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Summary

Data on numerical processing by verbal (human) and nonverbal (animal and
human) subjects are integrated by the hypothesis that  a non-verbal counting
process represents discrete (countable) quantities by means of magnitudes
with scalar variability, seemingly identical to the magnitudes that represent
continuous (uncountable) quantities like duration. The magnitudes
representing countable quantity are generated by a discrete incrementing
process, which defines next magnitudes, yielding a discrete ordering. In the
continuous case, the continuous accumulation process does not define next
magnitudes, so the ordering is continuous (‘dense’). The magnitudes
representing both countable and uncountable quantity are arithmetically
combined in, for example, the computation of the income to be expected from
a foraging patch. Thus, the machinery for arithmetic processing works with
real numbers (magnitudes). On this hypothesis, evolution provided the real
numbers; getting from integers back to real numbers has been the work of
man.
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The study of numerical estimation and reasoning in non-verbal animals has
profoundly affected contemporary theories of human numerical cognition, its
ontogeny and phylogeny 1-7. According to one emerging synthesis of these
findings, the tension between the discrete and the continuous, which has
been central to the historical development of mathematical thought, is rooted
in the non-verbal foundations of numerical thinking, which, it is argued, are
common to humans and non-verbal animals. In this view, the non-verbal
representatives of number are mental magnitudes (real numbers) with scalar
variability. Scalar variability means that the signals encoding these
magnitudes are “noisy;” they vary from trial to trial, with the width of the
signal distribution increasing in proportion to (scaled to) its mean. In short,
the greater the magnitude, the noisier its representation. These noisy mental
magnitudes are arithmetically processed--added, subtracted, multiplied,
divided and ordered. Recognition of the importance of arithmetically
processed mental magnitudes in the non-verbal representation of number
has emerged from a convergence of results from human and animal studies.
This is comparative cognition at its most fruitful.

The relation between integers and magnitudes is asymmetrical:
magnitudes (real numbers) can represent integers but integers cannot
represent magnitudes. The impossibility of representing magnitudes, such as
the lengths of bars, as countable (integer) quantities has been understood since
the ancient Greeks proved that there is no unit of length that divides a whole
number of times into both the diagonal and the side of a square. Equivalently,

the 2  is an irrational number, a number that cannot be expressed as a
proportion between countable quantities. By contrast, when one makes a
histogram, there is no count that cannot be represented by the length of a bar.

Intuitively, however, the numbers generated by counting seem to be
the foundation of mathematical thought. Twentieth century mathematicians
have commonly assumed that mathematics rests on what is intuitively given
through verbal counting, a view epitomized in Kronecker’s often quoted
remark that, “God made the integers, all else is the work of man”.8 'All else'
includes the real numbers, all but a negligible fraction of which are irrational.
Irrational numbers can only be defined rigorously as the limits of infinite
series of rational numbers, a definition so elusive and abstract that it took
more than two thousand years to achieve--an arduously reached pinnacle of
mathematical thought. We suggest that the scaling of this pinnacle was a
Platonic rediscovery of what the non-verbal brain was doing all along--using
arithmetically processed magnitudes to represent both countable and
uncountable quantities.
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Scalar Variability

Objective magnitudes, unlike objective numerosities, cannot be known
exactly. This is true for subjective (mental) magnitudes as well, because the
above mentioned scalar noise in the process of recalling mental magnitudes
from memory leads to trial-to-trial variability in the recalled magnitudes. The
discovery of scalar variability in the non-verbal representation of numerosity
has been a key aspect of the convergence between animal and human studies
of numerical cognition. It means that numerosity is never represented exactly
in the non-verbal or preverbal mind, with the possible exception of the first
three or four numerosities--see outstanding questions.

Scalar variability in the rat's memory for a target number was evident
in the results from an early experiment in which a feeder was silently armed
when the rat had made a fixed number of lever presses9. Trying the feeder
after it was armed, that is, interrupting the infrared beam in front of it,
released food; trying it prematurely produced a short but frustrating time out.
Rats learned to try the feeder after making approximately the required
number of presses. The modal number of presses prior to a try was close to
the required number, but in retrospect the most striking aspect of the data was
that the width of the distributions increased in proportion to their mode
(Figures 1A and 1B). The trial-to-trial variability in the accuracy with which
they approximated the target number was proportional to the magnitude of
the target, even for numbers as small as four.

Of course, number and duration tend to co-vary in discrimination
experiments when the events to be counted occur sequentially. The different
possible bases for the discrimination have been experimentally teased apart in
several ways10. The most elegant is a recently developed paradigm in which
the basis for a discrimination on a given trial (either the number of flashes or
the duration of a sequence of flashes) is not specified until after the sequence
of flashes has been presented11. The subjects (pigeons) must count and time
the sequence, then make opposing choices based either on the flash count or
on the duration of the sequence, according to which dimension is
subsequently indicated as the relevant dimension for that trial. From this and
other work, it appears that laboratory animals simultaneously time and count
stimulus sequences,11-17 although there is some disagreement about whether
they tend to rely on counting even when they are in a timing task15 or,
conversely, tend to rely on timing even when they are in a counting task17.
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Figure 1. A. The probability of breaking off a sequence of lever presses to try
the feeder as a function of the number of presses in the sequence and the
number required to arm the feeder. (Redrawn from8.) B. The mean (left axis,
upper panel) and standard deviation (right axis, upper panel) of the
distributions in A, and the coefficient of variation (c.v.), which is the ratio of
the standard deviation to the mean (lower panel). Note the constancy of the
c.v. C. The mean (left axis, upper panel) and standard deviation (right axis,
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upper panel) and the c.v. (lower panel) of the distributions of number of
presses obtained by Whalen, et al.19 in experiments with humans using non-
verbal counting to make the number of presses specified by a numeral. As
with the animal data, the human data show scalar variability. The widths of
the distributions of numbers of key presses increase in proportion to the
mean number of presses for a given target number, so the c.v. is constant.

Experiments with Humans

At about the time of Platt and Johnson’s experiment with rats, Moyer and
Landauer18 measured the reaction latencies in a task in which adult human
subjects were asked to indicate which of two numerals represented the bigger
number, with many repeated trials. The bigger the two numbers (size effect)
and the smaller the difference between them (distance effect), the longer it
took subjects to choose the numeral representing the bigger number. Moyer
and Landauer explained these size and distance effects by assuming that
numbers were represented in the brain by magnitudes, which obeyed Weber's
law. This law says that the discriminability of two perceived magnitudes (e.g.,
two weights) is determined by the ratio of the objective magnitudes. In one
version of Moyer and Landauer’s hypothesis, as two numbers with a fixed
difference become larger, the ratio of the signals that represent them (the ratio
of their subjective magnitudes) becomes smaller. If signal variability (noise) is
proportional to signal strength (scalar variability), then the smaller the ratio
of two subjective magnitudes, the greater the overlap in the signal
distributions; hence the more difficult it is to discriminate the signal for one
number from the signal for the other. The increased difficulty of the
discrimination translates into longer reaction times by way of a speed-
accuracy trade-off function.

The Moyer and Landauer approach measures a secondary and probably
non-linearly related consequence of the presumed variability in the strengths
of the signals representing numbers. Whalen and his collaborators19 adapted
the procedure of Platt and Johnson (first used by Mechner20) to demonstrate
directly non-verbal counting and scalar trial-to-trial variability of the target
magnitudes in adult humans. They repeatedly presented numerals
representing numbers between 7 and 25 on the screen of a computer and
asked subjects to press a button as fast as they could until they felt they had
made the indicated number of presses. The subjects were told not to count
their presses, but to do the task "by feel." The resulting distributions of
numbers of presses closely resembled the animal data: the modal number of
presses increased in proportion to the target number, and so did the standard
deviations of the distributions (Figure 1C).
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Several lines of evidence suggest that the subjects did not count
subvocally. First, they made one press every 125 msec-- more than twice as
fast as estimates of the rate of subvocal counting. Second, there was no step at
or after 10 in the function relating interpress interval to the number of
presses, as would be expected if presses were being paired with verbal counts,
because counting verbally (out loud or subvocally) requires the articulation of
two syllables per count when the count exceeds 10, but only one syllable per
count below 10 (seven and twelve being the unique exceptions). Third,
according to preliminary reports, similar results are obtained even when
subjects repeat the phrase "Mary had a little lamb" as they make their presses
(S. Cordes, R. Gelman, C.R. Gallistel, and J. Whalen, unpublished data). This
modification of the procedure would seem to rule out subvocal counting,
insofar as one assumes that subjects cannot subvocally articulate count words
at the rate of 8 words per second while simultaneously saying out loud an
unrelated phrase at the normal speaking rate of two to three words per
second.

These results suggest that humans share with non-verbal animals a
non-verbal counting process. In this model, this process repeatedly
increments a magnitude that represents the current count. This discretely
incremented magnitude is compared to the magnitude that represents the
target count to determine when the current count has reached the target
count (Figure 2). The scalar variability in the number of counts made for a
given target count is evidence that the incrementing process itself is not the
primary source of variability. The longer a count, the greater the likelihood of
too many or too few increments (miscounts). However, variability due to
miscounts should behave like binomial variability; it should increase in
proportion to the square root of the target count; whereas the experimentally
observed variability increases in proportion to the target count itself.

These results further suggest that numerate subjects have learned to
map from number words and numerals to the magnitudes that the non-
verbal counting process generates to represent number. In order to terminate
their pressing at approximately the right count, the subjects in the Whalen, et
al. experiment had to compare the continually incremented magnitude
representing the current count to a target magnitude, which was indicated by
a numeral (Figure 2)19. A mapping from numerals to magnitudes
representing number in the brain was, of course, the essence of the Moyer and
Landauer model18.
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Figure 2. Cartoon of
the accumulator
model and the
bidirectional
mapping hypothesis
used to explain the
results of Whalen, et
al.’s experiment19.
The non-verbal
counting process
increments the
accumulator by one
“cup” for each item
counted. The
accumulation at the
end of a count is read
into memory.
Magnitudes read
from memory to
serve as the targets
in subsequent
counting trials
exhibit scalar
variability,
represented here by
the sloshing in the
graduate, which
introduces noise into
readings of the
graduate (recalled
magnitudes). Adult
humans  have
learned decision
criteria (rulings on
the graduate), which
enable them to map
from a magnitude to a numeral and from a numeral to a corresponding
magnitude (bi-directional mapping hypothesis). Whalen, et al.19, argue that
the magnitude representation of numerosity and the non-verbal counting
process that generates the magnitudes make the formally identical verbal
counting process intelligible to the very young child and gives the number
words their meanings. (After19.)
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Counting and Timing

The hypothesis we present here takes as its starting point the accumulator
model, which was proposed by Meck and Church12, as a modification of a
model previously proposed by Gibbon21 to explain interval timing. In the
timing model, there is an accumulator which integrates a steady signal
throughout the interval being timed. When the interval terminates, the
magnitude in the accumulator represents the duration of the interval. This
magnitude is written to memory, to be read from memory when a target
magnitude is needed for subsequent comparisons. Meck and Church pointed
out that if the steady signal is gated by a pulse former, which pulses once for
each item or event to be counted, then the accumulation (integral) at the end
of the count represents the number of items or events in the set or series
controlling the pulse former. In seminal experiments, they showed that
numerosity (countable quantity) is represented by magnitudes
indistinguishable from those that represent duration (uncountable quantity),
with the same constant ratio between the standard deviation and the mode in
the distributions of remembered magnitudes12, 22.

Although the counting mechanism just described generates
magnitudes (real numbers), it does so by a discrete incrementing process,
which defines a next magnitude, just as ordinary counting defines a next
integer. By contrast, the timing mechanism does not define next magnitudes.
As the duration of a timed interval increases, the timing mechanism
generates bigger magnitudes to represent that duration, but it does not pick
out a magnitude that is the next magnitude. In the counting case, the
accumulator is filled one cupful after the next. In the timing case, the
accumulator is, so to speak, filled by a hose, the flow from which is
terminated at the end of an interval. The distinction between the integers and
the reals, between the discrete and the continuous, lies precisely here: integers
are discretely ordered and countably infinite, like the levels you get when you
fill an (infinitely tall) graduate one cupful at a time; by contrast, the reals are
continuously ordered and uncountably infinite, like the levels you get when
you fill the graduate with a hose that is “on” for different amounts of time.

The assumption that the preverbal representatives of numerosity are
magnitudes with something like scalar variability offers one explanation of
the results from numerical discrimination experiments in human infants.
Infants discriminate small numerosities with high ratios, such as three
versus two and sometimes four versus three but fail to discriminate four
versus five. Another explanation of this finding has been that infants and
animals estimate small numerosities only by “subitizing.”23-25 Subitizing is a
frequently hypothesized perceptual process of some kind, which, by
assumption, does not involve counting, and which cannot represent more
than about four objects at one time. On this account, infants’ failure to
discriminate numerosities greater than 4 implies that the subitizing process
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provides an initial and very limited representation of numerosity, different
from the adult representation.24 However, it has recently been found that
infants do discriminate large numerosities, provided their ratio is large (8
versus 16).26 This finding is consistent with the hypothesis that the failures of
numerical discrimination in infant studies are rooted in the noisiness of their
nonverbal representation of numerosity rather than in an ontogenetic
discontinuity in the mode of numerical representation.

Much of the argument for a subitizing process rests on the claim that
there is a discontinuity at about four in the function relating the numerosity
of an array (abscissa) to the mean latency with which an adult subject can
verbally estimate that numerosity (ordinate). Whether the experimental data
in fact show any such discontinuity has been debated.27-30 The most recent
and thorough experimental study of the reaction-time distributions for verbal
numerosity judgments in adults found no evidence of a discontinuity in any
parameter of these distributions.30

Interrelated questions of discontinuity versus continuity are at the
heart of the divergences in current views of numerical cognition and its
development (see Outstanding Questions). On one view, there is a
discontinuity at around four in the adult representation of numerosity. This
corresponds to an ontogenetic discontinuity, in which infants can only
represent numerosities less than or equal to about four.24 Accounts that stress
the importance of verbal processing in the emergence of the human
understanding of number implicitly assume a phylogenetic discontinuity.24,

31-33 The extreme form of the phylogenetic discontinuity hypothesis is the
common lay assumption that animals cannot represent numerosity at all.
Our hypothesis, by contrast, is that there is phylogenetic and ontogenetic
continuity in numerical processing. We argue that there is a nonverbal
representation of numerosity by means of arithmetically processed noisy
magnitudes in both nonverbal animals and human infants. We argue further
that these magnitudes are identical with the “semantic magnitude system”
which many assume to be addressed by human adults when they process
integers.2,34

The above mentioned finding that duration and number appear to be
represented by mental magnitudes with identical properties suggests that we
can generalize to the magnitudes that we assume represent number
important findings about the magnitudes that represent duration. One such
finding is that the scalar variability (noise) in remembered magnitudes
appears to originate within memory itself or in the reading of memory, rather
than in the processes for measuring duration or counting number35. What
this means is that the signals that come from memory, like the signals that
come directly from sensory channels, are noisy; the value (signal) obtained
from reading the same memory repeatedly varies from reading to reading.
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Other important findings that may prove generalizable concern the
arithmetic processing of mental magnitudes, to which we now turn.

Arithmetic Reasoning in Animals

Countable and uncountable quantity (numerosity and amount, duration, etc.)
should be represented with the same kind of symbols (mental magnitudes),
because there are many cases in which the two kinds of quantity must be
combined arithmetically to determine behaviorally important decision
variables, such as the amounts of food to be expected per unit of time in
different feeding patches. Representing countable and uncountable quantity
in fundamentally different ways would be an obstacle to the realization of the
requisite combinatorial operations. Indeed, the necessity of representing
discrete and continuous quantity with a single coherent number system
drove the prolonged effort to create the system of real numbers. It also
explains why computers are either analog or digital, but rarely both. You
cannot add a voltage (analog representation) to a bit pattern (digital
representation). Thus, if you want to arithmetically process digital signals
(e.g., integers) in an analog computer, you must convert them to analog form,
and vice versa.

This consideration brings us to the evidence for arithmetic processing
in animals. Do animals order, add, subtract, multiply and divide the
magnitudes that represent both numbers and uncountable quantities like
duration and amount? If so, then, by the authors lights, at least, they reason
arithmetically, because the axioms defining these operations define the
system of arithmetic. If an unknown combinatorial operation (in the mind or
the brain) can be shown--by an examination of its behavioral effects-- to
exhibit the properties that are unique to one or another mathematical form of
combination (addition, multiplication, etc.), then, from a formalist
perspective, the unknown operation is an instance of addition or
multiplication, or etc.

Ordering

Consider an experiment like that of Platt and Johnson (Figure 1), where the
subject learns to try the feeder only when the number of times it has pressed
the lever is greater than or equal to some experimenter-specified value. In all
models of these results that we know of, some signal in the mind or brain
that is a monotonic function of the number of presses is compared to some
signal from memory that represents the target value. The response of trying
the feeder occurs only when the one signal is greater than the other. Insofar as
such an assumption proves inescapable, the results from these experiments
are evidence for a thresholding process in the mind or brain. Thresholding
has the formal properties of the numerical ordering operation (ordination).
Similarly, if, in order to explain the properties of the experimentally obtained
distributions of responses, it proves necessary to assume that the quantity that
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is thresholded is the ratio of the first signal to the second, then these
experiments also give evidence for a combinatorial operation in the mind or
brain that has the properties of division36.

These arguments are, however, inferential and theory-dependent.
Recently, more direct evidence of ordination has been reported in monkeys
and pigeons. Brannon and her collaborators37,38 trained rhesus macaques to
touch four simultaneously presented arrays in the order of the numbers of
items in the arrays. They trained using arrays with numerosities from 1 to 4,
then tested the subjects on arrays with numerosities in the range from 5 to 9.
They got immediate transfer, implying that their subjects recognized
numerical order in this range. Interestingly, it was not possible to teach
monkeys to touch the arrays in an order different from the ordering implied
by the numbers of items in the arrays, which implies that numerical order is a
salient property of arrays that differ in numerosity. Brannon, et al.’s data38

also show the size and distance effects that led Moyer and Landauer to suggest
that the ordering of numbers by humans was mediated by a magnitude
representation.

In short, the greater the numbers and the smaller the difference
between them, the longer it takes both monkeys and humans to determine
their numerical order. This is evidence for a serial counting process of some
kind in the determination of the representation of simultaneously presented
numerosities. It would be interesting to test for scalar variability or the lack
thereof in the representation of simultaneously presented arrays, because
miscounts (counting the same item twice or missing an item) would seem to
be more likely with simultaneous as opposed to serial presentation.
Emmerton and her collaborators39 taught pigeons to discriminate
successively presented visual arrays on the basis of the number of items in
each array, with numerosity ranging from 1 to 7. The smaller numerosities
were better discriminated, suggesting that the size and distance effects are
found in pigeons as well. Note that although the arrays to be discriminated
were presented successively, each array constituted a simultaneously
presented numerosity.

Numerical order can be the basis of discriminative choice even when
the numbers are not actually presented but are indicated by symbols
(numerals) whose numerical value has been taught.40 Thus, ordination on
the basis of (symbolically referred to) numerosity is observed even when
there is nothing to count.

Adding

Olthof and her collaborators41 taught two Rhesus macaques to choose the
Arabic numeral (range 1-9) indicating the larger of two numerosities or the
largest of four numerosities by rewarding them with the number of peanuts



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 12

indicated by the numeral they chose. When these subjects were presented
arrays of numerals (two numerals in one array versus one in the other, or
two and two, or three and three), they showed a significant tendency to
choose the array whose indicated numbers had the greater sum. This is
reminiscent of an earlier result by Boysen and Berntson42 in which
chimpanzees viewed numerals in two different locations, then returned to
the starting point and picked the numeral corresponding to the sum of the
indicated numbers. Experiments that demonstrate the summation of the
numbers indicated by numerals are important because the addition observed
is not readily explained by “counting on”, in which a subject adds by counting
the items in one array and then continuing the count with the items in the
second array. These results show that adding can be observed even when
there is nothing to count.

Subtracting

Hauser and his collaborators43 used the prolonged-looking-evoked-by-
violation-of-expectations paradigm to demonstrate that semi-wild, untrained
rhesus monkeys were surprised when the results of observed additions to and
subtractions from an occluded array were not what was to be expected from
arithmetic processing. This is the paradigm that has been used to demonstrate
arithmetic reasoning in human infants1,44,45, 35--another example of
methodological convergence in the comparative study of numerical
cognition. It has been objected, however, that because of the very small
numerosities used in this paradigm, it demonstrates only that the subjects
believe in object permanence7,24. Objects do not appear out of, or vanish into
thin air. Subjects can keep track of three or four objects at once even when
they are occluded, so they are surprised when one disappears or appears
without explanation.

Subtracting a currently elapsing duration from a remembered initial
duration and comparing the difference to a standard duration (also drawn
from memory) is demonstrated in the time-left paradigm46. It may thus
reasonably be expected with numbers as well, although we do not yet have a
compelling demonstration of this.

Multiplying and dividing

Rate is number divided by time. One symbol-processing model of animal
conditioning is based on the assumption that animals estimate the rates of
reinforcement predicted by different conditioned stimuli through a process of
matrix inversion. Matrix inversion involves a combination of additions,
subtractions, multiplications and divisions47. Again, however, arguments
based on this kind of theory-dependent inference are not compelling. Leon
and Gallistel48 directly addressed the question of whether the subjective
magnitudes of the brain stimulation rewards that a rat received combined



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 13

multiplicatively with the subjective rates of reward to determine the rat’s
preference in a free-operant matching paradigm. The measure of preference
was the ratio of the amount of time spent pressing one lever to the amount of
time spent pressing the other. The preference was jointly determined by the
rates of reinforcement, that is, by the numbers of rewards per unit of time
(Number/Time) and by the magnitudes of the rewards. The magnitude of a
reward was determined by the number of 0.1 ms pulses in the 0.5 s trains of
electrical stimulation that reinforced pressing the levers. Increasing the rate of
reward on one lever increased preference for that lever, as did increasing the
number of pulses in the reinforcing trains delivered by that lever.

Leon and Gallistel showed that the factor by which preference increased
in response to a change in the relative rates of reward was independent of the
relative magnitudes of those rewards. Changing the relative rates from, say,
1:1 to 10:1, increased preference about tenfold, regardless of whether all
preferences were strongly biased toward one lever or toward the other by the
differences in the magnitudes of rewards obtained from the two levers.

The Leon and Gallistel experiment is an example of how we may
determine the arithmetic properties of an unknown combinatorial operation
in the mind or brain by way of the behavioral effects of this process (see
Figure 3). Consider a variable M (for magnitude) whose effect on the brain
combines (by some unknown combinatorial process) with the effects of a
variable R (for rate) to produce some measurable behavioral effect, P (for
preference). Manipulating the levels of either M or R produces different
amounts of P. Symbolically, we may write P1,1= f(M1,R1), for the effect of level
1 of M combined with level 1 of R; P1,2 = f(M1,R2); P2,1 = f(M2,R1), and so on,
for the amounts of P produced by other combinations of M and R. The
symbolism indicates that the observed preference depends on (is a function
of) the measured levels of the variables M and R. If the individual effects of
M and R on the brain combine multiplicatively within the brain, then the
level of M will have no effect on the ratio of the two different preferences
produced by different values of R. Thus, P1,1/P1,2, the ratio of the observed
preferences when we try first R1 and then R2 while keeping M at level 1, is
equal to the ratio P2,1/P2,2, which is the observed preferences when we choose
a different level for M and again vary R from R1 to R2.

The level of M will not matter to the change in preference produced by
changing R if and only if the effects (in the brain) of M and R combine
multiplicatively, because then the effect of M will behave like a scaling factor
with respect to R (and vice versa). Scaling factors cancel out of ratios (that is,
MR1/MR2 =R1/R2). All other (mathematically distinguishable) forms of
combination between the effects of M and R lack this property. For example, if
the effects (in the brain) of M and R combine additively, then it will not be
true that P1,1/P1,2= P2,1/P2,2, because additive factors do not cancel out of
ratios. Thus, from a formalist perspective at least, an otherwise unknown and
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unobservable combinatorial process that exhibits this property is a form of
multiplication. That is why Leon and Gallistel’s results imply that subjective
rates (the effects in the brain of the rates at which trains are delivered by the
two different levers) combine multiplicatively with subjective magnitudes.

Conclusion

The results of current research on comparative numerical cognition speak to
some of the oldest issues in science--the epistemological foundations of the
numerical reasoning that permeates scientific inquiry and everyday thought.
Contrary to what many have thought, simple numerical reasoning does not
appear to depend on language, It is does not appear to be unique to humans;
nor does it appear to be rooted in a system designed for the counting
numbers. Arithmetic reasoning is found in non-verbal animals, where it
operates with real numbers (magnitudes).

Figure 3. Contrasting properties of multiplicative and additive combination.
Height and width combine multiplicatively to determine area. Therefore, the
effect of changing height (from h1 to h2) on the ratio of two areas is the same
regardless of the width, that is, doubling height, doubles area, regardless of
width. By contrast, two lengths combine additively to determine a third
length. Therefore, the effect of changing one of the two lengths on the ratio of
the combinations depends on the other length. In the first case, doubling h
makes the combination 5/3 as long as it was before. In the second case,
doubling h makes the combination only 3/2 as long. The arithmetic nature of
otherwise unknown combinatorial operations in the brain may be
determined by looking at the behavioral effects of the combinatorial
operation.
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Outstanding Questions

Most of These Center Around the Implications for the Development of
Numerical Thinking in Humans

1. Are numerosities less than five apprehended by a noncounting process
(subitizing)?a-f

2. Are small numerosities represented discretely in the minds of infants (and
other animals?), rather than by the mental magnitudes that represent larger
numerosities?f-h

3. If so, are these discrete representations of small numerosities arithmetically
processed?

4. Is the development of numerical cognition in humans rooted in the
discrete representation of small numerosities or in a magnitude based system
for representing numerosities of any size, or both?h,i,f,j

5. Are infants representing numerosity or just the overall extent or amount
of a stimulus?k,l

6. If even the smallest numerosities are represented by magnitudes with
scalar variability, then why do the integers seem to be the foundation of
numerical thinking?

7. Does learning to use the verbal count list benefit from the discrete non-
verbal counting process?f,g,h,j,m,n

8. If humans represent numerosities in terms of magnitudes, why do they
have so much trouble learning the mathematical conception of rational
numbers (mastering fractions)?o

Question References

a. Balakrishnan, J.D. and F.G. Ashby, 1992 Subitizing: Magical numbers or
mere superstition. Psychol. Res., 54, 80-90.

b. Gallistel, C. R., & and R. Gelman, 1991 Subitizing: The preverbal
counting process. In W. Kessen, A. Ortony & F. Craik (Eds.) Memories,
Thoughts and Emotions: Essays in Honor of George Mandler. Hillsdale,
NJ: Lawrence Erlbaum. pp. 65-81

c. Gelman, R. and B. Meck, 1992 Early principles aid initial but not later
conceptions of number. In Pathways to Number: Children’s



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 16

Developing Numerical Abilities, J. Bideau, C. Meljac and J.-P. Fischer,
Editors. pp. 171-189.

d. Fischer, J.-P. 1992 Subitizing: The discontinuity after three.  In Pathways
to Number: Children’s Developing Numerical Abilities, J. Bideau, C.
Meljac and J.-P. Fischer, Editors. pp. 190-208.

e. Trick, L.M. and Z.W. Pylyshyn, 1994 Why are small and large numbers
enumerated differently? A limited-capacity preattentive stage in
vision. Psychol. Rev., 101, 80-102.

f. Simon, T.J., 1999 The foundations of numerical thinking in a brain
without numbers. Trends Cog. Sci., 3,363-364.

g. Butterworth, B., 1999The Mathematical Brain. London, MacMillan

h. Carey, S., 1998 Knowledge of number: Its evolution and ontogeny.
Science, 282, 641-642.

i. Wynn, K., 1995 Origins of numerical knowledge. Math Cog., 1, 35-60.

j. Spelke, E. and S. Dehaene, 1999 Biological foundations of numerical
thinking. Trends Cog. Sci., 3, 365-366.

k. Huttenlocher, J., N.C. Jordan, and S.C. Levine, 1994 A mental model for
early arithmetic. J. Exper. Psychol: General,  123, 284-296.

l. Mix, K.S., S.C. Levine, and J. Huttenlocher, 1997 Numerical abstraction
in infants: Another look. Develop. Psychol., 33, 423-428.

m. Gelman, R., 1998. Cognitive development; domain specificity and
cultural variation. In Advances in Psychological Science: Vol. 2.
Biological and Cognitive Aspects., M. Sabourin, F. Craik and M. Robert
Editors. Hove, England: Psychology Press Ltd.

n. Fuson, K.C. 1988 Children’s Counting and Concept of Number. New
York: Springer-Verlag.

o. Hartnett, P. M., and R. Gelman 1998 Early understandings of number:
paths or barriers to the construction of new understandings? Lng &
Instr: J. Europ. Associ. Res.Lng & Instr.,  8, 341-374.

Acknowledgments

Partial support for preparation of this manuscript was provided by NSF grants
SRB-9209741 and SRB-9720410



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 17

References

1. Wynn, K., 1998 Psychological foundations of number: numerical
competence in human infants. Trends Cog. Sci.  2, 296-303.

2. Dehaene, S., 1997 The Number Sense . Oxford: Oxford University Press.

3. Dehaene, S., et al., 1999 Sources of mathematical thinking: Behavioral and
brain-imaging evidence. Science, 284, 970-974.

4. Carey, S., 1998 Knowledge of number: Its evolution and ontogeny. Science,
282, 641-642.

5. Gallistel, C.R. and R. Gelman, 1992 Preverbal and verbal counting and
computation. Cognition, 44, 43-74.

6. Spelke, E.S. and S. Tsivkin, Initial knowledge and conceptual change: Space
and number, in Language Acquisition and Conceptual Development, M.
Bowerman and S. Levinson, Editors. Cambridge University Press:
Cambridge, in press.

7. Hauser, M.D. and S. Carey, 1998 Building a cognitive creature from a set of
primitives: Evolutionary and developmental insights, in The Evolution of
Mind , C. Allen and J. Cummins, Editors.  Oxford University Press: Oxford.
pp. 50-106.

8. Bell, E.T., 1937 Men of Mathematics. New York: Simon and Schuster.
p. 477.

9. Platt, J.R. and D.M. Johnson, 1971 Localization of position within a
homogeneous behavior chain: Effects of error contingencies. Learn. Motiv.,
2, 386-414.

10. Wilkie, D.M., J.B., 1979 Webster, and L.B. Leader, Unconfounding time
and number discrimination in a Mechner counting schedule. Bull.
Psychonom. Soc., 13, 390-392.

11. Roberts, W.A.,1995 Simultaneous numerical and temporal processing in
the pigeon. Curr. Dir. Psychol.Sci., 4, 47-51.

12. Meck, W.H. and R.M. Church, 1983 A mode control model of counting
and timing processes. J. Exper. Psychol.: Anim. Behav. Proc., 9, 320-334.

13. Roberts, W.A., T. Macuda, and D.R. Brodbeck, 1995. Memory for number
of light flashes in the pigeon. Anim. Lng. Behav.,  23, 182-188.

14. Fetterman, J.G., 1993 Numerosity discrimination: Both time and number
matter. J. Exper. Psychol.: Anim. Behav. Proc., 19, 149-164.



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 18

15. Rilling, M., 1967 Number of responses as a stimulus in fixed interval and
fixed ratio schedules. J. Comp. Physiol. Psychol.,  63, 60-65.

16. Roberts, W.A. and M.J. Boisvert, 1998 Using the peak procedure to
measure timing and counting processes in pigeons. J. Exper. Psychol.:
Anim. Behav. Proc.,  24, 416-430.

17  Breukelaar, J. W. C., & Dalrymple-Alford, J. C., 1998 Timing ability and
numerical competence in rats. J. Exper. Psychol.: Anim. Behav. Proc., 24, 84-
97.

18. Moyer, R.S. and T.K. Landauer, 1967 Time required for judgments of
numerical inequality. Nature, 215, 1519-1520.

19. Whalen, J., C.R. Gallistel, and R. Gelman, 1999 Non-verbal counting in
humans: The psychophysics of number representation. Psychol. Sci., 10,
130-137.

20. Mechner, F., 1958 Probability relations within response sequences under
ratio reinforcement. J. Exp. Anal. Behav., 1, 109-122.

21. Gibbon, J., 1977 Scalar expectancy theory and Weber's Law in animal
timing. Psychol. Rev., 84, 279-335.

22. Meck, W.H., R.M. Church, and J. Gibbon, 1985 Temporal integration in
duration and number discrimination. J. Exper. Psychol.: Anim. Behav.
Proc., 11, 591-597.

23. Trick, L.M. and Z.W. Pylyshyn, 1994 Why are small and large
numbers enumerated differently? A limited-capacity preattentive
stage in vision. Psychol. Rev., 101, 80-102.

24. Simon, T.J., 1999 The foundations of numerical thinking in a
brain without numbers. Trends Cog. Sci., 3, 363-364.

25. Davis, H. and R. Pérusse, 1988. Numerical competence in animals:
Definitional issues, current evidence, and a new research agenda.
Behav. Brain Scis., 11, 561-615.

26. Xu,  and E.S. Spelke, (in press) Large number discrimination in 6-month-
old infants. Cognition

27. Allport, D.A. (1975) The state of cognitive psychology. Quart. J. Exper.
Psychol., 27, 141-152.



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 19

28. Gallistel, C. R. (1988) Counting versus subitizing versus the sense of
number. (Commentary on Davis & Pérusse's Animal counting). Behav.
and Brain Scis, 11, 585-586

29. Gallistel, C. R., & and R. Gelman, 1991 Subitizing: The preverbal counting
process. In W. Kessen, A. Ortony & F. Craik (Eds.) Memories, Thoughts and
Emotions: Essays in Honor of George Mandler. Hillsdale, NJ: Lawrence
Erlbaum. pp. 65-81.

30. Balakrishnan, J.D. and F.G. Ashby, 1992 Subitizing: Magical numbers or
mere superstition. Psychol. Res., 54, 80-90.

31. Fuson, K.C. 1988 Children’s Counting and Concept of Number. New
York: Springer-Verlag.

32.Carey, S., 1998. Knowledge of number: Its evolution and ontogeny.
Science, 282, 641-642.

33. Butterworth, B., 1999The Mathematical Brain. London, MacMillan.

34. Reynvoet, B. and M. Brysbaert, 1999. Single-digit and two-digit
Arabic numerals address the same semantic number line.
Cognition,  72,191-201.

35. Gallistel, C.R., 1999 Can a decay process explain the timing of conditioned
responses? J. Exp. Anal. Behav., 71, 264-271.

36. Gibbon, J. and S. Fairhurst, 1994 Ratio versus difference comparators in
choice. J. Exp. Anal. Behav., 62, 409-434.

37. Brannon, E.M. and H.S. Terrace, 1998 Ordering of the numerosities
1 to 9 by monkeys. Science,  282, 746-749.

38. Brannon, E.M., et al., in press Representation of the numerosities
1-9 by Rhesus macaque. J. Exper. Psychol.: Anim. Behav. Proc., [to be
pub. Jan. 2000]

39. Emmerton, J., A. Lohmann, and J. Niemann, 1997.Pigeons' serial
ordering of numerosity with visual arrays. Anim. Lng. Behav., 25,
234-244.

40. Washburn, D.A. and D.M. Rumbaugh, 1991 Ordinal judgments of
numerical symbols by macaques (Macaca mulatta). Psychol. Sci., 2,  190-193.



Gallistel & Gelman: Non-Verbal Numerical Cognition Page 20

41. Olthof, A., C.M. Iden, and W.A. Roberts, 1997 Judgments of ordinality and
summation of number symbols by Squirrel monkeys. J. Exper. Psychol.:
Anim. Behav. Proc.,  23, 325-339.

42. Boysen, S.T. and G.G. Berntson, 1989 Numerical competence in a
chimpanzee (Pan troglodytes). J. Comp. Psychol., 103, 23-31.

43. Hauser, M.D., P. MacNeilage, and M. Ware, 1996 Numerical
representations in primates. Proc. Nat.Acad.of Sci. USA, 93, 1514-1517.

44. Wynn, K., 1992. Addition and subtraction by human infants. Nature,  358,
749-750.

45. Keochlin, E., Dehaene, S., and J. Mehler,1997. Numerical transformation
in five-month old human infants. Math. Cog.,  3, 89-104.

46. Gibbon, J., & Church, R. M., 1981. Time left: linear versus logarithmic
subjective time. J. Exper. Psychol.: Anim. Behav. Proc., 7, 87-107.

47. Gallistel, C.R. and J. Gibbon, in press. Time, rate and conditioning. Psychol.
Rev ,.

48. Leon, M.I. and Gallistel, 1998 Self-Stimulating Rats Combine Subjective
Reward Magnitude and Subjective Reward Rate Multiplicatively. J. Exper.
Psychol.: Anim. Behav. Proc.,  24, 265-277.


