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Most studies in the neurobiology of learning assume that the underlying learning process is a pairing –
dependent change in synaptic strength that requires repeated experience of events presented in close
temporal contiguity. However, much learning is rapid and does not depend on temporal contiguity,
which has never been precisely defined. These points are well illustrated by studies showing that the
temporal relations between events are rapidly learned- even over long delays- and that this knowledge
governs the form and timing of behavior. The speed with which anticipatory responses emerge in condi-
tioning paradigms is determined by the information that cues provide about the timing of rewards. The
challenge for understanding the neurobiology of learning is to understand the mechanisms in the nervous
system that encode information from even a single experience, the nature of the memory mechanisms
that can encode quantities such as time, and how the brain can flexibly perform computations based
on this information.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The neurobiology of learning has been guided by the idea that
knowledge is acquired through associative learning. Pavlovian con-
ditioning, the prototype of associative learning, is believed to occur
because of repeated pairings of a conditioned stimulus (CS) with an
unexpected unconditioned stimulus (US). A century of research has
led to the accepted generalization that this learning depends on
contiguity and that, in most cases, it requires many trials before
it is complete. Thus, the search for the mechanisms underlying
learning has focused on neural changes that depend on contiguity
and repetition. There is, however, accumulating evidence that this
view fails to capture a number of critical features of the learning
process and fails to appreciate a fundamental function of memory.
Here we highlight the shortcomings of the traditional view and
sketch out an alternative information theoretic approach. We
emphasize the data consistent with this approach but the reader
should be aware that not all the extant data on Pavlovian condi-
tioning are captured by this alternative. We note below when there
are exceptions to the generalizations that form the foundation of
this new approach.

Much of the evidence that caused us to challenge the classic
view comes from studying the role of time in conditioning. Time
was thought to modulate the learning of associations in the sense
that temporal contiguity was necessary for learning – the less the
contiguity between CS and US the weaker the resulting associative
bond and/or the more slowly it developed. The formation of the
associative bond was sensitive to the temporal interval, but the
bond did not encode that interval. That is, one could not recover
the interval from knowledge of the strength of the association it
produced, because many other factors also influenced that
strength. However, it was already evident early in the study of Pav-
lovian conditioning that the interval between the onset of the CS
and US presentation was in fact learned. As early as Pavlov
(1927) it was known that the strength of anticipatory conditioned
responses (CR’s) grows during the presentation of a prolonged CS
that signals a fixed delay to the US, a phenomena that Pavlov called
inhibition of delay. Since those early observations of Pavlov it has
come to be accepted that the learning of specific temporal intervals
occurs during these protocols (see Balsam, Drew, et al., 2010;
Molet & Miller, 2013; Ward, Gallistel, et al., 2013). As this research
has progressed, it has become evident that times seem to be
learned extremely rapidly, from even single experiences and even
before an anticipatory CR emerges (Drew, Zupan, et al., 2005;
Ohyama & Mauk, 2001; Ward, Gallistel, et al., 2012). A dramatic
example of rapid temporal learning is presented in Diaz-Mataix,
Ruiz Martinez, et al. (2013). In one of their experiments, rats were
exposed to a Pavlovian fear conditioning procedure in which a sin-
gle presentation of a tone was followed by a shock 30 s later. This
was sufficient to produce reliable freezing to the tone. The next day
subjects were given a reminder trial, which consisted of a few addi-
tional pairing of the tone and shock. Different groups of subjects
were given the shock at the training time (30 s) or at a different
time (e.g. 10 s) after the onset of the tone. In order to see if a
reconsolidation process was triggered; half the subjects received
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an infusion of a protein synthesis inhibitor into the basal lateral
amygdala following the reminder trial while the remainder of the
subjects received vehicle infusions. The memory was vulnerable to
disruption in only those subjects that experienced the shock at a
new time. The rats had encoded the time in the original learning
and a few presentations of the shock at a new time was enough
to trigger an updating of the memory. Other studies show that
The CS–US interval can be encoded in a single trial (Davis,
Schlesinger, et al., 1989). Thus the encoding of temporal informa-
tion is indeed rapid.

Given such findings, important questions for the neurobiologist
to pursue are (1) what learning mechanisms are plausible given
that information is encoded in a single experience; (2) how does
the nervous system store information about a specific duration;
and (3) How does the knowledge about time affect the expression
of behavior?. We amplify the challenge that these three questions
pose below. We start with the third question because these behav-
ioral studies put important constraints on the possible answers to
the first two questions.

1.1. Temporal information and the modulation of behavior

Research on the effects of varying temporal parameters in condi-
tioning protocols casts serious doubt on the widespread belief that
temporal contiguity—as ordinarily understood—is a foundational
principle of learning (Balsam & Gallistel, 2009; Balsam et al.,
2010; Clayton & Dickinson, 1998; Raby, Alexis, et al., 2007). First,
is that learning occurs over very long delays sometimes lasting days
(Clayton & Dickinson, 1998; Raby et al., 2007), as first became
evident with the discovery of poison-avoidance learning (Garcia,
Kimmeldorf, et al., 1961; Holder, Bermudez-Rattoni, et al., 1988).
Even in standard conditioning protocols increasing CS–US intervals
does not weaken learning; rather it changes how that learning is ex-
pressed. For example, if a brief presentation of a keylight is paired
with grain, a pigeon will come to peck at the light – a procedure
known as autoshaping (Brown & Jenkins, 1968). As would be ex-
pected from a contiguity point of view the briefer the interval from
light onset to the presentation of grain, the sooner the subject
comes to peck at the light. Consider, however, what happens when
contiguity is changed in two different ways. First, if a light comes on
and remains on for a long time before the grain, the bird does not
peck at it. Instead the bird becomes hyperactive and paces back
and forth in the chamber (Mustaca, Gabelli, et al., 1991; Silva &
Timberlake, 2005). Thus, a long CS does not result in a failure of
learning; the learning is intact, but the way it is expressed changes
based on the duration of the CS (see also Holland, 1980). A second
way to vary contiguity is to keep the CS duration constant but to
introduce a gap between the offset of the CS and the onset of the
US. This is called trace conditioning, and it is well known that when
the gap gets larger CR’s are weaker – in autoshaping experiments
the pigeons become less likely to peck at the keylight as the trace
interval is lengthened (Balsam, 1984). However, the failure to peck
the keylight is not a failure of learning. When the keylight signals
the bird that it is about midway between one food and the next,
the bird turns away from the light and actively retreats to a distant
location (Kaplan, 1984). While there are alternative interpretations
of these data (Brandon, Vogel, et al., 2003), from the perspective we
present here, the bird has no trouble learning the temporal relation
between the keylight and food but the behavior that is controlled by
the cue is appropriate to having learned that the cue signals a long
delay to the next reward (see Brandon, Vogel, et al., 2003 for an
alternative interpretation.). Thus, it appears that contiguity has
little impact on whether or not learning occurs, but it does have a
major impact on how learning is expressed. Said another way,
failures to observe anticipatory CRs should not be interpreted as
failures of learning.
Another difficulty for a contiguity view of learning comes from
the unsolved problem of specifying what constitutes a temporal
pairing. The traditional view, rendered explicit in formal models,
is that the associative process imposes a window of associability
that has some intrinsic width (Gluck & Thompson, 1987; Hawkins,
Kandel, et al., 2006). If the CS–US interval is less than the width of
the window, an association forms between the neural elements ex-
cited by these two different stimuli. If the interval is wider than the
window, no association forms. However, the width of the window
has never been experimentally specified, even for a given CS (e.g.,
tone) and US (e.g., shock) in a given species (e.g., rat). Rescorla
(1972) reviews attempts to determine the critical delay and con-
cludes that all have failed.

The problem with the concept of a window of associability—a
critical interval that defines what we understand by CS–US conti-
guity—goes beyond our inability to determine experimentally
what that critical interval is. In the Rescorla (1968) experiments
that demonstrated that contingency—not simple contiguity—gov-
erned conditioning, the US’s were presented at random times. On-
set of the CS did not predict a US at some fixed interval, as in delay
conditioning; rather it announced a change in the rate of US occur-
rence. Because this rate was random, there were occasions in
which the CS came and went without a US and others in which
more than one US occurred during the CS. This raises the question
of where in time we should imagine that the window of associabil-
ity is located relative to the onset of the CS, and what happens
when more than one US falls within a single window, and what
happens when one falls within the window and another outside
it, and so on. This problem becomes acute in the case of context
conditioning. The ‘‘CS’’ (that is, the chamber itself) is present for
many minutes and many US presentations occur at random times
while it is present. In sum, despite the popular belief in contiguity,
the notion that there is a critical CS–US interval has never been for-
mulated in a way that survives empirical tests or deals with the
conceptual problems raised by the variety of protocols that pro-
duce excitatory conditioning despite the lack of discrete parings
of CS and US.

1.2. Time and the emergence of anticipatory conditioned responses

The idea that temporal information drives the emergence of CRs
owes its roots to the observation that the speed of conditioning in
autoshaping depends on the ratio of the time between US’s, re-
ferred to as the cycle time (C), and the duration of the CS–US inter-
val, referred to as the trial time (T). Across a broad range of values,
the number of trials to acquisition is determined by the C/T ratios,
regardless of the absolute values of C and T (Gibbon, Baldock, et al.,
1977; Ward et al., 2012). This relation is illustrated in Fig. 1a which
shows the results of autoshaping experiments (Gibbon et al., 1977)
where different groups of subjects were exposed to protocols that
differed with respect to the duration of the CS–US interval. In
groups for which the ITI was held constant, the trials to acquisition
increased with increasing CS–US interval. However, in groups for
which the ITI was increased proportionally to increase in the CS–
US interval, the number of trials to acquisition was constant. Thus,
what matters in terms of the associability of a CS with a US (speed
of conditioning) is not the CS–US interval per se but rather the pro-
portion this interval bears to the US–US interval. While the speed
of CR emergence is determined by the C/T ratio in these autoshap-
ing experiments, it is not yet clear that this is true for all condition-
ing preparations. Across a moderate range of values it is true for
appetitive head-poking in rodents (Ward et al., 2012) but may
break down with very long CS durations (Holland, 2000; Lattal,
1999). In aversive conditioning the degree of suppression produced
by a CS associated with shock is determined by the C/T ratio
(Coleman, Hemmes, et al., 1986; Stein, Sidman, et al., 1958) but



Fig. 1. Acquisition speed as a function of trial CS duration. Different groups of pigeons were exposed to autoshaping protocols in which trial CS durations (T) ranged from 4 s
to 32 s across groups. For some groups, the duration of the intertrial interval was kept constant (ITI fixed: filled circles). Panel A shows that for these groups, the number of
trials to acquisition increased with increased CS duration. In the other groups the inter trial interval was increased proportionally to the increase in CS duration so the ratio of
the two intervals was kept constant (ITI/T fixed: filled squares). In these groups, speed of acquisition remained constant regardless of the duration of the trial CS. After Balsam
et al. (2010). Original data from Gibbon et al. (1977). Panel B shows how the temporal informativeness of the CS changed in the different protocols. The speed of acquisition
shown in panel A is directly related to the mutual temporal information between the CS and US which is shown in panel B (after Ward et al., 2013).
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to our knowledge the effects of C/T ratios on fear conditioning and
eyelid conditioning have not been directly studied. As noted above,
the form of conditioned responses changes with alterations in tem-
poral parameters. In autoshaping, when CS’s become long birds
will increase general activity rather than peck at a CS. Similar
changes in the topography of CR’s have been described in other
species (Akins, Domjan, et al., 1994; Silva & Timberlake, 1997,
1998, 2005). Thus the impact of changing the C/T ratio is on the
likelihood of a particular CR topography. Consequently, changes
in the likelihood of a particular CR should not necessarily be taken
as a reflection of whether or not learning has occurred.

We digress in this paragraph to call neurobiologists’ attention
to the methodological importance of distinguishing between the
parameter-trade-off method used by Gibbon, Baldock, et al.
(1977) and Ward et al. (2012) and the more common ‘‘psycho-
metric’’ method for studying the effects of protocol variables in
learning. The parameter-trade-off method determines combina-
tions of experiential parameters that yield the same behavioral
result. The Gibbon et al. experiment varied both the CS–US
interval, the US–US interval and measured the number of training
trials required to cause the same behavioral result, namely, the
appearance of a conditioned response. The parameter-trade-off
method is standard in sensory psychophysics, where, for example,
one determines a spectral sensitivity function by finding the com-
binations of wavelength and light intensity that produce the same
frequencies of seeing. We believe that this approach provides bet-
ter leverage for those interested in the neurobiology of learning
than the more traditional approach of looking to a learning curve
for quantitative information about the underlying process, as is
widely done in studies of the neurobiology of learning and
memory. The learning-curve approach is equivalent to the deter-
mination of a psychometric function in psychophysics. It plots a
measure of performance against a ‘‘stimulus’’ variable, namely,
the number of ‘‘trials’’ (CS–US pairings). The equivalent function
in visual research is the plot of the frequency of seeing against,
say, light intensity. Psychometric functions rarely reveal impor-
tant quantitative properties of underlying physiological mecha-
nisms because they confound many performance-relevant
variables. The parameter-trade-off method has, by contrast,
yielded a rich body of quantitative information about molecular
and cellular level processes in vision and elsewhere in the history
of behavioral neurobiology. For example, the behaviorally deter-
mined scotopic spectral sensitivity curve, which was first deter-
mined in the 19th century, reveals the absorption spectrum of
rhodopsin. It gave us this critical information before we knew
there was such a thing as rhodopsin. For additional explanation
of the power of the parameter-trade-off methodology see Galli-
stel, Shizgal, et al. (1981).

As we noted above, the average inter-event intervals are
learned rapidly, even before the CR emerges. In many preparations,
knowledge of the expected time to the US guides responding even
as CR’s first emerge (Balsam, Drew, et al., 2002; Drew et al., 2005;
Kirkpatrick & Church, 2000; Ohyama & Mauk, 2001; Ward et al.,
2012). Even when the temporal control of the CR is slower to
emerge (e.g. Delamater & Holland, 2008; Rescorla, 1967), one
should not take its slow emergence as strong evidence against
the rapid learning of time. The prior history of feeder training
may establish a steady level of checking the feeder in the early
stages of appetitive conditioning and some responses such as
freezing may initially have low thresholds that change slowly to
reflect the expected time of an anticipated aversive stimulus. Some
experiments have shown that even when CR timing is initially
poor, transfer tests show that times were indeed learned in just
one or two trials (Davis et al., 1989; Diaz-Mataix et al., 2013) Fur-
thermore, blocking and overshadowing are greatest when the cues
of the compound share a common CS–US interval (Molet & Miller,
2013). In other words, the durations of the intervals between
events are a key aspect of the content of learning in conditioning
protocols, along with, of course, the encoding of the sensory prop-
erties that enable the brain to distinguish one CS from another and
one US from another. A neurobiological understanding of the con-
ditioning process will require identifying the mechanism by which
quantities, such as interval durations, are encoded into enduring
changes at some level of molecular or cellular neuronal structure.
And, it will require an understanding of the computational mech-
anisms that translate this stored information into anticipatory
behavior. It is generally assumed that the structural change that
encodes information is at the level of the synapse and that the
computational mechanisms are implemented at the level of neural
circuitry. These long-standing presuppositions should not be taken
as established facts. Intracellular mechanisms realized at the
molecular level are also conceivable. Micro RNAs, for example,
have a digital structure that suits them for information storage.
They could also implement computational operations on stored
information, as clearly occurs in the mechanisms that translate
the hereditary information stored in DNA into organic structure
and organic process. So long as we remain ignorant of the mecha-
nisms of information storage and computation in nervous tissue,
we should keep an open mind as to the structural level at which
these processes occur.
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2. Temporal informativeness in learning the relation between
stimuli, responses and rewards

Finding the neurobiological basis of learning and memory is a
challenging problem. Consideration of successful examples of
material reduction from the history of behavioral neuroscience
and genetics may help to direct our efforts. Examples of such suc-
cesses are proving that the action potential is the nerve impulse
and proving that hereditary information is stored in the base-pair
sequences along the double-helical DNA molecule in a chromo-
some. Both of these successful efforts (and many others) have de-
pended on measuring by indirect methods quantities that could be
measured by direct methods if and when one had an hypothesis
about the physical identity of the mechanism whose properties
one measured indirectly. For example, Helmholtz (Helmholtz,
1852) measured the conduction velocity of the nerve impulse by
the difference-in-reaction time method, which continues to be a
staple of psychology, particularly cognitive psychology. At about
the same time, his friend, du Bois-Reymond, discovered the (com-
pound) action potential and hypothesized that it was the physical
realization of the nerve impulse (du Bois-Reymond, 1848). A key
test of his hypothesis was passed when it was shown that the con-
duction velocity of the action potential was the same as the con-
duction velocity of the nerve impulse (see Hermann, 1879 for
review). For further example, classical geneticists routinely mea-
sure the linear order of non-independently assorting genes (genes
on the same chromosome) by studying patterns of trait assort-
ment. They still do this, but they also did it in the days before
one knew that the double helix was the molecular structure whose
properties were being measured. They did these measurements
even before we knew that the hereditary material, whatever it
was, was in the chromosomes. These classical genetic measure-
ments played a fundamental role in establishing the fact that the
hereditary material is in the chromosomes and that it is the DNA
in the chromosomes that is the physical realization of the gene
(Judson, 1980). For a final example we reiterate (see Section 1.2)
that the behavioral determination of the scotopic spectral sensitiv-
ity curve played a central role in establishing that rhodopsin is the
key tranduction molecule in rods. Because the absorption spec-
trum is a molecular signature, demonstrating that the absorption
spectrum of rhodopsin matched the scotopic spectral sensitivity
function was very nearly all the proof anyone could want. There
are many other proofs but they all depend on the correspondence
between indirect psychophysical measurements and direct physi-
cal measurements made on anatomical and biochemical
structures.

Our ability to identify the biophysical basis of learning and
memory would be enhanced if we could find something that we
can measure now, without knowing what the neurobiological
mechanism of memory is, and that we may also measure by phys-
ical methods, when we have promising hypotheses about the phys-
ical changes by which brain tissue encodes experiential facts, such
as interval durations. When we believed that there was a critical
interval in associative learning, measuring that interval behavior-
ally was a promising route to identifying the neurobiological
mechanism of association formation (Abrams & Kandel, 1988; Car-
ew, Walters, et al., 1981; Gluck & Thompson, 1987). The hopes in-
vested in that route would seem to be misplaced if we are correct
that there really is no critical interval for learning. As described
above, our rejection of the simple associative view rests on the
observation that the conditioning depends on the C/T ratio not on
the duration of T (Gibbon & Balsam, 1981). Those same experimen-
tal findings, however, have led us to a new and more promising
measure of the sought-for kind, the mutual information between
CS timing and US timing.
Mutual information is a statistical quantity that can be mea-
sured even when the entities or processes between which the
information is shared are of fundamentally different natures. For
example, one can measure the mutual information between a spike
train and the overall pattern of movement of the visual field of the
housefly (Rieke, Warland, et al., 1997). Thus, there is no reason why
one cannot compare the amount of information encoded in a struc-
tural change in some aspect of nervous structure—whether in a
pattern of changes in synaptic conductances or in changes in micro
RNA sequences—and compare that direct physical measure to the
measure of the mutual information in a conditioning protocol. If
we could show that the information in the altered physical struc-
ture was the same as the mutual information between CS and US
that produced that alteration in structure, that would be strong
evidence that we had finally found the information-carrying struc-
ture – the neurobiological basis of memory. This evidence would
be analogous to the evidence produced by measuring the velocity
of propagation of an action potential and showing that it matches
the velocity of propagation of the nerve impulse in the same nerve.

Measuring the mutual information in conditioning protocols
suggests itself because the Gibbon and Balsam (1981) findings on
the critical role of the C/T ratio in Pavlovian conditioning suggest
that mutual information is the experience-derived quantity in
the brain that determines the CS–US ‘‘associability’’ in a given pro-
tocol. The CS–US associability is the rapidity with which a condi-
tioned response appears (the inverse of trials to acquisition). The
Gibbon and Balsam (1981) empirical generalization implies that
CS–US associability is determined by an easily measured objective
component of the mutual temporal information between the onset
of the CS and the onset of the US (Balsam & Gallistel, 2009; Ward
et al., 2012). That in turn suggests that the experience provided by
a protocol instills an encoding of that quantity somewhere in the
animal’s brain and that it is this structural change that leads to
the appearance of a conditioned response.

This interpretation of the Gibbon and Balsam (1981) result in
terms of (a component of) the mutual information between CS
and US leads to an unexpected unification in our understanding
of the role of temporal parameters, stochastic parameters (partial
reinforcement), cue competition and contingency in Pavlovian
and instrumental conditioning (Balsam et al., 2010). These are
all topics of fundamental importance to our understanding of
conditioning, but they have been experimentally analyzed and
theorized about as quite separate problems, often treated in sep-
arate chapters in textbooks. A partial exception to this generaliza-
tion is that it has been widely understood since Rescorla (1968)
that ‘‘contingency,’’ if it could be defined and measured, was
somehow closely connected to cue competition in Pavlovian con-
ditioning and the assignment of credit problem in instrumental
conditioning. Information theory provides a generally applicable
measure of contingency (Gallistel, 2012a, 2012b; Gallistel, Craig,
et al., 2013).

The temporal information that the onset of a CS provides about
the onset of the US is the reduction in the uncertainty about when
to expect the next US. This reduction is the mutual temporal infor-
mation between CS and US. How this mutual temporal information
is most easily measured varies from protocol to protocol. In the
‘‘truly-random-control’’ experiment (Rescorla, 1968), the US is
generated by a random rate (Poisson) process whose parameter
may or may not increase at CS onset and decrease at CS offset.
The measure of mutual temporal information is the difference in
the entropies of the distribution of US–US intervals in the presence
and absence of the CS. If we measure information in bits, the mu-
tual temporal information between CS and US in this very simple
protocol is log2(kCS/k�CS), where k is the rate parameter of the Pois-
son process (see Balsam and Gallistel (2009) for derivation).
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From the formula just given for computing the mutual informa-
tion in the protocol where the rate of US occurrence varies depend-
ing on whether the CS is or is not present, we see immediately that
when the two rates are equal, as they were in Rescorla’s (1968)
truly random control condition, then their ratio is 1, in which case
the mutual information [log(1)] is 0. This explains why the rats in
that condition did not respond to the CS during final testing despite
the fact that the CS had been paired with the US just as frequently
in that control condition as in the other conditions, where rats did
respond to the CS. It was this result that led to the suggestion that
it is contingency, not temporal pairing, that drives conditioning
(Rescorla, 1972). This result is a foundational result in the litera-
ture on cue competition, so we begin to see how a focus on the mu-
tual information between CS and US unifies our understanding of
Gibbon and Balsam (1981) with our understanding the other basic
findings in the voluminous cue-competition literature—blocking
and overshadowing (Kamin, 1969a, 1969b) and relative validity
(Wagner, Logan, et al., 1968). All of these findings are predicted if
one computes the mutual information between a given CS and
the US after subtracting out the information about the timing of
the next US that comes from the other CSs (and from the US itself,
when the US–US interval is fixed). In other words, one computes
the reduction in the residual uncertainty that occurs at CS onset.
The residual uncertainty is the uncertainty that remains after other
sources of information about the timing of the US have been taken
into account. We suggest that the brain makes this same computa-
tion, which is why we see such clever behavioral adaptations to
complex predictive relationships reported in the cue competition
literature.

In the more complex delay conditioning protocol, which is
widely used in neurobiologically oriented work, the mutual infor-
mation may be decomposed into three components, two of them
‘‘objective’’ and one ‘‘subjective’’. One objective component de-
pends only on the C/T ratio (see Balsam and Gallistel (2009) for
derivation). We have already seen that the rapidity with which a
conditioned response appears depends on this parametric property
of the protocol. Fig. 1B formally shows that the speed of acquisition
is monotonically related to this component of the mutual informa-
tion. When the C/T ratio is constant so is acquisition speed, but as
this information is increased, acquisition is faster.

The other objective component of the mutual information be-
tween CS and US depends on the partial reinforcement schedule
(see Gallistel, 2012b for derivation). Computing the contribution
of this component predicts two results from the literature on the
effects of partial reinforcement that are profoundly counterintui-
tive and hard to explain when conditioning is viewed from an asso-
ciative perspective (Gallistel, 2012a, 2012b). The first prediction is
that the number of reinforced CS presentations required for the
appearance of the conditioned response is not increased by inter-
polating large numbers of unreinforced CS presentations (Gibbon,
Farrell, et al., 1980; Gottlieb, 2004, 2005; Harris, 2011; Williams,
1981). For exceptions to this generalization, see Bouton and Sunsay
(2003), Gottlieb and Rescorla (2010). This is profoundly puzzling
from an associative perspective, because the interpolated unrein-
forced presentations of the CS should weaken the CS–US associa-
tion and thereby retard the growth of associative strength. On
the other hand, a simple information-theoretic computation shows
that halving the proportion of reinforced trials doubles the infor-
mation communicated by the remaining reinforced trials, thereby
explaining why in many cases partial reinforcement does not in-
crease reinforced trials to acquisition (Gallistel, 2012a, 2012b).

An information-theoretic analysis also predicts that partial rein-
forcement should increase the number of unreinforced trials re-
quired to eliminate the conditioned response during extinction,
when CS presentations are no longer reinforced. Indeed, partial
reinforcement during the initial conditioning phase increases
trials-to-extinction, and it does so in proportion to the thinning of
the reinforcement schedule (Gibbon et al., 1980). From an associa-
tive perspective, partial reinforcement during conditioning should
decrease trials to extinction, not increase it. This puzzle is called
the partial reinforcement extinction effect. It was observed long
ago that, ‘‘The most critical problem facing any theory of extinction
is to explain the effect of partial reinforcement.’’– (Kimble, 1961,
p. 286). Theorists have proposed several ways that associative the-
ory might accommodate something like this result, although, to our
knowledge, none that predicts that the increase in trials to extinc-
tion scales with the thinning of the reinforcement schedule. But,
simple information-theoretic calculations show that the partial
reinforcement during training decreases the per-trial rate at which
information that there has been a decrease in the schedule of rein-
forcement accumulates during the extinction phase. Whether
extinction is based on a change in the rate of reward (Gallistel,
2012a, 2012b; Gallistel & Gibbon, 2000) or a change in the per trial
likelihood of reward (Drew, Yang, et al., 2004; Gallistel, 2012a,
2012b; Haselgrove, Aydin, et al., 2004), the decrease in the per-trial
rate of information accumulation during the extinction phase is pro-
portional to the thinning of the reinforcement schedule during the
conditioning phase. Thus, halving the schedule of reinforcement
during the conditioning phase doubles the number of extinction tri-
als required to give the same amount of information about the
change (Gallistel, 2012b, but see Gottlieb & Prince, 2012 for discus-
sion of conditions where this generalization may not hold). This ex-
plains the cases in which the effect of partial reinforcement on
extinction is to increase trials to extinction in proportion to the thin-
ning of the reinforcement schedule during the conditioning phase.
Further work will be required to understand factors that might con-
tribute to the failure to find scaling in all cases. In particular, under-
standing exactly how uncertainty about when something will occur
combines with uncertainty about whether it will occur at all will be
central to generalizing the approach we present here.

The third component of the mutual information between CS and
US in a delay protocol is called the subjective component because it
depends only on the precision with which the subject represents
intervals (see Balsam & Gallistel, 2009; Balsam et al., 2010 for der-
ivations). In other words, the amount of information in this third
component depends only on the subject’s Weber fraction for time,
a measure of the relative precision with which it represents dura-
tions. The contributions of the other two components depend only
on parameters of the protocol (the C/T ratio and the partial rein-
forcement schedule), which is why we call them the objective
components of the mutual information. Ward et al. show that this
third component does not affect trials to acquisition. This finding
makes sense in that it means that the co-variation between the
number of trials to acquisition and the parameters of the protocol
depends only on those parameters (the structure of events in the
world), not on a property of the animal.

Finally, the measurement of mutual information gives us a mea-
sure of contingency, namely the ratio between the mutual infor-
mation and the basal US entropy (Gallistel, 2012a, 2012b). The
basal entropy is the baseline uncertainty about when the next US
will occur. This is the entropy of the distribution of US–US intervals
after convolution with the precision with which the subject’s brain
represents the durations of intervals. The convolution with the
brain’s precision of interval representation is necessary because,
when the US–US interval is fixed, the objective distribution is the
Dirac delta function, which has 0 entropy. Intuitively, when the
US–US interval is fixed, your uncertainty about when the next US
will occur, given that you know when the last one occurred, is lim-
ited only by the precision with which you can represent the fixed
US–US interval. If you could represent it perfectly, you would have
no uncertainty about when to expect the next US, or about when to
expect any future US, no matter how remote.
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The information-theoretic measure of contingency also sug-
gests a solution to the assignment-of-credit problem in instrumen-
tal conditioning (Staddon & Zhang, 1991; Sutton, 1984). This is the
problem of deciding which previous actions are responsible for
generating reinforcements. Put another way, how does the brain
determine which responses produce which outcomes? An informa-
tion-theoretic solution to this problem is to assign credit to previ-
ous actions (and events) on the basis of the retrospective temporal
contingency between the reinforcements and the past actions and
events. A retrospective contingency exists between a response,
R, and an outcome, O, when the entropy of the distribution of
R O intervals (intervals measured from O back to the most
recent instance of R) is less than the entropy of the distribution
of R–R intervals. A prospective contingency exists when the distri-
bution of R ? O intervals has less entropy than the distribution of
O–O intervals.

Prospective and retrospective contingency can be grossly asym-
metrical. When, for example, a subject responds on a partial rein-
forcement schedule (of whatever nature), the prospective
contingency is weak, because the distribution of R ? O intervals
typically has an entropy only moderately less than the entropy of
the O–O distribution. This obtains because many Rs do not trigger
an O, so the intervals from those Rs to the next O are almost as long
and variable as the O–O intervals themselves. By contrast, the dis-
tribution of R O intervals has essentially 0 entropy, because
every O is preceded by an R at a very short fixed interval (on the
order of 0.1 s). In other words, given the time at which an R oc-
curred, there is great uncertainty about when the next O occurred,
but given the time at which an O occurred, there is negligible
uncertainty about when the immediately preceding R occurred.
Put yet another way, the time at which an outcome occurs is retro-
dictively almost perfectly informative about the time at which an
immediately preceding response occurred, but the time at which
an R occurs is only weakly informative about when the next O will
occur.

Retrodictive competition (credit assignment) works much like
predictive competition (cue competition): If for a given O, there
is a single response event, R1, such that the distribution of
R1 O intervals has no entropy, then there is, so to speak, nothing
left to explain as regards what causes O; R1 gets all the credit. If, on
the other hand, either R1 (for example, pressing the lever) or R2

(pulling the chain) causes O, then the distribution of R1 O inter-
vals and the distribution of R2 O intervals will both have sub-
stantial entropy, but the distribution of [R1|R2] O intervals will
have negligible entropy. In that case, a more complex model ex-
plains everything that there is to explain in regard to the causation
of this O. On this hypothesis, the brain solves the assignment of
credit problem by entertaining increasingly complex causal models
until there is nothing left to explain or until increases in model
complexity do not reduce the residual retrospective uncertainty
(do not increase explanatory power).

The information-theoretic account of cue competition and cred-
it assignment explains the success of the Rescorla–Wagner model
of conditioning. The RW model assumes that associative strengths
add, and it assumes that there is an upper limit on the sum. These
are postulated properties of the associative process. They do not re-
flect objective (non-psychological) facts about the experienced
world. On the information-theoretic account, these assumptions
about the associative process reflect objective, mathematical
truths deeply relevant to the construction of a useful model of
event dependencies: independent entropies add and the source en-
tropy (otherwise known as the available information) is the upper
limit on the amount of information that all predictors (or retrodic-
tors) combined can convey.

The relevance of the information-theoretic analysis of condi-
tioning phenomena to the neurobiology of learning depends on
the stance one adopts toward its successes. One stance is to regard
it as a mathematically powerful unifying summary of a wide range
of phenomena couched in abstractions that have nothing to do
with the underlying neurobiological mechanisms. On this view,
the animal behaves ‘‘as if’’ its brain computed the entropies of dis-
tributions and mutual information, but when we someday under-
stand the underlying neurobiological mechanism we will see that
this is not really what it is doing. For many years, this was the
stance that many biochemists adopted toward genetic theory
(Judson, 1980): The mechanism by which species-specific form
and variants therein (traits) were transmitted from generation to
generation behaved as if there were several different sets of
linearly arranged information-carrying ‘‘particles’’ (genes) that
somehow made copies of themselves and somehow encoded spe-
cies-typical form and variants thereof, but, because it was impossi-
ble to imagine what such a mysterious thing might look like at a
biochemical level of analysis, many biochemists believed genes
were a convenient fiction, to be supplanted someday by a bio-
chemically intelligible mechanism. Fortunately, this was not the
stance of Watson and Crick and other important figures in the his-
tory of molecular biology. They believed in the material reality of
the gene. We believe in the material reality of the information-
theoretic analysis of conditioning. We believe that the neural
mechanism of learning explicitly (symbolically) represents distri-
butions and their entropies and does the computations on these
entropies that define mutual information and contingency.

3. Challenges for the neurobiology of learning

Given the success that we have had in understanding behavior
as guided by the extraction of temporal information from the con-
tinuous stream of experience, we think that the neurobiologist is
challenged to answer several related questions. (1) What learning
mechanisms are plausible given that information is encoded in a
single experience?; (2) How does the nervous system store infor-
mation about a specific duration?; (3) How does the nervous sys-
tem compute information from the stored experience?

3.1. What learning mechanisms are plausible given that time is
encoded in a single experience?

Most models of timing assume that there is an interval timer
used to measure the experience of intervals ranging from a few
seconds to hours or days (for reviews Buhusi & Meck, 2005;
Gallistel & King, 2009; Lustig, Matell, et al., 2005; Matell & Meck,
2004). There is an important conceptual and practical (implemen-
tational) problem with this assumption. The first time an event
occurs marking the onset of an interval that turns out to be behav-
iorally important, there is no way of knowing whether to start an
interval timer or not, nor how many to start, because there is no
foreknowledge of what may or may not follow. The possibilities
are unlimited; therefore the system should start an infinite num-
ber of new timers running every time anything happens. The same
start event may pair with arbitrarily many different end events,
each pair delimiting a different duration. For example, the onset
of a CS (CS1on, a start event) may be followed by its offset, thus
delimiting a CS1on–CS1off interval, and also by the onset of
a sweet milk US after a different interval, thus delimiting a
CS1on–US1on interval, and also by the onset of a different CS, thus
delimiting a CS1on–CS2on interval, and so on ad infinitum. If the
CS1on–CS1off interval is measured by a timer that stops and resets
at CS1off, then that timer cannot be used to measure any of the
other intervals.

Speaking more technically, the number of timers required is
exponential in the number of events that might mark the starts
and ends of intervals, which any computer scientist will recognize
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as a fatal implementational problem, no matter what the architec-
ture of the computer. However if the system does not time inter-
vals on first encounter, then there is no record of them, in which
case every subsequent encounter is effectively a first encounter.
Yet as we have noted in Section 1.2, the extraction of duration from
a single experience has been experimentally demonstrated (Bal-
sam et al., 2010; Diaz-Mataix et al., 2013). Thus, if the neural
machinery could not time and remember a single instance of an
interval, then it is unclear how it could come to know that the
interval recurs (Diaz-Mataix et al., 2013). To note a recurrence, a
machine, whether made of neurons or not, must have a record of
a previous occurrence. Such a record is a precondition for the
machine’s recognizing a recurrence. More generally, recognition
presupposes that one can store individual instances of whatever
it is that is recognized. Thus, to recognize that the nth occurrence
is the same as a previous occurrence or all previous occurrences,
the machine must have made recognizable records of the previous
occurrences, one by one, as they occurred.

An alternative to measuring interval durations is to compute
them. If the time of each event is automatically encoded, then
the interval between any two events may be computed retrospec-
tively by subtracting the earlier time from the later time (Gallistel,
1990). This is the sort of computation involved in your judgment of
how long it has been since you started reading this article. Many
species are capable of retrospective temporal computation (Molet
& Miller, 2013). We cannot point to a specific mechanism but times
of occurrence may be obtained from the phases of the many differ-
ent neural oscillators known to be present not only in neural tissue
but throughout the body (Silver, Balsam, et al., 2011). Ultradium,
circadian and infradian cycles are present even in bacteria and
plants, so plausible signal sources are at hand. What is hard to
envisage in our current state of ignorance is the mechanism(s) by
which the phases of these oscillations may be read off and recorded
in memory.

3.2. How does the nervous system store information about a specific
duration?

When a duration has been either measured or computed, it is
stored in memory and available to guide future behavior. But, we
do not have an understanding of how the nervous system stores
information gleaned from experience in a computationally acces-
sible form (Gallistel & King, 2009; Gallistel & Matzel, 2013).
Neurobiologically motivated theories of timing only try to explain
the fact that conditioned behavior is timed. They do this by
assuming that individual neurons or constellations of neurons
that become active at the appropriate time become associated
with the anticipatory response. In other words, they are S–R the-
ories. For example, some associative theories posit the existence
of interoceptive microstimuli triggered by CS presentation that
decay with the passage of time (e.g. Brandon et al., 2003; Sutton,
1988). Some of the microstimuli are said to be contiguous with
the US and these dynamically changing microstimuli can then ac-
count for why the CR might become more likely with the passage
of time. Like all such theories, they are anti-representational: the
brain responds as if it knew the interval, but it does not have that
information stored in symbolic form, which is to say, in a form
that makes it useable in computational operations. Insofar as
information about the durations of the experienced intervals
can be said to reside somewhere in these conditioned reflex arcs,
it resides in the intrinsic dynamics of the neurons (Buonomano &
Laje, 2010; Laje, Cheng, et al., 2011). There is no explanation of
how any other part of the brain could have access to those
dynamics. Because microstimulus models do not posit the sym-
bolic representation and storage of the information gained from
experience, they do not attempt to explain the fact that acquired
temporal information—like other kinds of acquired information—
informs behavior in different and flexible ways (Arcediano & Mill-
er, 2002; Denniston, Blaidsdell, et al., 1998; Denniston, Blaisdell,
et al., 2004).

Perhaps the biggest obstacle to neurobiologists’ acceptance of
the view that the brain stores information in symbolic form, just
as does a computer, is our inability to imagine what this story
might look like at the cellular and molecular level. We hope the fol-
lowing observations may go some way toward overcoming this
obstacle.

The storage of information in readable symbolic form is not for-
eign to the conceptual framework of contemporary biologists. Both
DNA and RNA carry information forward in time, and there is elab-
orate machinery at the cellular level for reading that information.
More generally, any biophysical mechanism with the properties
of a readable switch can serve as a mechanism of information stor-
age. A readable switch is something that has more than one (but
usually a small number) of thermodynamically stable configura-
tions and whose differences in configuration are causally effective,
that is, they alter the course of some process. The switches in DNA
and RNA are the base-pair loci; there are 4 possible configurations
(possible positions of the switch) at each locus; thus, each locus
can store 2 bits of information. There are other switch molecules.
The opsin molecules in the outer segments of photoreceptors are
photolabile switches. They have two thermodynamically stable
configurations (isomers). The absorption of a photon throws the
switch; it isomerizes a rhodopsin molecule. The switch configura-
tion of the switch is readable, because it is enzymatically active
only in its isomerized configuration. Methylation is another exam-
ple of a switch mechanism; typically, it converts a target (e.g., a
gene) from the active to the inactive state. It is one of the principal
mechanisms for the determination of cell fate, a thermodynami-
cally permanent switching process crucial to the process of tissue
development.

Thus, what we must look for neurobiologically is a system of
switches. Some questions that must be answered beyond the ques-
tion of the biophysical identity of the switches: (1) How do neural
signals impinging on receptor molecules in postsynaptic mem-
branes throw the switches (write to memory)? (2) What is the
switch code, that is, how does the configuration of the switches en-
code, for example, the duration of an interval? (3) How does the
write process map from the dynamic code, the code by which
information is carried in evanescent spike trains, to the static code,
the code by which the same information is carried by the static
configuration of the thermodynamically stable switches? The an-
swer to this question will depend in no small measure on the an-
swer to the question how spike trains convey information? Is it
simply by the rate of firing (spikes per unit time), and, if so, what
is the read interval (the interval over which the rate is measured)?
Or is it the interval between spikes? Or is it some as still unimag-
ined scheme? This is an unsettled fundamental question in neuro-
science (cf Rieke et al., 1997) (4) How is memory read, that is, how
does the configuration of switches alter the input–output proper-
ties of the neuron or neural circuit (that is, of the memory element)
so as to reconstitute a neural signal that carries the information
that has been written into the switches?

As our the illustrative examples given above tend to imply, our
guess is that the answers to these questions lie at the level of
molecular changes within neurons rather than at the level of syn-
aptic changes within neural circuits. We believe neuroscientists
should consider the possibility that the neurobiological elements
of memory are intraneuronal molecular structures, not neural cir-
cuits (constituted, at a minimum, of a presynaptic and a postsynap-
tic neuron). Among other things, this possibility increases the
plausible density of information storage in the brain by many or-
ders of magnitude.
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In our experience, a first objection to the proposal that memory
resides in intraneuronal molecular structures is often that intra-
neuronal molecular structure cannot inform behavior on a suffi-
ciently short time scale. This is intuition is demonstrably false: Pat-
tern vision depends on the photo-isomerization of the opsins
embedded in an internal membrane in the outer segments of rods
and cones. The conversion of these intracellular changes in the
configuration of individual molecules into neural signals and the
conversion of those signals into coordinated muscular action is
so fast that (some) people can hit a tennis ball struck from 25 m
away and travelling at close to 50 m/s. Although we cannot point
to a specific neurobiological mechanism that encodes quantities,
time dependent changes in intracellular signaling pathways and
alterations in thresholds based on experience seem plausible can-
didates for the encoding of information about specific durations.

3.3. How does the nervous system compute information from the
stored experience?

Perhaps, the least understood aspect of the neurobiology of tim-
ing is how the brain can take the information stored from specific
experiences and use it in flexible ways. How, for example, can the
brain retrospectively compute an interval from two occurrence
times, or, how, for further example, can it add and subtract remem-
bered or computed intervals? In planning a day we take into ac-
count the sums and differences in our remembered durations of
multiple activities. In sequencing actions we take into account
the temporal structure of goal availability. While current studies
of neurobiology may point to areas of the brain that are part of net-
works doing these computations the physical mechanism by which
these calculations are implemented is completely unknown. De-
spite much diverse theorizing, we do not know how the brain
stores information nor how it computes. When we do know that,
we will be in a much better position to entertain neurobiologically
plausible accounts of how it learns.
4. Conclusions

We are left with some fascinating unsolved problems in the
neurobiology of learning. We must understand in much greater de-
tail several steps in the learning and memory of temporal informa-
tion. First, we must understand the plastic changes that underlie
the rapid and encoding and storage of time (or any aspect of an
event). This process must be occurring continuously. Next we must
understand how patterns of events are detected and the encoding
that underlies the retrieval of this information in an episodic
chunk. And, finally we must understand the mechanisms of com-
putation that allow the extraction of information that guides the
decision underlying what to do at any particular time. These are
all difficult challenges but ones that must be met if we are to
understand the neurobiology of learning and memory.
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