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Mathematics is a system for representing and reasoning about quantities, with
arithmetic as its foundation. Its deep interest for our understanding of the
psychological foundations of scientific thought comes from what Eugene Wigner
called the unreasonable efficacy of mathematics in the natural sciences. From a
formalist perspective, arithmetic is a symbolic game, like tic-tac-toe. Its rules are
more complicated, but not a great deal more complicated. Mathematics is the
study of the properties of this game and of the systems that may be constructed
on the foundation that it provides. Why should this symbolic game be so
powerful and resourceful when it comes to building models of the physical
world? And on what psychological foundations does the human mastery of this
game rest?

The first question is metaphysical—why is the world the way it is? We do
not treat it, because it lies beyond the realm of experimental behavioral science.
We review the answers to the second question that experimental research on
human and non-human animal cognition suggests.

The general nature of the answer is that the foundations of mathematical
cognition appear does not lie in language and the language faculty. The ability to
estimate quantities and to reason arithmetically with those estimates exists in the
brains of animals that have no language. The same or very similar non-verbal
mechanisms appear to operate in parallel with verbal estimation and reasoning
in adult humans. And, they operate to some extent before children learn to speak
and before they have had any tutoring in the elements of arithmetic. These
findings suggest that the verbal expression of number and of arithmetic thinking
is based on a non-verbal system for estimating and reasoning about discrete and
continuous quantity, which we share with many non-verbal animals. A
reasonable supposition is that the neural substrate for this system arose far back
in the evolution of brains precisely because of the puzzle that Wigner called
attention to: arithmetic reasoning captures deeply important properties of the
world, which the animal brain must represent in order to act effectively in it.
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The recognition that there is a nonverbal system of arithmetic reasoning in
human and many nonhuman animals is recent, but it influences most
contemporary experimental work on mathematical cognition. This review is
organized around the questions: 1) What are the properties of this non-verbal
system? 2) How is it related to the verbal system and written numerical systems?

What is a Number?
Arithmetic is one of the few domains of human thought that has been extensively
formalized. This formalization did not begin in earnest until the middle of the
19th century (Boyer & Merzback: , 1989). In the process of formalizing the
arithmetic foundations of mathematics, mathematicians changed their minds
about what a number was. Before formalization, an intuitive understanding of
what a number was determined what could legitimately be done with it. Once
the formal "games" about number were made explicit, anything that played by
the rules was a number.

This formalist viewpoint is crucial to an understanding of issues in the
current scientific literature on mathematical cognition. Many of them turn on
questions of how we are to recognize and understand the properties of mental
magnitudes. Mental magnitude refers to an inferred (but, one supposes,
potentially observable and measurable) entity in the head that represents either
numerosity (for example, the number of oranges in a case) or another magnitude
(for examples, the length, width, height and weight of the case) and that has the
formal properties of a real number.

For a mental magnitude to represent an objective magnitude, it must be
causally related to that objective magnitude. It must also be shown that it is a
player in mental game (a functionally cohesive collection of brain processes) that
operates according to at least some of the rules of arithmetic. When putative
mental numbers do not validly enter into, at a minimum, mental addition,
mental subtraction and mental ordering, then they do not function as numbers.

Kinds of Numbers
The ancient Greeks had considerable success axiomatizing geometry, but
mathematicians did not axiomatize the system of number until the 19th century,
after it had undergone a large, historically documented expansion. Before this
expansion, it was too messy and incomplete to be axiomatized, because it lacked
closure. A system of number is closed under a combinatorial operation if, when
you apply the operation to any pair of numbers, the result is a number. Adding
or multiplying two positive integers always produces a positive integer, so the
positive integers are closed under addition and multiplication. They are also
closed under the operation of ordering. For any pair of numbers a ≥ b = 1 if a is
greater than b, and 0 if not. These three operations—addition, multiplication and
ordering—are the core operations of arithmetic. They and their inverses make
the system what it is.
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The problem comes from the inverse operations of subtraction and
division. When you subtract a bigger number from a smaller, the result is not a
positive integer. Should one regard the result as a number? Until well into the
19th century, many professional mathematicians did not. Thus, subtracting a
bigger number from a smaller number was not a legitimate mathematical
operation. This was inconvenient, because it meant that in the course of algebraic
reasoning (reasoning about unspecified numbers), one might unwittingly do
something that was illegitimate. This purely practical consideration strongly
motivated the admission of the negative numbers and 0 to the set of numbers
acknowledged to be legitimate.

When one divides one integer by another, the result, called a rational
number, or, more colloquially, a fraction, is rarely an integer. From the earliest
times from which we have written records, people who worked with written
numbers included at least some rational numbers among the numbers, but, like
school children to this day, they had extraordinary difficulties in figuring out
how to do arithmetic with rational numbers in general. What is the sum of 1/3
and 11/17? That was a hard question in ancient Egypt and remains so today, in
school classrooms all over the world.

The common notation for a fraction specifies a number not by giving it a
unique name like two, but rather by specifying a way of generating it ("divide the
number one by the number two). The practice of specifying a number by giving
an arithmetic procedure that will generate it to whatever level of precision is
required has grown stronger over the millenia. It is the key to a rigorous
handling of both irrational and complex numbers, and to the way in which
digital computers operate with real numbers. But it is discomfiting, for several
reasons. First, there are an infinity of different notations for the same number:
1/2, 2/4, 3/6, and so on, all specifying the same number. Moreover, for most
rational numbers, there is no complete decimal representation. Carrying out the
division gives a repeating decimal. In short, you cannot write down a symbol for
most rational numbers that is both complete and unique.2

Finally, when fractions are allowed to be numbers, the discrete ordering of
the numbers is lost. It is no longer possible to specify the next number in the
sequence, because there is an infinite number of rational numbers between any
two rational numbers. For all these reasons, admitting fractions to the system of
number makes the system more difficult to work with in the concrete, albeit
more powerful in the abstract, because the system of rational numbers is, with
one exception, closed under division.

Allowing negative numbers and fractions to be numbers also creates
problems with what otherwise seem to be sound principles for reasoning about
numbers. For example, it seems to be sound to say that dividing the bigger of
two numbers by the smaller gives a number that is bigger than the number one
                                                  
2 Technically, this is not really true, because Cantor discovered a way to assign a unique
positive integer to every rational number. The integers his procedure assigns are,
however, useless for computational purposes
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gets if one divides the smaller by the bigger. What then are we to make of the
"fact" that 1/-1 = -1/1 = -1?

Clearly, caution and clear thinking are going to be necessary if we want to
treat as numbers entities that you do not get by counting. But, humans do want
to do this, and they have wanted to since the beginning or recorded history. We
measure quantities like lengths, weights, and volumes in order to represent them
with numbers. What the measuring does—if it is done well—is give us "the right
number" or at least one useable for our purposes. Measuring and the resulting
representation of continuous quantities by numbers goes back to the earliest
written records. Indeed, it is often argued that writing evolved from a system for
recording the results of measurements made in the course of commerce
(bartering, buying and selling), political economy (taxation), surveying and
construction (Menninger, 1969).

The ancient Greeks believed that all measurable magnitudes could in
principle be represented by rational numbers. Everything was a matter of
proportion and any proportion could be expressed as the ratio of two integers.
They were also the first to try to formalize mathematical thinking. In doing so,
they discovered, to their horror, that fractions did not suffice to represent all
possible proportions. They discovered that the proportion between the side of a
square and its diagonal could not be represented by a fraction. The Pythagorean
formula for calculating the diagonal of a square says that the diagonal is equal to
the square root of the sum of the squares of the sides. In this case, the diagonal is
equal to √(12 + 12) =√(1 +1) =√2. The Greeks proved that there is no fraction that
when multiplied by itself is equal to 2. If only the integers and the fractions are
numbers, then the length of the diagonal of the unit square cannot be
represented by a number. Put another way, you can measure the side of the
square or you can measure its diagonal, but you cannot measure them both
exactly within the same measuring system—unless you are willing to include
among the numbers in that system numbers that are not integers (cannot be
counted) and are not even the ratio of two integers. You must include what the
Greeks called the irrational numbers. But if you do include the irrational
numbers, how do you go about specifying them in the general case?

Many irrationals can be specified by the operation of extracting roots,
which is the inverse of the operation of raising a number to a power. Raising any
positive integer to the power of any other always produces a positive integer.
Thus, the system of positive integers is closed under raising to a power. The
problem, as usual, comes from the inverse operation, extracting roots. For most
pairs of integers, a and b, the ath root of b is not a positive integer, nor even a
rational number; it is an irrational number. The need within algebra to have an
arithmetic that was closed under the extraction of roots was a powerful
motivation for mathematicians to admit both the irrational numbers and
complex numbers to the set of numbers. By admitting the irrational numbers,
they created the system of so-called real numbers, which was essential to the
calculus. To this day there are professional mathematicians who question the
legitimacy of the irrational numbers. Nonetheless, the real numbers, which
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include the irrationals (see Figure 1), are taken for granted by all but a very few
contemporary mathematicians.

Figure 1. The number system on which
modern mathematics is based. Not shown
in this diagram are the algebraic
numbers, which are the numbers that
may be obtained through the extraction of
roots (the solving of polynomial
equations) nor the transcendental
numbers, which may be obtained only by
the solving of an equations with
trigonometric, exponential or logarithmic
terms. These are subcategories of the
irrational numbers.

The notion of a real number and the notion of a magnitude (for example,
the length of a line) are formally identical. This means among other things that,
for every line segment, there is a real number that uniquely represents the length
of that segment (in a given system of measurement) and conversely, for every
real number, there is a line segment that represents the magnitude of that
number. Therefore, in what follows, when we mention a mental magnitude, we
mean an entity in the mind (brain) that functions within a system with the formal
properties of the real number system. Like the real number system, we assume
that this system is a closed system: all of its combinatorial operations, when
applied to any pair of mental magnitudes, generate another mental magnitude.

As this brief sketch indicates, the system of number recognized by almost
all contemporary professional mathematicians as "the number system"—the ever
more inclusive hierarchy of kinds of numbers shown in Figure 1—has grown up
over historical time, with much of the growth culminating only in the preceding
two centuries. The psychological question is, what is it in the minds of humans
(and perhaps also non-human animals) that has been driving this process? And
how and under what circumstances does this mental machinery enable educated
modern humans to master the basics of formal mathematics, when, and to the
extent that, they do so?

Numerical Estimation and Reasoning in Animals
The development of verbalized and written reasoning about number that
culminated in a formalized system of real numbers isomorphic to continuous
magnitudes was driven by the fact that humans apply numerical reasoning to
continuous quantity just as much as they do to discrete quantity. In considering
the literature on numerical estimation and reasoning in animals, we begin by
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reviewing the evidence that they estimate and reason arithmetically about the
quintessentially continuous quantity, time.

The common laboratory animals such as the pigeon, the rat and the
monkey, measure and remember continuous quantities, such as duration, as has
been shown in a variety of experimental paradigms. One of these is the so-called
peak procedure. In this procedure, a trial begins with the onset of a stimulus
signaling the possible availability of food at the end of a fixed interval, called the
feeding latency. Responses made at or after the interval has elapsed trigger the
delivery of food. Response prior to that time have no consequences. On 20-50%
of the trials, food is not delivered. On these trials, the key remains illuminated or
the lever remains extended or the hopper remains illuminated for between 4 and
6 times longer than the feeding latency. On these trials, called probe trials,
responding after the feeding latency has past is pointless.

Peak-procedure data come from these unrewarded trials. On such trials,
the subject abruptly begins to respond some while before the interval ends (in
anticipation of its ending) and continues to peck or press or poke for some while
after, before abruptly stopping. The interval during which the subject responds
brackets its subjective estimate of the fixed interval. Representative data are
shown in Figure 2.

Figure 2. Representative peak
procedure data: Probability that the
mouse's head was in the feeding hopper
as a function of the time elapsed since
the beginning of a trial and the feeding
latency. (The feeding latency varied
between blocks of trials.) A. The
original data. These peak curves are the
cumulative distribution of start times
(rising phase) minus cumulative
distribution of stop times (falling
phase). These are the raw distributions
(no curve has been fitted.) B. Data
replotted as a proportion of the feeding
latency. Because the variability in the
onsets and offsets of responding is
proportional to the feeding latency, as
are the location of the means of the
distributions relative to the target
times, the peak curves superpose when
plotted as a proportion of this latency.
Data originally published by (King,
McDonald, & Gallistel, 2001).
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Figure 2A, shows seemingly smooth increases and decreases in the
probability that the mouse is making an anticipatory response (poking its head
into the feeding hopper in anticipation of food delivery) on either side of the
feeding latency. The smoothness is an averaging artifact. On any one trial the
onset and offset of anticipatory responding is abrupt, but the temporal locus of
these onsets and offsets varies from trial to trial (R.M. Church, Meck, & Gibbon,
1994). The peak curves in Figure 2, like peak curves in general, are the
cumulative start distributions minus the cumulative stop distributions, where
start and stop refer to the onset and offset of sustained food anticipatory
behavior.

When the data in Figure 2A are replotted against the proportion of the
feeding latency elapsed, rather than against the latency itself, the curves
superpose (Figure 2B). Thus, both the location of the distributions relative to the
target latency and the trial-to-trial variability in the onsets and offsets of
responding is proportional to the remembered latency. Put another way, the
probabilities that the subject will have begun to respond or will have stopped
responding are determined by the proportion of the remembered arming latency
that has elapsed. This property of remembered durations is called scalar
variability.

Rats, pigeons and monkeys also count and remember numerosities
(Elizabeth M. Brannon & Roitman, 2003; R. M. Church & Meck, 1984; S. Dehaene,
1997; S. Dehaene, Dehaene-Lambertz, & Cohen, 1998; Gallistel, 1990; Gallistel &
Gelman, 2000). One of the early protocols for assessing counting and numerical
memory was developed by Mechner (1958) and later used by Platt and Johnson
(1971). The subject must press a lever some number of times (the target number)
in order to arm the infrared beam at the entrance to a feeding alcove. When the
beam is armed, interrupting it releases food. Pressing too many times before
trying the alcove incurs no penalty beyond that of having made supernumerary
presses. Trying the alcove prematurely incurs a 10-second time-out, which the
subject must endure before returning to the lever to complete the requisite
number of presses. Data from such an experiment are shown in Figure 3. They
look strikingly like the temporal data. The number of presses at which subjects
are maximally likely to break off pressing and try the alcove peaks at or slightly
beyond the required number, for required numbers ranging from 4 to 24. As the
remembered target number gets larger, the variability in the break-off number
also gets proportionately greater. Thus, behavior based on number also exhibits
scalar variability

The fact that behavior based on remembered numerosity exhibits scalar
variability just like the scalar variability seen in behavior based on the
remembered magnitude of continuous quantities like duration suggests that
numerosity is represented in the brains of non-verbal vertebrates by mental
magnitudes, that is by entities with the formal properties of the real numbers,
rather than by discrete symbols like words or bit patterns. When a device such as
an analog computer represents numerosities by different voltage levels, noise in
the voltages leads to confusions between nearby numbers. If, by contrast, a
device represents countable quantity by countable (that is, discrete) symbols, as
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digital computers and written number systems do, then one does not expect to
see the kind of variability seen in Figures 2 and 3. For example, the bit-pattern
symbol for fifteen is 01111 while for sixteen it is 10000. Although the numbers are
adjacent in the ordering of the integers, the discrete binary symbols for them
differ in all five bits. Jitter in the bits (uncertainty about whether a given bits was
0 or 1) would make fourteen (01110), thirteen (01101), eleven (01011) and seven
(00111) all equally and maximally likely to be confused with fifteen, because the
confusion arises in each case from the misreading of one bit. These dispersed
numbers should be confused with fifteen much more often than is the adjacent
sixteen. (For an analysis of the error patterns to be expected in cascade counters,
see Killeen & Taylor, 2001). Similarly, a scribe copying a handwritten English text
is presumably more likely to confuse "seven" and "eleven" than "seven" and
"eight".  Thus, the nature of the variability in a remembered target number
suggests that what is being remembered is a magnitude, something that behaves
like a continuous quantity, which is to say something with the formal properties
of a real number.
   

Figure 3. The probability of breaking off to try the feeding alcove as a function of the
number of presses made on the arming lever and the number required to arm the food-
release beam at the entrance to the feeding alcove. Subjects were rats. (Redrawn from
Platt & Johnson, 1971, by permission of the authors and publishers.)

Numerosity and Duration are Represented by Comparable Mental
Magnitudes

Meck and Church (1983)  pointed out that the mental accumulator model that
Gibbon (1977) had proposed to explain the generation of mental magnitudes
representing durations could be modified to make it generate mental magnitudes
representing numerosities. Gibbon had proposed that while a duration was
being timed a stream of impulses fed an accumulator, so that the accumulation
grew in proportion to the duration of the stream. When the stream ended (when
timing ceased), the resulting accumulation was read into memory, where it
represented the duration of the interval. Meck and Church  postulated that to get
magnitudes representing numerosity, the equivalent of a pulse former was
inserted into the stream of impulses, so that for each count there was a discrete
increment in the contents of the accumulator, as happens when a cup of liquid is
poured into a graduate (see Figure 4). At the end of the count, the resulting
accumulation is read into memory where it represents the numerosity.
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Figure 4. The accumulator model for the non-verbal counting process. At each count, the
brain increments a quantity, an operation formally equivalent to pouring a cup into a
graduate. The final magnitude (the contents of the graduate at the conclusion of the
count) is stored in memory, where it represents the numerosity of the counted set.
Memory is noisy (represented by the wave in the graduate), which is to say that the
values read from memory on different occasions vary. The variability in the values read
from memory is proportional to the mean value of the distribution (scalar variability).

The model in Figure 4 is the well known accumulator model for non-
verbal counting by the successive incrementation of mental magnitudes. It is also
the origin of the hypothesis that the mental magnitudes representing duration
and the mental magnitudes representing numerosity are essentially the same,
differing only in the mapping process that generates them and, hence, in what it
is they refer to. Put another way, both numerosity and duration are represented
mentally by real numbers. Meck and Church (1983) compared the psychophysics
of number and time representation in the rat and concluded that the coefficient
of variation, the ratio between the standard deviation and the mean, was the
same, which is further evidence for the hypothesis that the same system of real
numbers is used in both cases.

The model in Figure 4, was originally proposed to explain behavior based
on the numerosity of a set of serial events (for example, the number of responses
made), but it may be generalized to the case where the items to be counted are
presented all at once, for example, as a to-be-enumerated visual array. In that
case, each item in the array can be assigned a unit magnitude, and the unit
magnitudes can then be summed (accumulated) across space, rather than over
time. Dehaene and Changeux (1993) developed a neural net model based on this
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idea. In their model, the activity aroused by each item in the array is reduced to a
unit amount of activity, so that it is no longer proportional to the size, contour,
etc of the item. The units of activity corresponding to the entities in the array are
summed across the visual field to yield a mental magnitude representing the
numerosity of the array.

Non-Human Animals Reason Arithmetically

We have repeatedly referred to the real number system because numbers (or
magnitudes) are truly that only if they are arithmetically manipulated. Being
causally connected to something that can be represented numerically, does not
make an entity in the brain or anywhere else a number. It must also be suitably
processed. The defining features of a numerical representations are: 1) There is a
causal mapping from discrete and continuous quantities in the world to the
numbers. 2) The numbers are arithmetically processed. 3) The mapping is
usefully (validly) invertible: the numbers obtained through arithmetic processing
correctly refer through the inverse mapping back to the represented reality.

There is a considerable experimental literature demonstrating that
laboratory animals reason arithmetically with mental magnitudes representing
numerosity and duration. They add, subtract, divide and order subjective
durations and subjective numerosities; they divide subjective numerosities by
subjective durations to obtain subjective rates of reward; and they multiply
subjective rates of reward by the subjective magnitudes of the rewards to obtain
subjective incomes. Moreover, the mapping between real magnitudes and their
subjective counterparts is such that their mental operations on subjective
quantities enable these animals to behave effectively. Here we summarize a few
of the relevant studies. (For reviews, see Sarah T. Boysen & Hallberg, 2000;
Elizabeth M. Brannon & Roitman, 2003; S. Dehaene, 1997; Gallistel, 1990; Spelke
& Dehaene, 1999)

Adding numerosities

Boysen and Berntson (1989) taught chimpanzees to pick the Arabic numeral
corresponding to the number of items they observed. In the last of a series of
tests of this ability, they had their subjects go around a room and observe either
caches of actual oranges in two different locations or Arabic numerals that
substituted for the caches themselves. When they returned from a trip, the
chimps picked the Arabic numeral corresponding to the sum of the two
numerosities they had seen, whether the numerosities had been directly
observed (hence, possibly counted) or symbolically represented (hence not
counted). In the latter case, the magnitudes corresponding to the numerals
observed were presumably retrieved from a memory map relating the arbitrary
symbols for number (the Arabic numerals) to the mental magnitudes that
naturally represent those numbers. Once retrieved, they could be added very
much like the magnitudes generated by the non-verbal counting of the caches.
For further evidence that nonverbal vertebrates sum numerical magnitudes (see
Beran, 2001; R. M. Church & Meck, 1984; Hauser, 2001, and citations therein;
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Olthof, Iden, & Roberts, 1997; Olthof & Roberts, 2000; D. M. Rumbaugh, Savage-
Rumbaugh, & Hegel, 1987).

Subtracting durations and numerosities

On each trial of the time-left procedure (Gibbon & Church, 1981), subjects are
offered an ongoing choice between a steadily diminishing delay, on the one hand
(the time-left option), and a fixed delay, on the other hand (the standard option).
At an unpredictable point in the course of a trial, the opportunity to choose ends.
Before it gets its reward, the subject must then endure the delay associated with
the option it was exercising at that moment. If it was responding at the so-called
standard station, it must endure the standard delay; if it was responding at the
time-left station, it must endure the time left. At the beginning of a trial, the time
left is much longer than the standard delay, but it grows shorter as the trial goes
on, because the time so far elapsed in a trial is subtracted from the initial value to
yield the time left. When the subjective time left is less than the subjective
standard, subjects switch from the standard option to the time-left option. The
subjective time left is the subjective duration of a remembered initial duration
(subjective initial duration) minus the subjective duration of the interval elapsed
since the beginning of the trial. Thus, in this experiment subjects' behavior
depends on the subjective ordering of a subjective difference and a subjective
standard (two of the basic arithmetic operations).

In the number-left procedure (E.M. Brannon, Wusthoff, Gallistel, &
Gibbon, 2001), pigeons peck a center key in order both to generate flashes and to
activate two choice keys. The flashes are generated on a variable ratio schedule,
which means that the number of pecks required to generate each flash varies
randomly between one and eight. When the choice keys are activated, the
pigeons can get a reward by pecking either of them, but only after their pecking
generates the requisite number of flashes. For one of the choice keys, the so-
called standard key, the requisite number is fixed and independent of the
number of flashes already generated. For the other choice, the number-left key,
the requisite number is the difference between a fixed starting number and the
tally of flashes already generated by pecking the center key. The flashes
generated by pecking a choice key are also delivered on a variable ratio schedule.

The use of variable ratio schedules for flash generation partially
dissociates time and number. The number of pecks required to generate any
given number of flashes--and, hence, the amount of time spent pecking--varies
greatly from trial to trial. This makes possible an analysis to determine whether
subjects' choices are controlled by the time spent pecking the center key or by the
number of flashes thus generated. The analysis shows that it was number not
duration that controlled the pigeons' choices.

In this experiment, subjects chose the number-left key when the subjective
number left was less than some fraction of the subjective number of flashes
required on the standard key. Thus, their behavior was controlled by the
subjective ordering of a subjective numerical difference and a subjective
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numerical standard. For an example of spontaneous subtraction in monkeys, see
Sulkowski and Hauser (2001).

There is also evidence that the mental magnitudes representing duration
and rates are signed, that is, there are both positive and negative mental
magnitudes (Gallistel & Gibbon, 2000; Savastano & Miller, 1998). In other words,
there is evidence not only for subtraction but also for the hypothesis that the
system for arithmetic reasoning with mental magnitudes is closed under
subtraction.

Dividing Numerosity by Duration

When vertebrates from fish to humans are free to forage in two different nearby
locations, moving back and forth repeatedly between them, the ratio of the
expected durations of the stays in the two locations matches the ratios of the
numbers of rewards obtained per unit of time (R. J. Herrnstein, 1961). Until
recently, it had been assumed that this matching behavior depended on the law
of effect. When subjects do not match, they get more reward per unit of time
invested in one patch than per unit of time invested in the other. Only when they
match do they get equal returns on their investment. Thus, matching could be
explained on the assumption that subjects try different ratios of investments
(different ratios of expected stay durations) until they discover the ratio that
equates the returns (R.J. Herrnstein & Vaughan, 1980).

Gallistel, Mark, King and Latham (2001) have shown that rats adjust to
changes in the scheduled rates of reward as fast as it is in principle possible to do
so; they are ideal detectors of such changes. They could not adjust so rapidly if
they were discovering by trial and error the ratio of expected stay durations that
equated their returns. The importance of this in the present context is that a rate
is the number of events, that is, a discrete or countable quantity, which is the
kind of thing naturally represented by the positive integers, divided by a
continuous or (uncountable) quantity--the duration of the given interval—which
is the kind of thing that can only be represented by a real number.

Gallistel and Gibbon (2000) review the evidence that both Pavlovian and
instrumental conditioning depend on subjects' estimating rates of reward. They
argue that rate of reward is the fundamental variable in conditioned behavior.
The importance of this in the present context is twofold. First, it is evidence that
subjects divide mental magnitudes. Second, it shows why it is essential that
countable and uncountable quantity be represented by commensurable mental
symbols, symbols that are part of the same system and can be arithmetically
combined without regard to whether they represent countable or uncountable
quantity. If countable quantity were represented by one system (say, a system of
discretely ordered symbols, formally analogous to the list of counting words)
and uncountable (continuous) quantity by a different system (a system of mental
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magnitudes), it would not be possible to estimate rates. The brain would have to
divide mental apples by mental oranges3.

Multiplying Rate by Magnitude

When the magnitudes of the rewards obtained in two different locations differ,
then the ratio of the expected stay durations is determined by the ratio of the
incomes obtained from the two locations (Catania, 1963; Harper, 1982; Keller &
Gollub, 1977; Leon & Gallistel, 1998). The income from a location is the product
of the rate and the magnitude. Thus, this result implies that subjects multiply
subjective rate by subjective magnitudes to obtain subjective incomes. The
signature of multiplicative combination is that changing one variable by a given
factor--for example, doubling the rate, changes the product by the same factor
(doubles the income) regardless of the value of the other factor (the magnitude of
the rewards). Leon and Gallistel (1998) showed that changing the ratio of the
rates of reward by a given factor changed the ratio of the expected stay durations
by that factor, regardless of the ratio of the reward magnitudes, thereby proving
that subjective magnitudes combine multiplicatively with subjective rates to
determine the ratio of expected stay durations.

Ordering Numerosities

Most of the paradigms that demonstrate mental addition, subtraction,
multiplication and division also demonstrate the ordering of mental magnitudes,
because the subject's choice depends on this ordering. Brannon and Terrace
(2000) demonstrated more directly that monkeys order numerosities by
presenting simultaneously several arrays differing in the numerosity of the items
constituting each array and requiring their macaque subjects to touch the arrays
in the order of their numerosity. When subjects had learned to do this for
numerosities between one and four, they generalized immediately to
numerosities between five and nine.

The most interesting feature of Brannon and Terrace's results was that
they found it impossible to teach subjects to touch the arrays in an order that did
not conform to the order of the numerosities (either ascending or descending).
This implies that the ordering of numerosities is highly salient for a monkey. It
cannot ignore their natural ordering in order to learn an unnatural one. It also
suggests that the natural ordering is not itself learned; it is inherent in the
monkey's representation of numerosity. What is learned is to respond on the
basis of numerical order, not the ordering itself.

For further evidence that non-verbal vertebrates order numerosities and
durations, see (Biro & Matsuzawa, 2001; Elizabeth M. Brannon & Roitman, 2003;
Elizabeth M. Brannon & Terrace, 2002; Carr & Wilkie, 1997; Olthof et al., 1997;
D.M. Rumbaugh & Washburn, 1993; Washburn & Rumbaugh, 1991).

                                                  
3 Fortran and C programmers, who have made the mistake of dividing an integer variable
by a floating point variable will know whereof we speak
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In summary, research with vertebrates, some of which have not shared a
common ancestor with man since before the rise of the dinosaurs, implies that
they represent both countable and uncountable quantity by means of mental
magnitudes. The system of arithmetic reasoning with these mental magnitudes is
closed under the basic operations of arithmetic, that is, mental magnitudes may
be mentally added, subtracted, multiplied, divided and ordered without
restriction.

Humans Also Represent Numerosity with Mental
Magnitudes
The Symbolic Size and Distance Effects

It would be odd if humans did not share with their remote vertebrate cousins
(pigeons) and near vertebrate cousins (chimpanzees) the mental machinery for
representing countable and uncountable quantity by means of a system of real
numbers. That humans do represent integers with mental magnitudes was first
suggested by Moyer and Landauer (1967; 1973) when they discovered what has
come to be called the symbolic distance effect (Figure 5). When subjects are asked
to judge the numerical order of Arabic numerals as rapidly as possible, their
reaction time is determined by the relative numerical distance: the greater the
distance between the two numbers, the more quickly their order may be judged.
Subsequently, Parkman (1971) showed further that the greater the numerical
value of the smaller digit, the longer it takes to judge their order (the size effect).
The two effects together may be summarized under a single law, namely that the
time to judge the numerical order of two numerals is a function of the ratio of the
numerical magnitudes that they represent. Thus, Weber's law applies to
symbolically represented numerical magnitude. Weber's law is that the
discriminability of two magnitudes is a function of their ratio.

The size and distance effects in human judgments of the ordering of
discrete and continuous quantities are robust. They are observed when the
numerosities being compared are actually instantiated (by visual arrays of dots)
and when they are represented symbolically by Arab numerals (Buckley &
Gillman, 1974, see Figure 15). The symbolic distance and size effects are observed
in the single digit range and in the double digit range (S Dehaene, Dupoux, &
Mehler, 1990; Hinrichs, Yurko, & Hu, 1981). That this effect of numerical
magnitude on the time to make an order judgment should appear for
symbolically represented numerosities between 1 and 100 is decidedly
counterintuitive. If introspection were any guide to what one's brain was doing,
one would think that the facts about which numbers were greater than which
were stored in a table of some kind and simply looked up. In that case, why
would it take longer to look up the ordering of 2 and 3 (or 65 and 62) than 2 and
5 (or 65 and 47)? It does, however, and this suggests that the comparison that
underlies these judgments operates with noisy mental magnitudes. On this
hypothesis, the brain maps the numerals to the noisy mental magnitudes that
would be generated by the non-verbal numerical estimation system if it
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enumerated the corresponding numerosity. It then compares those two noisy
mental magnitudes to decide which numeral represents the bigger numerosity.

Figure 5. The symbolic and non-symbolic
size and distance effects on the human
reaction time while judging numerical order
in the range from 1 to 9. In three of the
conditions, the numerosities to be judged
were instantiated by two dot arrays (non-
symbolic numerical ordering). The dots
within each array were in either a regular
configuration, an irregular configurations
that did not vary upon repeated presentation,
or in randomly varying configurations. In
the fourth condition, the numerosities were
represented symbolically by Arabic
numerals. The top panel plots mean reaction
times as a function of the numerical
difference. The bottom plots it as a function
of the size of the smaller comparand.
(Replotted from Figures 1 and 2 in Buckley
& Gillman, 1974.)

On this hypothesis, the comparison that mediates the verbal judgment of
the numerical ordering of two Arabic numerals uses the same mental
magnitudes and the same comparison mechanism as is used by the non-verbal
numerical reasoning system that we are assumed to share with many non-verbal
animals. Consistent with this hypothesis is Brannon and Terrace's (2002) finding
that reaction time functions from humans and monkeys for judgments of the
numerical ordering of pairs of visually presented dot arrays are almost exactly
the same (Figure 6).

Buckley and Gillman modeled the underlying comparison process (1974).
In their model, numbers are represented in the brain by noisy signals (mental
magnitudes), with overlapping distributions. The closer two numerosities are in
the ordering of numerosities, the more their corresponding signal distributions in
the brain overlap. When the subject judges the ordering of two numerosities, the
brain subtracts the signal representing the one numerosity from the signal
representing the other, and puts the signed difference in an accumulator, a
mechanism that adds up inputs over, in this case, time. The accumulator for the
ordering operation has fixed positive and negative thresholds. When its positive
threshold is exceeded, it reports the one number to be greater than the other, and
vice versa when its negative threshold is exceeded. If neither accumulator
threshold is exceeded, the comparator resamples the two signals, computes a
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second difference, based on the two new samples, and adds it to the
accumulator. The resampling explains why it takes longer (on average) to make
the comparison when the numerosities being compared are closer. The closer
they are, the more their corresponding signal distributions overlap. The more
these distributions overlap, the more samples will have to be made and added
together (accumulated) before (on average) a decision threshold is reached.

Figure 6. The reaction time and accuracy functions for monkey (Rhesus macaque) and
human subjects in touching the more numerous of two random dot visual arrays
presented side by side on a touch-screen video monitor. Reproduced from (Elizabeth M.
Brannon & Terrace, 2002 by permission of the authors and publisher.)

Non-Verbal Counting in Humans

Given the evidence from the symbolic size and distance effects that humans
represent number with mental magnitudes, it seems likely that they share with
the non-verbal animals in the vertebrate clade a non-verbal counting mechanism
that maps from numerosities to the mental magnitudes that represent them. If so,
then it should be possible to demonstrate non-verbal counting in humans when
verbal counting is suppressed. Whalen, Gallistel and Gelman (1999) presented
subjects with Arabic numerals on a computer screen and asked them to press a
key as fast as they could without counting until it felt like they had pressed the
number signified by the numeral. The results from humans looked very much
like the results from pigeons and rats: the mean number of presses increased in
proportion to the target number and the standard deviations of the distributions
of presses increased in proportion to their mean, so that the coefficient of
variation was constant.

This result suggests, firstly, that subjects could count non-verbally, and,
secondly, that they could compare the mental magnitude thus generated to a
magnitude obtained by way of a learned mapping from numerals to mental
magnitudes. Finally, it implies that the mapping from numerals to mental
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magnitudes is such that the mental magnitude given by this mapping
approximates the mental magnitude generated by counting the numerosity
signified by a given numeral.

In a second task, subjects observed a dot flashing very rapidly but at
irregular intervals. The rate of flashing (8 per second) was twice as fast as
estimates of the maximum speed of verbal counting (Mandler & Shebo, 1982).
Subjects were asked not to count but to say about how many times they thought
the dot had flashed. As in the first experiment, the mean number estimated
increased in proportion to the number of flashes and the standard deviation of
the estimates increased in proportion to the mean estimate. This implies that the
mapping between the mental magnitudes generated by non-verbal counting and
the verbal symbols for numerosities is bi-directional; it can go from a symbol to a
mental magnitude that is comparable to the one that would be generated by non-
verbal counting, and it can go from the mental magnitude generated by a non-
verbal count to a roughly corresponding verbal symbol. In both cases, the
variability in the mapping is scalar.

Whalen, et al (1999) gave several reasons for believing that their subjects
did not count subvocally. We will not review them here, because a subsequent
experiment speaks more directly to this issue  (Sara Cordes, Gelman, Gallistel, &
Whalen, 2001).

Cordes, et al  (2001) suppressed articulation by having their subjects
repeat a common phrase ("Mary had a little lamb") while they attempted to press
a target number of times, or by having subjects say "the" coincident with each
press.

In control experiments, subjects were asked to count their presses out loud
In all conditions, subjects were asked to press as fast as possible.

The variability data from the condition where subjects were required to
say "the" coincident with each press are shown in Figure 7 (filled squares). As in
Whalen et al. (1999), the coefficient of variation was constant (scalar variability).
The best fitting line has a slope that does not differ significantly from zero. The
contrasting results from the control conditions, where subjects counted out loud
are the open squares. Here, the slope--on this log-log plot---does deviate very
significantly from zero. In verbal counting, one would expect counting errors--
double counts and skips--to be the most common source of variability. On the
assumption that the probability of a counting error is approximately the same at
successive steps in a count, the resulting variability in final counts should be
binomial rather than scalar. It should increase in proportion to the square root of
the target value, rather than in proportion to the target value. If the variability is
binomial rather than scalar, then when the coefficient of variation is plotted
against the target number on a log-log plot, it should form a straight line with a
slope of -0.5. This is what was in fact observed in the out-loud counting
conditions: the variability was much less than in the non-verbal counting
conditions and, more importantly, it was binomial rather than scalar. The mean
slope of the subject-by-subject regression lines in the two control conditions was
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significantly less than zero and not significantly different from -0.5. The
contrasting patterns of variability in the counting-out-loud and non-verbal
counting conditions strengthen the evidence against the hypothesis that subjects
in the non-verbal counting conditions were subvocally counting.

Figure 7. The coefficients of variation
(σ/µ) are plotted against the numbers of
presses for the conditions in which
subjects counted non-verbally and for the
condition in which they fully pronounced
each count word (double logarithmic
coordinates). In the former condition,
there is scalar variability, that is, a
constant coefficient of variation. The
slope of the regression line relating the
log of the coefficient of variation to the log
of mean number of presses does not differ
from zero. In the latter, the variability is
much less and it is binomial; the
coefficient of variation decreases in
proportion to the square root of the target
number. In the latter case, the slope of the
regression line relating the log of the
coefficient of variation to the log of the
mean number of presses differs
significantly from zero but does not differ significantly from -0.5, which is the slope
predicted by the binomial variability hypothesis. (Reproduced from  Sara Cordes et al.,
2001, by permission of the authors and the publisher.)

In sum, non-verbal counting may be demonstrated in humans, and it
looks just like non-verbal counting in non-humans. Moreover, mental
magnitudes (real numbers) comparable to those generated by non-verbal
counting appear to mediate judgments of the numerical ordering of symbolically
presented integers. This suggests that the non-verbal counting system is what
underlies and gives meaning to the linguistic representation of numerosity.

Non-verbal Arithmetic Reasoning in Humans

In humans as in other animals, nonverbal counting would be pointless if they did
not reason arithmetically with the resulting mental magnitudes. Recent
experiments give evidence that they can.

Barth (, 2001 #6452, see also H. Barth et al., under review (2003)) tested
adults' performance on tasks that required the addition, subtraction,
multiplication and division of non-verbally estimated numerosities, under
conditions where verbally mediated arithmetic was unlikely. In her experiments,
subjects were given instances of two numerosities in rapid sequence, each
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instance presented too quickly to be verbally countable. Then, they were given
an instance of a third numerosity, and they indicated by pressing one of two
buttons whether the sum, or difference, or product, or quotient of the first two
numerosities was greater or less than the third.

The numerosities were presented either as dot arrays (with dot density
and area covered controlled) or as tone sequences. In some conditions,
presentation modalities were mixed, so, for example, subjects compared the sum
of a tone sequence and a dot array to either another tone sequence or another dot
array.

In Barth's results, there was no effect of comparand magnitude on reaction
time or accuracy, only an effect of their ratio. That is, it did not matter how big
the two numerosities were; only the proportion of the smaller to the larger
affected reaction time and accuracy. The same proved to be true in her
experiments involving mental magnitudes derived by arithmetic composition.
This enables a comparison between the case in which the comparands are both
given directly and the case in which one comparand is the estimated sum or
difference of two estimated numerosities. As Figure 8 shows, the accuracy of
comparisons involving a sum was only slightly less at each ratio of the
comparands than the accuracy of a comparison between directly given
comparands.

Figure 8. The accuracy of order
judgments for two non-verbally
estimated numerosities. The estimates of
numerosity were based on direct
instantiations  in the first condition
(N1<N2). In the other conditions,  one
of them was derived from the
composition of two other estimates.
(Data replotted from H. C. Barth, 2001,
p. 109).

At a given comparand ratio, the accuracy of comparisons involving differences
was less than the accuracy of a comparison between directly given comparands
(Figure 8). This could hardly be otherwise. For addition, the sum increases as the
magnitude of the pair of operands increases, but for subtraction, it does not; the
difference between a billion and a billion and one is only one. The uncertainty
(estimation noise) in the operands must propagate to the result of the operation,
so the uncertainty about the true value of a difference must depend in no small
measure on the magnitude of the operands from which it derived. If one looks
only at the ratio of the difference to the other comparand, one fails to take
account of the presumably inescapable impact of operand magnitude on the
noise in the difference.
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Bath's experiments establish by direct test the human ability to combine
noisy non-verbal estimates of numerosity in accord with the combinatorial
operations that define the system of arithmetic. In her data (Figure 8), as the
proportion between the smaller and larger comparand increases toward unity,
the accuracy of the comparisons degrades in a roughly parallel fashion
regardless of the derivation of the first comparand. This suggests that the scalar
variability in the nonverbal estimates of numerosity propagates to the mental
magnitudes produced by the composition of those estimates.

Barth's data do not, however, directly demonstrate the variablity in the
results of composition nor allow one to estimate the quantitative relation
between the noise in the operands and the noise in the resultant. Cordes,
Gallistel, Gelman and Latham (in preparation (2003)) used the above-described
key-tapping paradigm to demonstrate the non-verbal addition and subtraction of
non-verbal numerical estimates and the quantitative relation between the
variability in the estimates of the sums and differences and the variability in the
estimates of the operands.

In the baseline condition of the Cordes et al. (in preparation (2003))
experiment, subjects saw a sequence of rapid arhythmic variable duration dot
flashes on a computer screen, at the conclusion of which they attempted to make
an equivalent number of taps on one button of a 2-button response box, tapping
as rapidly as they could while saying the out loud coincident with each tap. In
the compositional conditions, subjects saw one sequence on the left side of the
screen, a second sequence on the right side, and were asked to tap out either the
sum or the difference. In the subtraction condition, they pressed the button on
the side they believed to have had the fewer flashes as many times as they felt
was required to make up the difference.

Sample results are shown in Figure 9. The numbers of responses subjects
made were in all cases approximately linear functions of the numbers they were
estimating, demonstrating the subjects' ability to add and subtract the mental
magnitudes representing numerosities. In the baseline condition, the variability
in the numbers tapped out was an approximately scalar function of the target
number, although there was some additive and binomial variability.

The variability in the addition data was also, to a first approximation, a
scalar function of the objective sum. Not surprisingly, however, the variability in
the subtraction data was not. In addition, answer magnitude covaries with
operand magnitude: the greater the magnitude of the operands, the greater the
magnitude of their sum4. In subtraction, answer magnitude is poorly correlated
with operand magnitude, because large magnitude operands often produce
small differences. Insofar as the scalar variability in the estimates of operand
magnitudes propagates to the variability in the results of the operations, there
will be large variability in these small differences.

                                                  
4 The magnitude of a pair of numbers is the square root of the sum of their squares.
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Figure 9.A Number of responses (key taps) as a function of the number of flashes for one
subject. B. Number of responses as a function of the sum of the numbers of flashes in two
flash sequences. C. Number and sign (side) of the responses as a function of the difference
between the numbers of flashes in two sequences of flashes. D. Predicting the variability
in the sums and differences from the variability in the operands. Adapted from Cordes et
al. (in preparation 2003) by permission of the authors and publisher.

Cordes et al. (in preparation 2003) fit regression models with additive,
binomial and scalar variance parameters to the baseline data, and to the addition
and subtraction data. These fits enabled them to assess the extent to which the
magnitude of the pair of operands predicted the variability in their sum and
difference. On the assumption that there is no covariance in the operands, the
variance in the results of both subtraction and addition should be equal to the
sum of the variances for the two operands. When Cordes et al. plotted predicted
variabilty against directly estimated variability (Figure 9D), they found that the
subtraction data did conform approximately to expectations, but that the
addition data clearly fell above the line. In other words, the variability in results
of subtraction were approximately what was expected from the sum of the
estimated variances in the operands, but the variability in the addition results
was greater than expected.
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Retrieving Number Facts
There is an extensive literature on reaction times and error rates in adults doing
single-digit arithmetic (Ashcraft, 1992; J. I. Campbell, 1999; J. I. Campbell & J.
Fugelsang, 2001; J. I. Campbell & Gunter, 2002; J. I. D Campbell, 2003, in
preparation); J. I. D. Campbell & J. Fugelsang, 2001; Noel, 2001). It resists easy
summary. However, magnitude effects analogous to those found for order
judgments are a salient and robust finding: The bigger the numerosities
represented by a pair of digits, the longer it takes to recall their sum or product
and the greater the likelihood of an erroneous recall. The same is true in children
(J.I.D. Campbell & Graham, 1985). For both sets of number facts, there is a
notable exception to this generalization. The sums and products of ties (for
example, 4 + 4 or 9 x 9) are recalled much faster than is predicted by the
regressions for non-ties, although ties, too, show a magnitude effect (Miller,
Perlmutter, & Keating, 1984).

There is a striking similarity in the effect of operand magnitude on the
reactions times for both addition and multiplication. The slopes of the regression
lines (reaction time versus the sum or product of the numbers involved) are not
statistically different (Geary, Widman, & Little, 1986). More importantly, Miller
et al. (1984) found that the best predictor of reaction times for digit multiplication
problems was the reaction times for digit addition problems, and vice versa. In
other words, the reaction-time data for these two different sets of facts, which are
mastered at different ages, show very similar microstructure.

These findings suggest a critical role for mental magnitudes in the
retrieval of the basic number facts (the addition and multiplication tables), upon
which verbally mediated computation strategies depend. Whalen's (1997)
diamond arithmetic experiment showed that these effects depend primarily on
the magnitude of the operands not on the magnitude of the answers, nor on the
frequency with which different facts are retrieved (although these may also
contribute). Whalen (1997) taught subjects a new arithmetic operation of his own
devising, the diamond operation. It was such that there was no correlation
between operand magnitude and answer magnitude. Subjects received equal
practice on each fact, so explanations in terms of differential practice did not
apply. When subjects had achieved a high level of proficiency at retrieving the
diamond facts, Whalen measured their reaction times. He obtained the same
pattern of results seen in the retrieval of the facts of addition and multiplication.

Two Issues
What is the form of the mapping from magnitudes to mental magnitudes?

Weber's law, that the discriminability of two magnitudes (two sound intensities
or two light intensities) is a function of their ratio, is the oldest and best
established quantitative law in experimental psychology. Its implications for the
question of the quantitative relation between directly measurable magnitudes
(hereafter called objective magnitudes) and the mental magnitudes by which
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they are represented (hereafter called subjective magnitudes) have been the
subject of analysis and debate for more than a century. This line of investigation
led to work on the mathematical foundations of measurement, work concerning
the question what it means to measure something (D. Krantz, Luce, Suppes, &
Tversky, 1971; D. H. Krantz, 1972; Luce, 1990; Stevens, 1951, 1970). The key
insight from work on the foundations of measurement is that the quantitative
form of the mapping from things to their numerical representives cannot be
separated from the question of the arithmetic operations that are validly
performed on the results of that mapping. The question of the form of the
mapping is only meaningful at the point where the numbers (magnitudes)
produced by the mapping enter into arithmetic operations.

The discussion began when Fechner used Weber's results to argue that
subjective magnitudes (for example, loudness and brightness) are logarithmically
related to the corresponding objective magnitudes (sound and light intensity).
Fechner's reasoning is echoed down to the present day by authors who assume
that Weber's law implies logarithmic compression in the mapping from objective
numerosity to subjective numerosity. These conjectures are uninformed by the
literature on the measurement of subjective quantities spawned by Fechner's
assumption. In deriving logarithmic compression from Weber's law, Fechner
assumed that equally discriminable differences in objective magnitude
correspond to equal differences in subjective magnitude. However, when you
directly ask subjects whether they think just discriminable differences in, for
example, loudness represent equal differences, they do not; they think a just
discriminable difference between two loud sounds is greater than the just
discriminable difference between two soft sounds (Stevens, 1951).

The reader will recognize that Barth performed both experiments—the
discrimination experiment (Weber's experiment) and the difference judging
experiment—but with numerosities instead of noises. In the discrimination
experiment, she found that Weber's law applied: Two pairs of non-verbally
estimated numerosities can be correctly ordered 75% of the time when N1/N2 =
N3/N4 = .83, where N now refers to the (objective) numerosity of a set (Figure 8).
From Moyer and Landauer (1967) to the present (S Dehaene, 2002), this has been
taken to imply that subjective numerosity is a logarithmic function of objective
numerosity. If that were so, and if subjects estimated the arithmetic differences
between objective magnitudes from the arithmetic differences in the
corresponding subjective magnitudes, then the Barth (2001) and the Cordes et al.
(in preparation 2003) subtraction experiments would have failed, and so would
the experiments demonstrating subtraction of time and number in nonverbal
animals, because the arithmetic difference between the logarithms of two
magnitudes represents their quotient, not their arithmetic difference.

In short, when subjects respond appropriately to the arithmetic difference
between two numerical magnitudes, their behavior is not based on the arithmetic
difference between mental (subjective) magnitudes that are proportional to the
logarithms of the objective magnitudes. That much is clear. Either: (Model 1) The
behavior is based on the arithmetic difference in mental magnitudes that are
proportional to the objective magnitudes (a proportional rather than logarithmic
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mapping). Or: (Model 2) Dehaene (2001) has suggested that mental magnitudes
are proportional to the logarithms of objective magnitudes and that, to obtain
from them the mental magnitude corresponding to the objective difference, the
brain uses a look-up table, a procedure analogous to the procedure that Whalen's
(1997) subjects used to retrieve the facts of diamond arithmetic. In this model, the
arithmetic difference between two mental magnitudes is irrelevant; the two
magnitudes serve only to specify where to enter the look-up table, where in
memory the answer is to be found.

In summary, there are two intimately interrelated unknowns concerning
the mapping from objective to subjective magnitudes—the form of the mapping
and the formal character of the operations on the results of the mapping. Given
the experimental evidence showing valid arithmetic processing, knowing either
would fix the other. In the absence of firm knowledge about either, can
behavioral experimental evidence decide between the alternative models?
Perhaps not definitively, but there are relevant considerations. The Cordes et al.
(in preparation 2003) experiment estimates the noise in the results of the mental
subtraction operation at and around 0 difference (Figure 9C). There is nothing
unusual about the noise around answers of approximately 0. It is unclear what
assumptions about noise would enable a logarithmic mapping model to explain
this. The logarithm of a quantity goes to minus infinity as the quantity
approaches 0, and there are no logarithms for negative quantities. On the
assumption that realizable mental magnitudes like realizable non-mental
magnitudes cannot be infinite, the model has to treat 0 as a special case. How the
treatment of that special case could exhibit noise characteristics of a piece with
the noise well away from 0 is unclear.

It is also unclear how the logarithmic-mapping-plus-table-lookup model
can deal with the fact that the sign of a difference is not predictable a priori. In
this model a bigger magnitude (number) cannot be subtracted from a smaller,
because the resulting negative number does not have a logarithm, that is, there is
no way to represent a negative magnitude in a scheme where magnitudes are
represented by their logarithms. Thus, this model is not closed under
subtraction.

Is there a distinct representation for small numbers?

When instantiated as arrays of randomly arranged small dots, presented for a
fraction of a second, small numerosities can be estimated more quickly than large
ones, but only up to about 6. Thereafter, the estimates increase more or less
linearly with the number of dots, but the reaction time is flat (Figure 10).

Subjects confidence in their estimates also falls off precipitously after 6
(Kaufman, Lord, Reese, & Volkman, 1949; Taves, 1941). This led Taves to argue
that the processes by which subjects arrive at estimates for numerosities of 5 or
fewer are distinct from the processes by which they arrive at estimates for
numerosities of 7 or more. Kaufman et al. (1949) coined the term subitizing to
describe the process that operates in the range below 6.
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Figure 10. Estimates of dot
numerosity (top) and time
to make an estimate
(bottom) as functions of the
number of dots in
tachistoscopically presented
arrays of randomly
positioned dots. (Plotted
from the data for the speeded
instruction group in Table 1
of Kaufman et al., 1949, p.
510.)

When the dot array to be enumerated is displayed until the subject
responds, rather than very briefly by a tachistoscope, the reaction time function
is superimposable on the one shown in Figure 10, up to and including
numerosity 6. It does not level off at 6, however; rather, it continues with the
same slope (about 325 ms/dot) indefinitely (Jensen, Reese, & Reese, 1950). This
slope represents the time it takes to count subvocally. Thus, the discontinuity at 6
represents the point at which a non-verbal numerosity-estimating mechanism or
process takes over from the process of verbal counting, because, presumably, it is
not possible to count verbally more than 6 items under tachistoscopic conditions.

The non-verbal numerosity-estimating process is probably this process
that is the basis for the demonstrated capacity of humans to compare (order)
large numerosities instantiated either visually or auditorily (Hilary Barth,
Kanwisher, & Spelke, 2003). The reaction times and accuracies for these
comparisons show the Weber law characteristic, which is a signature of the
process that represents numerosities by mental magnitudes rather than by
discrete word-like symbols (Cordes et al 2001). The assumption that the
representation is by mental magnitudes regardless of the mode of presentation is
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consistent with the finding that there is no cost to cross-modal comparisons of
large numerosities; these comparisons take no longer and are no more inaccurate
than comparisons within presentation modes (Hilary Barth et al., 2003).

There is controversy about the implications of the reaction time function
within the subitizing range (the range below 6). In this range, there is
approximately a 30 ms increment in going from one to two dots, an 80 msec
increment in going from two to three, and  a 200 ms increment in going from
three to four. These are large increments. The net increment from one to four is
about 300 ms, which is half the total latency to respond to a one-item array
(Jensen et al., 1950; Kaufman et al., 1949; Mandler & Shebo, 1982). Moreover, the
increments get bigger at each step. In particular, the step from 2 to 3 is
significantly greater than the step from 1 to 2 in almost every data set.

It is often claimed that there is a discontinuity in the reaction time function
within the subitizing range (Davis & Pérusse, 1988; Klahr & Wallace, 1973;
Simon, 1999; Strauss & Curtis, 1984; Woodworth & Schlosberg, 1954) (Piazza,
Giacomini, Le Bihan, & Dehaene, 2003), but it has also often been pointed out
that there is no empirical support for this claim (Balakrishnan and Ashby, (1992).
Because the reaction time function is neither flat nor linear in the range from 1 to
3, it offers no support for the common theory that very small numbers are
directly perceived, as was first pointed out by the authors who coined the term
subitizing (Kaufman, et al 1949).

Gallistel and Gelman (1992) and Dehaene and Cohen (1994) suggested
that in the subitizing range there is a transition from a strategy based on
mapping from nonverbally estimated mental magnitudes to a strategy based on
verbal counting. This hypothesis has recently received important support from a
paper by Whalen, West and Cook (J. Whalen, West, & Cook, under review, 2003).
By strongly encouraging rapid approximate estimates and taking measures to
make verbal counting more difficult, Whalen et al. (under review 2003) obtained
a reaction time function with a slope of 47 ms per item, from 1 to 16 items.

The coefficient of variation in the estimated numbers was constant from 1
to 16 at about 14.5%, which is close to the value of 16% in the animal timing
literature (Gallistel, King, & McDonald, in press). Thus, the Whalen et al.  data
show scalar variability in rapid number estimates all the way down to estimates
of one and two, as do the data of Cordes et al. (2001). Whalen et al. (under review
2003) show that with this level of noise in the mental magnitudes being mapped
to number words, the expected percent errors in the resulting verbal estimates of
numerosity are close to zero in the range 1-3 and increase rapidly thereafter--in
close accord with the experimentally observed percent errors in their speeded
condition (Figure 11). This explains why subjects in experiments where it is not
strongly discouraged switch to subvocal verbal counting somwhere between 4
and 6, and why their confidence in their speeded estimates falls off rapidly after
6 (Kaufman et al., 1949; Taves, 1941). Whalen et al. (under review) attribute the
constant slope of 47 ms/item in the speeded reaction time function to a serial
non-verbal counting process. In short, the reaction time function does not
support the hypothesis that there are percepts of twoness and threeness,
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constituting a representation of small numerosities incommensurable with the
mental magnitudes that represent other numerosities.

Figure 11. The observed percent errors as a function of
number of dots in Whalen's speeded condition compared to
the percent expected on the hypothesis that the estimates
were obtained by way of a mapping from non-verbal mental
magnitudes to the corresponding number words and that
the mental magnitudes had scalar variability with a
coefficient of variation of 0.145. Reproduced from Whalen et
al. (under review) by permission of the authors and the
publisher.

The Development of Verbal Numerical Competence
It appears that the system of non-verbal mental magnitudes plays fundamental
role in verbal numerical behavior: When verbal counting is too slow to satisfy
time constraints, it mediates the finding of a number word that specifies
approximately the numerosity of a set. It mediates the ordering of the symbolic
numbers and the numerosities they represent. And, it mediates the retrieval of
the verbal number facts (the addition and multiplication tables) upon which
verbal computational procedures rest. All of these roles require a mapping
between the mental magnitudes that represent numerosity and number words
and written numerals. Thus, in the course of ordinary development, humans
learn a bidirectional mapping between the mental magnitudes that represent
numerosity and the words and numerals that represent numerosity (Gallistel &
Gelman, 1992; Gelman & Cordes, 2001). They make use of this bidirectional
mapping in talking about number and the effects of combinatorial operations
with numbers. There is broad agreement on this conclusion within the literature
on numerical cognition, because of the abundant evidence for Weber-law
characteristics in symbolic numerical behavior. The literature on the deficits in
numerical reasoning seen in brain injured patients is broadly consistent with this
same conclusion (S. Dehaene, 1997; Noel, 2001).

It also seems plausible that the nonverbal system of numerical reasoning
mediates verbally expressed numerical reasoning. It seems plausible, for
example, that adults believe that (2 + 1) > 2 and four minus two is less than four,
because that is the way the mental magnitudes behave to which they
(unconsciously) refer those symbols in order to endow them with meaning and
with reference to the world.

Empiricists will offer as an alternative the hypothesis that adults believe
these symbolic propositions because they have repeatedly observed that the
properties of the world to which the words or symbols somehow refer behave in
this way. Adults know, for example, that the word two refers to every set that can
be placed in one-one correspondence with some uhr-two set, and likewise,
mutatis mutandis, for the word one, and that the word plus refers to the uniting of
sets, and that the word greater than refers to the relation between a set and its
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proper subsets, and so on. From an empiricist perspective, the words have these
real world references only by virtue of the experiences adults have had, which
are ubiquitous and universal.

Nativist/rationalists will respond that reference to the world by verbal
expressions is mediated by preverbal world-referring symbolic systems in the
mind of the hearer and that the ubiquity and universality of the experiences that
are supposed to have created world-reference for these expressions are grounds
for supposing that symbolic systems with these properties are part of the innate
furniture of the mind. We will not pursue this old debate further, except to note
the possible relevance of the experiments reviewed above demonstrating that
non-verbal animals reason arithmetically about both numerosities (integer
quantities) and magnitudes (continuous quantities).

We turn instead to the experimental literature on numerical competence in
very young children. It is difficult to demonstrate conclusively behavior based on
numerosity in infants, because it is hard not to confound variation in one or more
continuous quantites with variation in numerosity, and infants often respond on
the basis of continuous dimensions of the stimulus (Clearfield & Mix, 1999; Lisa
Feigenson, Carey, & Spelke, 2002; see Mix, Huttenlocher, & Levine, 2002, for
review). Nonetheless, there are studies that appear to demonstrate sensitivity to
numerical order in infants (Elizabeth M. Brannon, 2002). Moreover, the ability of
infants to discriminate sets on the basis of numerosity extends to pairs as large as
8 vs 16 (Lipton & Spelke, 2003; Xu & Spelke, 2000). Thus, there is reason to
suppose that preverbal children share with non-verbal animals a non-verbal
representation of numerosity.

The assumption that preverbal children represent numerosities by a
system of mental magnitudes homologous to the system found in non-verbal
animals is the foundation of the account of the development of verbal numerical
competence suggested by Gelman and her collaborators (Gelman & Brenneman,
1994; Gelman & Cordes, 2001; Gelman & Williams, 1998). They argue that the
development of verbal numerical competence begins with learning to count,
which is guided from the outset by the child's recognition that verbal counting is
homomorphic to non-verbal counting. In non-verbal counting, the pouring of
successive cups into the accumulator (the addition of successive unit magnitudes
to a running sum) creates a one-to-one correspondence between the items in the
enumerated set and a sequence of mental magnitudes. Although the mental
magnitudes thus created have the formal properties of real numbers, the process
that creates generates a discretely ordered sequence of mental magnitudes, an
ordering in which each magnitude has a next magnitude. The final magnitude
represents the numerosity of the set. Verbal counting does the same thing; it
assigns successive words from an ordered list to successive items in the set being
enumerated, with the final word representing the cardinality of the set.

Gelman and her collaborators argue that the principles that govern non-
verbal counting inform the child's counting behavior from its inception (Gelman
& Gallistel, 1978). Children recognize that number words reference numerosities
because they implicitly recognize that they are generated by a process
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homomorphic to the non-verbal counting of serially considered sets. Number
words have meaning for the child, as for the adult, because it recognizes at an
early age that they map to the mental magnitudes by which the non-verbal mind
represents numerosities. On this account, the child's mind tries to apply from the
outset the Gelman and Gallistel counting principles (Gelman & Gallistel, 1978):
that counting must involve a one-one assignment of words to items in the set,
that the words must be taken from a stably ordered list, and that the last word
represents the cardinality of the set. However, it takes a long time to learn the
list, and a long time to implement the verbal counting procedure flawlessly,
because list learning is hard, because the implementation of the procedure is
challenging (Gelman & Greeno, 1989), and because the child is often confused
about what the experimenter wants.

Critical to Gelman's account is evidence that during the period when they
are learning to count children already understand that the last count word
represents a property of the set about which it is appropriate to reason
arithmetically. Without such evidence, there is no grounds for believing that the
child has a truly numerical representation. Evidence on this crucial point comes
from the so-called magic experiments (Bullock & Gelman, 1977; Gelman, 1972,
1977, 1993). These experiments drew children into a game in which a winner and
loser plate could be distinguished on the basis of the number of toy mice they
contained. The task engaged children's attention and caused them to justify their
judgments as to whether an uncovered plate was or was not the winner.
Children as young as 2 1/2 indicated that the numerosity was the decisive
dimension, and they spontaneously counted to justify their judgment that the
plate with the correct numerosity was the winner. On magic trials, a mouse was
surreptitiously added or subtracted from the winner plate during the shuffling,
so that it had the same numerosity as the loser plate. Now, both plates when
uncovered were revealed to be loser plates. In talking about what surprised
them, children indicated that something must have been added or subtracted,
and they counted to justify themselves. This is strong evidence that children as
young as two and one half years of age understand that counting gives a
representation of numerosity about which it is appropriate to reason
arithmetically. This is well before they become good counters (Fuson, 1988;
Gelman & Gallistel, 1978; Hartnett & Gelman, 1998). Surprised 2 1/2 year olds
made frequent use of number words. They used them in idiosyncratic ways, but
ways that nonetheless conformed to the counting principles (Gelman, 1993),
including the cardinality principle.

An second account of the development of counting and numerical
understanding grows, firstly, out of the conviction of many researchers that
while two year olds count, albeit badly, they do not understand what they are
attempting to do (Carey, 2001a, 2001b; Fuson, 1988; Mix et al., 2002; Karen Wynn,
1990; K. Wynn, 1992b). It rests, secondly, on evidence suggesting that in the
spontaneous processing of numerosities by infants and by monkeys, there is a
discontinuity between numbers of 4 or less and bigger numbers. In some
experiments, the infant and monkey subjects discriminate all numerosity pairs in
the range 1 to 4, but fail to discriminate pairs that include a numerosity outside
that range (e.g., <3,6>), even when, as in the example, their ratio is greater than
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the ratio between discriminable pairs of 4 or less (L. Feigenson, Carey, & Hauser,
2002; Uller, Carey, Huntley-Fenner, & Klatt, 1999; Uller, Hauser, & Carey, 2001).

How to reconcile these latter findings with the finding that infants do
discriminate the pair <8,16> (Lipton & Spelke, 2003; Xu & Spelke, 2000) is
unclear. Similarly, it is unclear how to reconcile the monkey findings with the
literature showing the discrimination of numerosities small and large in non-
verbal animals. Particularly to be born in mind in this connection is the finding
that monkeys cannot be taught to order numerosities in other than a numerical
order (Elizabeth M. Brannon & Terrace, 2000),  even though they can be taught to
order things other than numerosities in a arbitrary, experimenter-imposed order
(Terrace, Son, & Brannon, 2003). This implies that numerical order is
spontaneously salient to a monkey.

The account offered by Carey (Carey, 2001a, 2001b, in press) begins with
the assumption that convincing cases of infant number discrimination involving
numbers less than 4 may depend on the object tracking system. For example, in
Wynn's (1992a) experiment, the infants saw an object appear to join or leave one
or two objects behind an occluding screen. They were surprised when the screen
was removed to reveal a number of objects different from the number that ought
to have been there. This surprise may have arisen only the infant's belief in object
permanence.

When an infant sees an object move behind an occluding screen, whose
subsequent removal fails to reveal an object, the infant is surprised (R.
Baillargeon, 1995; R. Baillargeon, E. S., Spelke, & Wasserman, 1985). His/her
surprise is presumably mediated by a system for tracking objects, such as the
object file system suggested by (Kahneman, Treisman, & Gibbs, 1992) or the
FINST system suggested by (Pylyshyn & Storm, 1988). This system maintains a
marker (object file or FINST) for each object it is tracking, but it can only track
about 4 objects (Scholl & Pylyshyn, 1999). On this account, infants in experiments
like Wynn's are surprised for the same reason as in original object-permanence
experiments: there is a missing object. The infant has an active mental marker or
pointer that no longer points to an object. Or, there is an object for which it has
no marker.

Carey argues that sets of object files are the foundations on which the
understanding of the integers rests. The initial meaning of the words one, two,
three and four does not come from the corresponding mental magnitudes; rather,
it comes from sets of object files. The child comes to recognize the ordering of the
referents of one, two, three and four because a set of two active object files has as a
proper subset a set of one object file, and so on. The child comes to recognize that
addition applies to the things referred to by these words because the union of
two sets of object files yields another set of object files (provided the union does
not create a set greater than 4). This is the foundation of the child's belief in the
successor principle: every integer has a unique successor.

This account seems to ignore the basic function of a set of, for example,
two object files (FINSTs, pointers), which is to point to two particular objects. If
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two referred to a particular set of two object files, it would presumably be useable
only in connection with the two objects they pointed to. It would be a name for
that pair of objects, not for all sets that share with that set the property of
twoness.

A particular set of pointers cannot substitute for (is not equal to) another
such set without loss of function, because its function is to point to one pair of
objects, while the function of another such set is to point to a different pair. There
is no reason to believe that there is any such thing as a general set of two
pointers, a set that does not point to any particular set of two objects, but
represents all the sets that do so point. Any set of two object files is an instance of
a set with the twoness property (a token of twoness), but it can no more
represent twoness than a name that picks out one particular dog, e.g., Rover, can
represent the concept of a dog. A precondition of Rover's serving the latter
function is that it not serve the former. By contrast, any instance of the numeral 2
can be substituted for any other without loss of function, and so can a pair of
hash marks.

A second problem with this account is that it is unclear how a system so
lacking in closure be the basis for inferring a system whose function depends so
strongly on closure. The Carey suggestion is motivated by findings that the
maximum numerosity of a set of active object files is at most 4. There are only 9
numerically distinct unordered pairs of sets of 4 or less (<1,1>, <1,2>, <1,3>,
<1,4>, <2,2>, <2,3>, <2,4>, <3,3>, and <3,4>). Five of the nine pairs, when
composed (united) yield a set to numerous to be a set of object files. From this
foundation, the mind of the child is said to infer that the numbers may be
extended indefinitely by addition. One wants to know what the inference rule is
that ignores the many negative instances in the base data set.

Conclusions and Future Directions
There is a widespread consensus, backed by a large and diverse experimental
literature, that adult humans share with non-verbal animals a non-verbal system
for representing discrete and continuous quantity that has the formal properties
of continuous magnitudes. Mental magnitudes represent quantities in the same
sense that, given a proper measurement scheme, real numbers represent line
lengths. That is, the brains of non-verbal animals perform arithmetic operations
with mental magnitudes; they add, subtract, multiply, divide and order them.
The processes or mechanisms that map numerosities (discrete quantities) and
magnitudes (continuous quantities) into mental magnitudes,and the operations
that the brain performs on them, are together such that the results of the
operations are approximately valid, albeit imprecise; the results of computations
on mental magnitudes map appropriately back onto the world of discrete and
continuous quantity.

Scalar variability is a signature of the mental magnitude system. Scalar
variability and Weber's law are different sides of the same coin: models that
generate scalar variability also yield Weber's law. There are two such models.
One assumes that the mapping from objective quantity to subjective quantity
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(mental magnitude) is logarithmic; the other assumes that it is scalar. Both
assume noise. That is, they assume that the signal corresponding to a given
objective quantity varies from occasion to occasion, in a manner described by a
Gaussian probability density function. The variation is on the order of 15% in
both animal timing and human speeded number estimation.

The first model (logarithmic mapping) assumes that scalar behavioral
variability reflects a constant level of noise in the signal distributions. This yields
proportional (scalar) variability, because constant logarithmic intervals
correspond to constant proportions in the corresponding non-logarithmic
magnitudes. The second model (scalar mapping) assumes scalar variability in the
underlying signal distributions. The overlap in the two signals distributions is a
function only of the ratio between the represented numerosities in both models,
which is why they both predict Weber's law.

Both models assume that there is only one mapping from objective
quantities to subjective quantities (mental magnitudes), but there is no
compelling reason to accept this assumption. The question of the quantitative
form of the mapping only makes sense at the point at which the mental
magnitudes enter into combinatorial operations. The form may differ for
different combinatorial operations. In the future, the analysis of variability in the
answers from nonverbal arithmetic may decide between the models. Thus, an
important component of future models must be the specification of how
variability propagates from the operands to the answers.

The system of mental magnitudes plays many important roles in
verbalized adult number behavior. For example, it mediates judgments of
numerical order and the retrieval of the verbal number facts (addition and
multiplication tables) upon which verbalized and written calculation procedures
depend. It also mediates the finding of number words to represent large
numerosities, presented too briefly to be verbally counted, and, more
controversially, the rapid retrieval of number words to represent numerosities in
the subitizing range (1 - 6).

Any account of the development of verbal numerical competence must
explain how subjects learn the bidirectional mapping between number words
and mental magnitudes, without which mental magnitudes could not play the
just described roles. One account of the development of verbal numerical
competence assumes that it is directed from the outset by the mental magnitude
system. The homomorphism between serial non-verbal counting and verbal
counting is what causes the child to appreciate the enumerative function of the
count words. The child attends to these words because of the homomorphism.
Learning their meaning is the process of learning their mapping to the mental
magnitudes. Another account assumes that the count words from one to four are
initially understood to refer to sets of object files, mental pointers that pick out
particular objects. On this account, the learning of the mapping to mental
magnitudes comes later, after the child has extensive counting experience.
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