a saccade. Manipulating this retinal feedback
experimentally, by, for example, stabilizing the retinal image does not alter the
trajectory of a saccade.

Although there is much that remains to be understood about the control of
saccadic eye movements, this is nonetheless the best understood system from a
neurobiological standpoint, and the one that provides the most compelling
evidence for neuroanatomically distinct stages of coordinate transformation.

Integrator Coordinates: A Neurally Imposed Framework

One of the coordinate transformations that the saccade-generating neural
circuitry must compute is necessitated by the peculiarities of rotational
kinematics, namely, the non-orthogonality of rotations about orthogonal axes. A
ball rotating in a socket has three degrees of rotational freedom: it can rotate
horizontally (to the left or to the right about a vertical axis); it can rotate
vertically (up or down about a transverse axis in the horizontal plane); and it can
rotate torsionally (clockwise or counterclockwise about a sagittal axis in the
horizontal plane, an axis that passes through the pupil when the eye looks
straight ahead).4 To appreciate the non-orthogonality of positional changes in a
three-dimensional rotational framework, imagine that the eye rotates
horizontally 90° away from straight ahead gaze. This rotation brings the pupil of
the eye to the point where the transverse axis of rotation enters the eyeball. (Such
an extreme rotation is anatomically impossible, but the consequences of this
rotation are easy to visualize, and the conclusions that follow apply in
intermediate degree for any intermediate rotation.) Now imagine that the eye
rotates 45° 'vertically,' that is, about the transverse axis, which now passes

                                    
4 The consequences of a sequence of such rotations can be hard to
visualize. To follow this exposition, the reader may find it useful to
take the ball out of a computer mouse and mark a cross at the
"pupil" of this ball, taking care to distinguish the horizontal and
vertical bars of this cross. The axis for horizontal rotations passes
vertically through the center of the ball. When the ball is held with a
finger tip on top and the thumb on the bottom, it rotates about this
axis. The axis for vertical rotations passes transversely through the
center of the ball. Holding the ball at the points where a transverse
axis intersects its surface, allows one to rotate it vertically. To make
pure torsional rotations, you have to place the finger tip on the
pupil and the thumb diametrically opposite the pupil, so that the
axis of rotation lies in the sagittal plane, rather than the transverse
plane.
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through the pupil of the eye. During this rotation, the pupil remains in the
horizontal plane (because it coincides with the axis of the rotation) and a cross
drawn on the pupil rotates into an x Imagine that the eye subsequently rotates
90° horizontally back to a straight-ahead gaze. In this sequence, the eye never
rotated about our chosen torsional axis, but it has nonetheless undergone a 45°
torsional rotation. Thus, a retinal receptive field that had a vertical orientation
before we started will now be oriented 45° away from vertical. Two equal and
opposite rotations about our vertical axis (90° to one side and then 90° back) with
an intervening rotation about our transverse axis yield a change in eye position
that could have been produced by a single rotation about the torsional axis and
no rotation about the transverse axis. This is weird. It happens, because as soon
as the eye rotates horizontally by any amount away from the straight ahead
position, then any rotation about the transverse axis (the axis for 'vertical'
rotations) becomes to some extent also a rotation about the torsional axis.

Donders law says that torsional changes in the eye's position in the socket
do not occur during saccades. That is, at any moment during any saccade the eye
occupies a position that could have been reached from the straight-ahead, zero-
torsion primary position of the eye by a rotation about an axis that lies in the
plane defined by transverse and vertical axes that are perpendicular to the
direction of gaze when the eye is in the primary position. These axes define a
transverse plane that divides the eye into a front half and a back half. This plane-
-the plane perpendicular to the primary direction of gaze--is sometimes called
Listing's plane. All eye positions reachable from the primary position by a
rotation about an axis in this plane have the property that the images of vertical
lines with vertical meridians on the retina (great circles intersecting at the vertical
axis) and the images of horizontal lines align with horizontal meridians (great
circles intersecting at the transverse axis). Thus, the orientations inertial space of
the lines to which simple cells in V1 are most sensitive is the same for all such
positions of the eye. A receptive field that is vertical on the retina will be
maximally stimulated by a vertical line, no matter what the direction of gaze nor
how that direction was reached.

The eye's position is specified in a three-dimensional rotational space, all
of whose dimensions are angular (degrees of rotation). Often, the positions of the
eye during saccades are said to lie in Listing's plane, because Listing's plane may
also be conceived of as the zero-torsion plane in rotational space5. The dual
meaning of the term 'Listing's plane' is confusing, because the two planes
referred to are not the same. In fact, they are planes in two different, non-
isomorphic spaces. One plane, which I will hereafter call Listing's axes plane, is

                                    
5This is a plane in the mathematical sense not the physical sense.
Mathematically, a 'plane' is a two-dimensional set of points in a
three-dimensional space, that is a set of three-dimensional position
vectors that do not vary along one of the three dimensions after an
appopriate rotation of the framework; thus, the set of all positions
in rotational space that have  zero torsion constitute a plane in the
mathematical sense.
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defined by a set of axes of rotation in a Cartesian head-centered space, while the
other, which I will called Listing's position plane, is defined by a set of eye
positions in a rotational space. Listing's coordinates specify these two-
dimensional eye positions (that is, these directions of 0-torsion gaze) in terms of
the direction in which the gaze is imagined to depart from the primary position
(the origin of the system of coordinates) and the magnitude of the rotation made
in this direction.

Donders' law (sometimes called Listing's law) has sometimes been
thought to be a consequence of the biomechanics of the eye, but the eye occupies
positions that are not in Listing's position plane during the smooth portions of
vestibular nystagmus (Crawford & Vilis, 1991), during smooth pursuit eye
movements(G. Westheimer & McKee, 1973), and during sleep
(Nakayama, 1975). Moreover, whenever the eye is not in its primary position
at the start of a saccade, then the axis of rotation during that saccade does not lie
in Listing's axes plane. When the eye deviates a degrees from the primary
position at the start of the saccade, then the axis of rotation for the saccade lies in
a plane that is tilted by a/2° away from Listing's axes plane in the direction of a
(Villis & Tweed, 1991). In other words, the axes of rotation that maintain the
eye in Listing's position plane only lie in Listing's axes plane if the starting point
of the saccade is the primary position. For other starting positions, the axis of the
rotation lies outside Listing's axes plane. Finally, and most tellingly, Listing's
axes plane varies substantially within a subject over time. It varies more widely
than can plausibly be attributed to variations in biomechanics (Crawford,
1994; Ferman, Collewijn, & Van den Berg, 1987; Tweed & Villis,
1990).

One often imagines that coordinate frameworks are imposed on the
nervous system by our analysis--that the framework is in the mind of the theorist
or in the practical necessities of the experimentalist, not in the brain of the subject
(Robinson, 1992). In implementing Donders' law, however, the nervous system
establishes a coordinate framework of its own, because the positions that the eye
assumes during saccadic eye movements have zero torsion only if one correctly
identifies the primary position of the eye, and it is the nervous system that
determines what that primary position is. Recall that Listing's axes plane is the
transverse plane through the center of the eye orthogonal to the direction of gaze
when the eye is in its primary position. If the experimenter assumes a primary
position of the eye that is not the one the nervous system specifies, then the
experimenter's measurements of eye position during saccades will yield points
(three-angle eye-position vectors) that do not have zero torsion in the
experimenter's system of coordinates6. The positions assumed by the eye as it
jumps around have zero-torsion only when the experimenter correctly identifies
the primary position of the eye. In fact, this is in essence how one determines the
primary direction of gaze and hence, the orientation of Listing's position plane:
                                    
6Clinicians refer to torsions that arise from choosing a coordinate
system other than the zero-torsion Listing's system as "false
torsions."
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one rotates the coordinate-framework in which the measured eye positions are
expressed until one finds the orientation that minimizes the departures from 0
along the torsional dimension (Tweed, Cardera, & Vilis, 1990). The primary
position of the eye varies widely between subjects--by as much as 30°--and it also
varies substantially within subjects over time--by as much as 14° (Crawford,
1994; Ferman et al., 1987; Tweed & Villis, 1990).

Crawford (1994) demonstrated that the neural integrators that maintain
static eye positions establish an intrinsic coordinate system for eye positions. His
experiments exploited two aspects of our extensive knowledge of the
neurobiology of oculomotor control. First, the motor signals that govern the eye
muscles during and after a saccade are programmed in a pulse-and-step pattern
(Robinson, 1975). The pulse is an initial burst of motor neuron firing, which
generates the force required to accelerate the eye to the peak velocity that it
reaches during the saccade. The greater the magnitude of the saccade, the greater
the peak velocity, and the stronger this initial burst of firing. (The size of the
pulse also varies as a function of the position of the eye in the orbit at the
beginning of the saccade.) The step is the sustained change in firing required to
maintain the eye in its new position. Remarkably, the nervous system computes
the step by integrating the pulse (Robinson, 1989). Thus, the change in the
sustained rate of motor neuron firing is proportional to the area of the pulse.
Second, the nervous system decomposes sustained changes in eye position
(position steps) into horizontal and vertical-torsional components, which are
realized by distinct integrators. The integrator for the horizontal component is in
the nucleus prepositus hypoglossi (Cannon & Robinson, 1987; Cheron &
Godaux, 1987; Straube, Kurszan, & Büttner, 1991), while the integrators
for the vertical-torsional components are in the interstitial nucleus of Cajal
(Buttner, Buttner-Ennever, & Henn, 1977; Crawford & Vilis, 1991,
1993; King & Moore, 1991)

It is possible to knock out an integrator and hence the step change in firing
that it produces without knocking out the pulse that determines the saccadic
trajectory. When the saccadic pulse remains but the step is gone, the eye jumps to
its new position in response to the burst of motor neuron firing that constitutes
the pulse, but then, because the step change in firing is absent, it drifts back to
the origin (0-point) of the integrator's axis, following an exponential time course.

Crawford (1994) reasoned--and confirmed by simulation--that if he
knocked out the vertical-torsional integrators but not the horizontal integrator,
then the eye would drift back to a resting position on the horizontal axis of
Listing's plane after each saccade. Following saccades with different horizontal
components, the eye would come to rest at different points along the horizontal
axis. Also the post-saccadic drift trajectories would parallel the vertical axis of the
intrinsic coordinate system. Put another way, from the static resting positions to
which the eye drifted, one could determine the horizontal axis of the integrator-
imposed coordinate system. And, from the drift trajectories, one could determine
the orientation of the vertical axis. In short, knocking out the vertical-torsional
integrators makes the axes of the neurally imposed coordinate framework
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manifest in the post-saccadic drifts in eye position. These two drift-determined
axes define a plane. If Listing's zero-torsion coordinate framework is imposed by
the neural integrators in the intact preparation, then the orientation of the plane
determined by drift trajectories after knocking out the vertical-torsional
integrators should agree with the orientation determined from the eye positions
observed in the intact preparation.

Crawford made repeated experiments on the same monkeys. In each
experiment, he first determined Listing's position plane from the positions
assumed by the eye during normal saccades and then he temporarily knocked
out the vertical-torsional integrators by injecting muscimol into the interstitial
nucleus of Cajal (which is a midline structure). The axes established by the post-
saccadic drifts observed after temporarily knocking out the vertical-torsional
integrators defined a plane that aligned closely with the zero-torsion plane
derived from pre-injection saccades. Moreover, the orientations of the planes
defined in these two different ways showed strong day-to-day within subject
covariation. The primary position of the eyes (the origin of Listing's zero-torsion
coordinate system) changed substantially from day to day--by as much as 14.°
This change was seen both in the orientation of the zero-torsion plane in the
intact subject and in the orientation of the plane defined by the drift trajectories
after muscimol injection.

It is important to bear in mind that the axes of the integrator coordinate
system are not the axes of Listing's coordinates. The axes of Listing's coordinates
are direction (angle with respect to the horizontal plane) and amplitude (angle of
rotation from the primary position in the specified direction). There is no vertical
axis in the coordinate framework that Listing suggested for describing torsion-
free eye positions. By contrast, the axes of the integrator's coordinates are
horizontal and vertical. This means that the horizontal and vertical-torsional
pulses that cause saccadic eye movements must be computed in such a way as to
maintain the eye in the zero-torsion positions demanded by Donders' law. To do
this, the circuitry that generates these motor pulses must take into account the
position of the eye at the start of the saccade. The burst of motor neuron firing
that produces the same change in eye position (e.g., 10° to the right and 5° up)
differs depending on the starting position of the eye. In other words, the
innervation received by the eye muscles must specify a change from one absolute
position of the eye to another, not simply a relative change in position
(Nakayama, 1975; G Westheimer, 1981)

By specifying saccadic changes in eye position in a zero-torsion coordinate
framework of its own devising, the oculomotor system reduces the degrees of
freedom in saccadic eye movements from three to two. This neurally imposed
reduction in the degrees of freedom of a joint is not unique to the eye. The
orientation of the head during combined head and eye gaze shifts and the
orientation of the wrist during pointing are similarly constrained (Hepp &
Hepp-Reymond, 1989; Tweed & Vilis, 1990). Thus, it may be possible to
discover neurally imposed coordinate systems at other joints with three degrees
of rotational freedom.
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The Representation of Saccades in the Superior Colliculus

Whereas the brainstem circuits that generate the motor neuron firing that moves
the eye must reckon with the position of the eye in the orbit as well as the desired
change in position, the superior colliculus simply specifies the desired change in
the direction of gaze in a coordinate system whose origin is the current
presaccadic direction of gaze. The activity of neurons in the deep layers of the
superior colliculus specify the deviation between the direction of gaze and the
target, the distal position whose image is to be brought onto the fovea by the
saccade. Target positions computed in other coordinate frameworks--the retinal
framework in the case of visual inputs, a head-centered coordinate framework in
the case of auditory inputs--are mapped into this common coordinate system for
the production of saccadic changes in the direction of gaze.

The Mapping of Computed Gaze Error

A fascinating aspect of this coordinate system is that there is a topographic
mapping of computed gaze error onto anatomical dimensions of the superior
colliculus, so that adjacent neurons (or adjacent columns of neurons) in the
superior colliculus represent adjacent positions of the distal target in a gaze-
centered coordinate system (D.L. Sparks & Groh, 1995). This mapping of
gaze-error is unlike other familiar topographic mappings, such as the mapping of
the retina onto V1 or the mapping of the cochlear membrane onto the primary
auditory cortex, in that it is not a topographic mapping of a sensory surface. A
stimulus falling anywhere on the retina or vibrating any point along the basilar
membrane of the cochlea can activate any position in the deep collicular
mapping of gaze-error. In fact, because units in this mapping of gaze-error space
may be driven by either visual or auditory input, the firing of units in this
mapping does not necessarily indicate which sensory epithelium (retinal or
cochlear) was stimulated, let alone the position on one of those sensory surfaces
excited by the proximal stimulus. In short, this is a mapping of the position of the
distal stimulus, not of the position(s) of the proximal stimul(us/i).

The topographic mapping of gaze-error is delineated by the results of
microstimulation at different sites in the superior colliculus and by recordings
from neurons at those sites. Stimulating a site in the colliculus elicits a saccade
that is a systematic function of the position stimulated. The elicited saccade
shows only a weak dependence on the position of the eye in the orbit. Thus, for
example, if the stimulation elicits a saccade of magnitude 5° directed up and to
the right at an angle of 45° from the horizontal when the eye is initially in the
primary position, then renewed or continued stimulation will elicit a second such
saccade, at the end of which the eye is roughly 10° away from the primary
position along the 45° direction line. A roughly but not exactly equivalent
statement is that both saccades will have a horizontal and vertical components of
about 3.5°.

Figure 3 shows the motor map obtained by (Robinson, 1972) in one
such study. The appropriate coordinate framework for describing these results is
an interesting question, with computational and neurobiological implications.
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Robinson described the saccades he elicited in terms of their direction and
magnitude. His map of the effects of stimulation is given in Figure 3B. As he
move his stimulating electrode from the rostral margin of the left superior
colliculus back to the caudal margin along a line that bisected the collicular
surface, he elicited horizontal saccades of increasing magnitude. If he moved his
 

Figure 3. A. Two coordinate frameworks for representing saccades--the magnitude-
direction framework and the horizontal-vertical framework (also called lateral-vertical, or
azimuthal-elevational). Formulae for converting m-d coordinates to h-v coordinates
frameworks are: v = sin-1[sin(d)sin(m)] and h = tan-1[cos(d)tan(m). Formulae for the
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reverse conversion are m = cos-1[cos(h)cos(v)] and d = tan-1[tan(v)/sin(h)]. B. The
results of Robinson's microstimulation experiment represented with the m-d system of
coordinates. (Reproduced from Robinson (1972) by permission of the author and
publisher. C. Approximately how the results would look if they were represented in h-v
coordinates.

stimulating electrode away from this central axis toward the dorsomedial margin
of the colliculus, the saccades elicited were directed upward as well as laterally.
The closer the electrode was to the dorsomedial margin, the farther upward
vertical component of the saccade. Thus, the direction of the elicited saccade (its
deviation from horizontal) varied as a function of how far the electrode was from
the horizontal axis (the line of stimulating positions that elicited purely
horizontal saccades). Another way of describing the same results is to say that
the horizontal components of the elicited saccades were determined by the
position of the stimulating electrode along a rostro-caudal axis, while the vertical
components were determined by its position along a dorsomedial to
ventrolateral axis. The coordinate framework for this alternative description is
given in Figure 3C.

At this same time, (Schiller & Stryker, 1972) published the results of
an experiment in alert monkeys in which they immobilized one eye, so that they
could determine the "receptive field" of units at a given position in the superior
colliculus. They left the other eye mobile, so that they could determine the
saccade elicited by stimulating through the electrode used for recording. They
found that when, for example, the units at a given position were sensitive to
stimuli located 10° lateral to the fovea and 10° above the horizontal, then
stimulating at that site elicited a saccade with a 10° horizontal component and a
10° vertical component, that is, a saccade whose direction (45°) and magnitude
(14°) were such as to foveate a stimulus at the distal position to which the units at
that site were most sensitive.

The term 'receptive field' is enclosed in quotes above, because subsequent
work by (Mays & Sparks, 1980) showed that visually sensitive units in the
deeper layers of the superior colliculus do not have retinal receptive fields in the
ordinary meaning of the term. There is no fixed area of the retina where a
stimulus must fall in order to elicit firing from these deeper units, because the
deep layers combine retinal position information with eye position information
to map the position of visual sources in a gaze-centered coordinate system. Mays
and Sparks used a double-saccade paradigm to dissociate the retinal position of
the proximal stimulus from the gaze-error of the distal stimulus source at the
time the foveating saccade is made.

In the double-saccade paradigm, there are two brief flashes. The second
flash is delivered before the eye initiates the saccade that foveates the first flash.
Both flashes are gone before the eye makes any saccade. In response to the two
flashes, the monkey makes two saccades--an initial saccade that foveates the
position from which the first flash originates and a second saccade that foveates
the position from which the second flash originates. Suppose that one records
from a site that is ordinarily excited by a stimulus 10° to the right and 10° above
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the direction of gaze. Suppose one delivers a first flash that is 10° to the left and
10° below the direction of gaze and a second flash that is in the direction of gaze.
Because the second flash is in the direction of gaze, it falls on the fovea, not on
the putative receptive field of the units one is recording from. However, the first
flash elicits a saccade 10° to the left and 10° down, at the end of which the gaze
error for the distal position from which the second flash came is now 10° right
and 10° up. A flash from this position would activate the recording site.
However, the second flash came and went before the eye made the first saccade,
and, as already noted, this second flash fell on the fovea well outside the putative
receptive field of the units recorded from. Nonetheless, the units show a
response to the second flash, a response that only develops after the eye makes
the first saccade. That is, the units respond to the second flash only when the
distal position from which that flash originated comes to occupy the position in a
gaze-centered framework to which these units are sensitive. Thus, their response
to a flash is jointly determined by information from the sensory epithelium
indicating where the flash fell on the retina and by a position signal indicating
the intervening displacement of the eye. The signal giving the eye's displacement
vector and the signal giving the retinal position of the proximal stimulus (the
retinal position vector) are combined is such a way as to make the units in the
deep layers of the superior colliculus sensitive to the position of the distal
stimulus in a coordinate framework centered on the current direction of gaze.
The combinatorial operation is equivalent to vector subtraction.

Units in these same deep layers are also sensitive to the distal position
(azimuth and elevation) of an auditory stimulus source. This position is
computed in head-centered coordinates by a sequence of operations that use
small differences in the intensity and time of arrival of sound waves at the two
ears. The sequence of computations culminates in a head-centered topographic
map of auditory space in the external nucleus of the inferior colliculus (Konishi,
1995).7 This map is then relayed to the superior colliculus, where it is
transformed into a gaze-centered map of auditory space. Because the mapping of
auditory space in the superior colliculus is gaze-centered rather than head
centered, a coordinate transformation is required. An eye displacement vector
must be subtracted from the head-centered auditory position vector to yield a
gaze-centered auditory position vector. A consequence of this coordinate
transform is that the position in the deep layers of the superior colliculus excited
by a sound source at a given head-centered position changes as the eyes change
position in the orbit (Jay & Sparks, 1987). Equivalently, the position in head
centered coordinates of the auditory stimulus source to which a unit in the deep
layers of the superior colliculus is most sensitive changes as the eye changes its
position in the orbit.

The transformations demonstrated neurobiologically by the work of
Sparks and his collaborators are the sorts of transformations that we inferred

                                    
7At least in the barn owl, where work on the neurobiology of
auditory scene analysis is most extensive. An equivalent analysis has
yet to be done in a primate.
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from the ability of the spinal frog to scratch its elbow with its hind limb
regardless of the relative position of the two limbs (Figure 1). In that case, the
sensory epithelium was the surface of the forelimb rather than the retina. The
displacements that had to be combined with this sensory signal to determine the
direction in which the hind limb had to move were the changes in the angular
positions of the two limbs. The great importance of the work on the superior
colliculus--and similar work in other areas(Bruce, 1990; Bruce & Goldberg,
1990; Gnadt & Andersen, 1988; Russo & Bruce, 1994) --is that it
demonstrates that these sorts of coordinate transformations are explicitly carried
out in the operation of the nervous system. The nervous system carries out the
inferred coordinate transformations and creates electrophysiologically
observable topographic mappings of the resulting spaces. It does not 'act as if' it
carried out such transformations; it really does them.

The Position or Displacement Signal Comes from Corollary Discharge

The eye position or eye displacement vector that is used in computing the
current gaze error does not come from sensory receptors, because animals in
which this sensory input has been eliminated nonetheless compensate for
changes in eye position (Guthrie, Porter, & Sparks, 1983). This finding has
implications similar to the finding that the reaching system can adapt to aritificial
dynamic perturbations with feed-forward corrections, forces that are
programmed in anticipation of forces that will arise during a movement. The
adaptation findings imply that the system has an internal model of the dynamics.
The finding that the eye position or displacement vector is based on corollary
discharge or efference copy implies that the system has an internal model of the
relation between these command discharges and the changes in position that
they may be expected to produce. Recall also that the enduring change in the
discharge of the motor neurons that holds the eye in its new position after a
saccade is derived by integrating the pulse--the signal that specifies the velocity
and duration of the saccade. Thus, the displacement signal in these coordinate
transformations derives from integrating a velocity signal with respect to time.

Computational Implications of Choosing Different Coordinates

The units in the deep layers of the superior colliculus, like units in the many
other topographic mappings that have been discovered in sensory/perceptual
areas, are broadly tuned. Each unit has a best direction, a gaze error for which it
fires most vigorously, but it also fires to some extent prior to saccades in a cluster
of directions centered around its best direction. Thus, prior to any saccade, there
is a substantial population of active neurons. Each active neuron may be thought
of from a computational perspective as a vector pointing at a particular gaze
error, the gaze error represented by its position in the topographic mapping of
gaze-error space. Two questions arise; (1) What is the combinatorial operation
that determines the resulting saccade from the activity of a population of
adjacent active neurons each of which codes for a slightly different gaze error?
(2) What are the computationally meaningful coordinates for describing the
position of a unit in gaze-error space?
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Two simple kinds of combinatorial decision processes might decide the
direction: 1) Winner take all--the saccade made is determined by the coordinates
of the most active unit. 2) A vector combining operation in which the gaze error
that determines the saccade is derived from the coordinates of all the active units,
weighting the contribution of each according to how active it is. (Lee, Rohrer,
& Sparks, 1988) and (D.L Sparks, Lee, & Rohrer, 1990) report results
that point toward the second alternative. In a winner take all scheme,
inactivating with lidocaine the center of the active population--that is,
temporarily knocking out the units that are firing most vigorously--should alter
the direction and magnitude of the resulting saccade, because it should knock
out the "winner," shifting the site of greatest activity (hence, the location of the
winner) away from the center of the population. Conversely, inactivating units
on the margin of the active population--units that are less active than units at the
center--should have no effect on the direction and magnitude of the resulting
saccade, because the activity level of the winning position is unaffected by such
an injection. However, Lee, et al. (1988) showed that inactivating the center of the
population did not alter the direction and magnitude of the saccade, although it
did greatly reduce its velocity (see also (D.L Sparks et al., 1990)). They
further showed that inactivating units on the margin of the active population
moved the resulting saccade away from the saccades coded for by the area that
was inactivated. Thus, if the center of the active population coded for purely
lateral (0-direction) saccades of magnitude 10°, and one inactivated cells coding
for saccades lying above and to the left of that in gaze-error space, then the
resulting saccade was down and to the right of the saccade that one would have
observed in the absence of the inactivation. This shows that the activity of units
on the margin of the active population helps to determine the saccade, which
implies that the gaze-errors indicated by all the active units are summed or
averaged to determine the saccade.

But which is it--summing or averaging? In describing the Lee, et al. (1988)
experiment, I mixed two distinct frames of reference that may be used to describe
gaze errors and the resulting saccades. I referred to the center of the active
population in terms of the direction (0°) and magnitude (10°) of the indicated
gaze-error. Direction and magnitude are the coordinates in Figure 3B. However,
in the same sentence, I referred to the inactivated cells as lying above and to the
left of the gaze error indicated by the center of the active population. The 'lateral'
(to the left, to the right) and 'vertical' (above, below) dimensions are the
coordinates used in Figure 3C. This highlights the fact that it is not obvious
simply from the data what kinds of vectors we should use to represent a unit's
contribution to the determination of the saccade vector.

From the standpoint of the computations needed to specify a saccade, it
matters which framework we use. If we use a two-dimensional direction-and-
magnitude framework, then we have to assume that the combinatorial operation
is equivalent to vector averaging. Moreover, we have to imagine a conversion
somewhere else from the direction-and-magnitude specification of the saccade
vector to a specification in terms of the horizontal and vertical components of the
saccade, because we know that there are separate brainstem nuclei for the
horizontal and vertical components. Finally, we have to use a different
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combinatorial operation to specify saccade velocity from the overall level of
activity in the population. On the other hand, if we think of active units as
equivalent to three-dimensional vectors, then we have to assume only simple
vector summation as the combinatorial operation that specifies the saccade and
this same operation gives the velocity of the saccade. Moreover, if we assume
that the positions of units in the superior colliculus specify the horizontal and
vertical components of saccades (Figure 3C), rather than their direction and
magnitude (Figure 3B), then this same operation gives what the next stage needs,
namely, the horizontal and vertical components of the required saccade.

If we follow the conventional practice of thinking of vectors as arrows,
then in a two-dimensional, direction-and-magnitude framework, an active unit is
at the point of an arrow whose tail is at the origin of the coordinate system--the
upper left corner of Figure 3B, the point toward which the direction lines are
converging. (This point corresponds to the direction of gaze.) The activity of the
unit is not a dimension of the vector in this scheme; it serves merely to determine
the relative weight that will be given to that vector when the error vectors are
averaged. Thinking of the active units as arrows lying on the collicular surface
makes it obvious why we cannot combine the vectors for active units by simple
summation. Vector summation is equivalent to moving one of the arrows so that
its tail coincides with the point of the other arrow. The position of the point of
the moved arrow is then the vector sum. Thus, summing two adjacent units, both
specifying a saccade of 0° direction and magnitude 10° would yield a gaze error
of 0° direction and a magnitude of roughly 30° (as may be verified by carrying
out this operation on Figure 3B). That is, the vectors resulting from simple
summation are much too long; they specify impossibly big saccades. To make the
results of the combinatorial operation plausible, the sum of the weighted error
vectors must be normalized by the sum of the weights, that is, the nervous
system must compute not the vector sum but the vector average. In computing
this average, it must first scale each vector by its firing rate, then sum the scaled
vectors, then divide that sum by the sum of all the firing rates.

However, we need not think of the active units as corresponding to two-
dimensional vectors. It takes three numbers to describe an active unit--two to
specify its position and one to specify its firing rate. This encourages us to think
of active units as three-dimensional vectors. To visualize these vectors as arrows,
we may think of the surface in Figure 3C as wrapped on a globe. The origin of
the coordinate system, where the vector tails are pinned, is not on the surface
shown in Figure 3C, it is at the center of the globe. The three-dimensional vector
corresponding to an active unit does not lie on the surface of Figure 3C; rather it
penetrates that surface. Where it penetrates the surface gives a position in gaze-
error space. The third dimension of these vectors--their length--is the firing rate
of the unit. The greater the length of one of these vectors, the farther it projects
beyond the gaze-error surface. This length may be thought of as the vigor with
which an active unit urges the eye to make the move indicated by the unit's
position in gaze-error space. This vigor translates into the velocity of the saccade;
the more vigorously the unit fires, the faster the saccade it calls for. If these are
the neurobiologically meaningful coordinates for describing positions in the
superior colliculus's mapping of gaze-error space, then the specification of the
horizontal and vertical components of the saccade and its velocity require only
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the equivalent of vector summation--the summation of the vectors corresponding
to all the units in the active population. The point where the resultant vector
penetrates the surface gives the lateral and vertical components of the saccade.
The length of the resultant vector specifies its velocity.

The vector-summation model, which replaces vector averaging with
vector summation by treating the vectors as three dimensional rather than two
dimensional, gives a computationally simpler explanation of the results of the
lidocaine experiment.8 Lidocaine injected into the center of the population will
                                    

8One of the schemes proposed by 

(Sparks, & Mays, 1990)  for
extracting the horizontal component of a saccade from the activity
of a population of units in the superior colliculus implicitly assumes
that the horizontal-vertical framework is the appropriate framework
(see Figure 1 in
Sparks & Mays, 1990).
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not alter the position at which the resultant vector penetrates the surface, because
the direction of resultant (where it penetrates the surface) will not be altered by
knocking out arrows distributed symmetrically around the resultant. However,
by removing the longest contributors to the resultant (the most active units), the
injection will reduce the length of the resultant. And, the length of the resultant
specifies velocity. Thus, knocking out vectors in the center of the active
population should reduce the velocity of the saccade without altering its
direction and magnitude. Lidocaine injected to one side of the population center,
will shift the point at which the resultant vector penetrates the surface away from
the site of injection by removing the contribution of the vectors pointing to the
positions where the lidocaine was injected. If the lidocaine is injected on the
caudal (more lateral) margin of the population, it will shift the direction of the
resultant medially towards gaze errors of smaller magnitude, resulting in
hypometric saccades, saccades that are shorter than they should be. If it is
injected on the rostral (more medial) margin, it will shift the resultant laterally
toward gaze errors of greater magnitude, producing hypermetric saccades,
saccades that are bigger than they should be. These are the results that Lee, et al.
(1988) in fact obtained.

Concluding Remarks

Behavioral and neurobiological data support the conclusion that the positions of
targets, the trajectories of target-directed movements, and the trajectories of
forces required to drive those movements are represented in the nervous system
in a sequence of different, explicitly computed coordinate frameworks. Thus, an
understanding of the circuitry and cellular mechanisms by which coordinate
transforms of various kinds may be computed is a fundamental goal of
integrative neuroscience. The behavioral analysis of the coordinate
transformations that mediate directed actions has a major role to play in the
description and elucidation of these mechanisms, because the behavioral analysis
tells us what transformations to look for.

In many cases, the computed spaces are realized through the topographic
arrangement of units tuned to different positions in the space. Units at a given
location in these topographic mappings of abstract spaces become excited when
the target or trajectory occupies a small region of that space, the region to which
the unit is tuned. The center of this region, the position that corresponds to the
maximum firing, is the best position of unit. The mapping of positions in the
space to which neurons are tuned is said to be topographic when units that are
adjacent neuroanatomically are tuned to adjacent best positions.9 Adjacent here

                                    
9The term 'topographic,' which has become standard in the
neurobiological literature, may have arisen from a confounding of
'topographic' with 'topological'. In mathematics, a topological
mapping is one that preserves adjacency but not distance and angle.
A topographic map, on the other hand, is a map of (some part of)
the earth's surface that encodes elevations as well as horizontal
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has a purely mathematical meaning, because some of the spaces that may be
topographically mapped may not have a simple physical interpretation. An
example of a space without a simple physical interpretation of adjacency would
be a trajectory space. "Points" in such a space specify trajectories formed by the
superposition of basis functions. The different basis functions constitute the axes
of such a space. The dimensionality of the space is equal to the number of basis
functions from which trajectories are synthesized. The values along these
dimensions give the scaling values for the basis function--how much of this basis
function to use when adding up the various contributions to determine the
resultant function. Points in such a space are adjacent if the scaling values for
corresponding basis functions are all adjacent, that is, if the value of each
dimension in one vector is adjacent to the value for the same dimension in the
other vector. As psychologists become more sophisticated about coordinate
transforms and basis functions, these sorts of highly abstract 'spaces' are likely to
play a more prominent role in our analysis of directed actions.

Directed action has been treated here in a circumscribed and literal sense--
to refer to actions in which the optical axis of the eye is to be directed to a given
target or a hand or foot is to be moved to a given target. Directed action in a
more general sense--action that accomplishes some goal--requires for its analysis
a much broader range of principles and mechanisms. Some of those mechanisms-
-the different kinds of elementary units of behavior, how they are coordinated
into complex units of behavior, the hierarchical structure of the resulting
complex units, and the mechanisms for coordination within that hierarchy--have
been described and illustrated elsewhere (Gallistel, 1980, 1994).

However, the coordinate transformations that mediate simple directed
actions may prove directly relevant to another aspect of directed action--
navigation, moving the whole animal to a target.. Navigation depends on the
construction and use of a cognitive map. Both the construction of a map and its
use require coordinate transformations strikingly similar to those discussed here
(Gallistel, 1990, 1998). To construct a cognitive map, the brain combines a
position vector in a body-centered coordinate framework--the position of a
terrain feature relative to the animal--with a displacement vector (the animal's
displacement in the geocentric coordinate framework). Similarly, the superior
colliculus combines the position of a stimulus in a retinal or head-centered
coordinate framework with a vector indicating the displacement of that
coordinate framework relative to a larger framework. In the construction of a
cognitive map, the displacement vector arises from dead reckoning--the
integration of the animal's velocity with respect to time to yield the body's
displacement vector. Similarly, the signals that specify the eye's displacement
vector appear to arise from the integration of eye velocity signals with respect to
time.

When the brain adds a vector that specifies a terrain feature in a body-
centered coordinate system to the body-displacement vector from the animal's
                                                                                                            
locations (latitudes and longitudes). In neurobiology, however,
'topographic mapping' means a mapping that preserves adjacency.
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dead-reckoning mechanism, it maps the position of the terrain feature into a
geocentric coordinate framework. By routinely doing this coordinate
transformation, the animal builds up a representation of the different terrain
features in its environment in a common geocentric coordinate system, even
though those features may have been viewed at widely differing times and
places.

Using the map involves the inverse transformation, mapping from the
position of a goal on the geocentric map to the position of the goal in a body-
centered framework. It is this inverse transformation that enables the animal to
orient toward goals it cannot currently perceive by reference to its cognitive map
and its own position and orientation on that map. Thus, the study of coordinate
transformations and their neurobiological implementation is of broad
significance for our understanding of the computational processes that underlie
higher cognitive function.
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