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Rational analysis attempts to explain aspects of human
cognition as an adaptive response to the environment (Marr,
1982; Anderson, 1990; Chater, Tenenbaum, & Yuille, 2006).
The dominant approach to rational analysis today takes an
ecologically reasonable specification of a problem facing
an organism, given in statistical terms, then seeks an op-
timal solution, usually using Bayesian methods. This ap-
proach has proven very successful in cognitive science; it has
predicted perceptual phenomena (Geisler & Kersten, 2002;
Feldman, 2001), illuminated puzzling effects in reasoning
(Chater & Oaksford, 1999; Griffiths & Tenenbaum, 2006),
and, especially, explained how human learning can succeed
despite sparse input and endemic uncertainty (Tenenbaum,
1999; Tenenbaum & Griffiths, 2001). However, there were
earlier notions of the “rational” analysis of cognition that
emphasized very different ideas. One of the central ideas
behind logical and computational approaches, which previ-
ously dominated notions of rationality, is that meaning can
be captured in the structure of representations, but that com-
positional semantics are needed for these representations to
provide a coherent account of thought. In this chapter we
attempt to reconcile the modern approach to rational anal-
ysis with some aspects of this older, logico-computational
approach. We do this via a model—offered as an extended
example—of human concept learning. In the current chapter
we are primarily concerned with formal aspects of this ap-
proach; in other work (Goodman, Tenenbaum, Feldman, &
Griffiths, in press) we more carefully study a variant of this
model as a psychological model of human concept learning.

Explaining human cognition was one of the original mo-
tivations for the development of formal logic. George Boole,
the father of digital logic, developed his symbolic language
in order to explicate the rational laws underlying thought:
his principal work, An Investigation of the Laws of Thought
(Boole, 1854), was written to “investigate the fundamen-
tal laws of those operations of the mind by which reason-
ing is performed,” and arrived at “some probable intimations
concerning the nature and constitution of the human mind”
(p. 1). Much of mathematical logic since Boole can be re-
garded as an attempt to capture the coherence of thought in a
formal system. This is particularly apparent in the work, by
Frege (1892), Tarski (1956) and others, on model-theoretic
semantics for logic, which aimed to create formal systems
both flexible and systematic enough to capture the complex-
ities of mathematical thought. A central component in this
program is compositionality. Consider Frege’s Principle1:
each syntactic operation of a formal language should have
a corresponding semantic operation. This principle requires

syntactic compositionality, that meaningful terms in a formal
system are built up by combination operations, as well as
compatibility between the syntax and semantics of the sys-
tem.

When Turing, Church, and others suggested that formal
systems could be manipulated by mechanical computers it
was natural (at least in hindsight) to suggest that cogni-
tion operates in a similar way: meaning is manipulated in
the mind by computation2. Viewing the mind as a for-
mal computational system in this way suggests that com-
positionality should also be found in the mind; that is, that
mental representations may be combined into new repre-
sentations, and the meaning of mental representations may
be decomposed in terms of the meaning of their compo-
nents. Two important virtues for a theory of thought result
(Fodor, 1975): productivity—the number of representations
is unbounded because they may be boundlessly combined—
and systematicity—the combination of two representations
is meaningful to one who can understand each separately.

Despite its importance to the computational theory of
mind, compositionality has seldom been captured by modern
rational analyses. Yet there are a number of reasons to desire
a compositional rational analysis. For instance, productiv-
ity of mental representations would provide an explanation
of the otherwise puzzling ability of human thought to adapt
to novel situations populated by new concepts—even those
far beyond the ecological pressures of our evolutionary mi-
lieu (such as radiator repairs and the use of fiberglass bottom
powerboats).

We will show in this chapter that Bayesian statistical
methods can be fruitfully combined with compositional rep-
resentational systems by developing such a model in the
well-studied setting of concept learning. This addresses a
long running tension in the literature on human concepts:
similarity-based statistical learning models have provided a
good understanding of how simple concepts can be learned
(Medin & Schaffer, 1978; Anderson, 1991; Kruschke, 1992;

1 Compositionality has had many incarnations, probably begin-
ning with Frege, though this modern statement of the principle was
only latent in Frege (1892). In cognitive science compositionality
was best expounded by Fodor (1975). Rather than endorsing an
existing view, the purpose of this chapter is to provide a notion of
compositionality suited to the Bayesian modeling paradigm.

2 If computation is understood as effective computation we
needn’t consider finer details: the Church-Turing thesis holds that
all reasonable notions of effective computation are equivalent (par-
tial recursive functions, Turing machines, Church’s lambda calcu-
lus, etc.).
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Tenenbaum & Griffiths, 2001; Love, Gureckis, & Medin,
2004), but these models did not seek to capture the rich struc-
ture surely needed for human cognition (Murphy & Medin,
1985; Osherson & Smith, 1981). In contrast, the representa-
tions we consider inherit the virtues of compositionality—
systematicity and productivity—and are integrated into a
Bayesian statistical learning framework. We hope this will
signpost a road toward a deeper understanding of cognition
in general: one in which mental representations are a sys-
tematically meaningful and infinitely flexible response to the
environment.

In the next section we flesh out specific ideas of how com-
positionality may be interpreted in the context of Bayesian
learning. In the remainder of the chapter we focus on concept
learning, first deriving a model in the setting of feature-based
concepts, which fits human data quite well, then extending to
a relational setting for role-governed concepts.

Bayesian Learning and
Grammar-based Induction

Learning is an important area of application for rational
analysis, and much recent work has shown that inductive
learning can often be described with Bayesian techniques.
The ingredients of this approach are: a description of the
data space from which input is drawn, a space of hypotheses,
a prior probability function over this hypothesis space, and a
likelihood function relating each hypothesis to the data. The
prior probability, P(h), describes the belief in hypothesis h
before any data is seen, and hence captures prior knowledge.
The likelihood, P(d|h), describes what data one would expect
to observe if hypothesis h were correct. Inductive learning
can then be described very simply: we wish to find the ap-
propriate degree of belief in each hypothesis given some ob-
served data, that is, the posterior probability P(h|d). Bayes’
theorem tells us how to compute this probability,

P(h|d) ∝ P(h)P(d|h), (1)

identifying the posterior probability as proportional to the
product of the prior and the likelihood.

We introduce syntactic compositionality into this setting
by building the hypothesis space from a few primitive ele-
ments using a set of combination operations. In particular,
we will generate the hypothesis space from a (formal) gram-
mar: the productions of the grammar are the syntactic com-
bination rules, the terminal symbols the primitive elements,
and the hypothesis space is all the well-formed sentences in
the language of this grammar. For instance, if we used the
simple grammar with terminal symbols a and b, a single non
terminal symbol A, and two productions A→aA and A→b,
we would have the hypothesis space {b, ab, aab, aaab, ...}.

This provides syntactic structure to the hypothesis space,
but is not by itself enough: compositionality also requires
compatibility between the syntax and semantics. How can
this be realized in the Bayesian setting? If “we understand
a proposition when we know what happens if it is true”
(Wittgenstein, 1921, Proposition 4.024), then the likelihood
function captures the semantics of each hypothesis. Frege’s

principle then suggests that each syntactic operation should
have a parallel semantic operation, such that the likelihood
may be evaluated by applying the semantic operations ap-
propriate to the syntactic structure of a hypothesis3. In par-
ticular, each production of the grammar should have a cor-
responding semantic operation, and the likelihood of a hy-
pothesis is given by composition of the semantic operations
corresponding to the productions in a grammatical derivation
of that hypothesis.

Returning to the example above, let us say that our data
space consists of two possible worlds—“heads” and “tails”.
Say that we wish the meaning of hypothesis aab to be “flip
two fair coins and choose the ‘heads’ world if they both
come up heads” (and similarly for other hypotheses). To
capture this we first associate to the terminal symbol a the
number s(a) = 0.5 (the probability that a fair coin comes up
heads), and to b the number s(b) = 1 (if we flip no coins,
we’ll make a “heads” world by default). To combine these
primitive elements, assign to the production A→aA the se-
mantic operation which associates s(a) · s(A) to the left-hand
side (where s(a) and s(A) are the semantic values associated
to the symbols of the right-hand side). Now consider the
hypothesis aab, which has derivation A→aA→aaA→aab.
By compatibility the likelihood for this hypothesis must be
P(“heads”|aab) = 0.5 · 0.5 · 1 = 0.25. Each other hypothesis
is similarly assigned its likelihood—a distribution on the two
possible worlds “heads” and “tails”. In general the semantic
information needn’t be a likelihood at each stage of a deriva-
tion, only at the end, and the semantic operations can be more
subtle combinations than simple multiplication.

We call this approach grammar-based induction. Sim-
ilar grammar-based models have long been used in com-
putational linguistics (Chater & Manning, 2006), and have
recently been used in computer vision (Yuille & Kersten,
2006). Grammars, of various kinds and used in various ways,
have also provided structure to the hypothesis spaces in a few
recent Bayesian models in high-level cognition (Tenenbaum,
Griffiths, & Niyogi, 2007; Tenenbaum, Griffiths, & Kemp,
2006).

Grammar-based Induction for
Concept Learning

In this section we will develop a grammar-based induction
model of concept learning for the “classical” case of concepts
which identify kinds of objects based on their features. The
primary use of such concepts is to discriminate objects within
the kind from those without (which allows an organism to
make such subtle, but useful, discriminations as “friend-or-
foe”). This use naturally suggests that the representation of
such a concept encodes its recognition function: a rule which
associates to each object a truth value (“is/isn’t”), relying on
feature values. We adopt this view for now, and so we wish
to establish a grammatically generated hypothesis space of

3 It is reasonable that the prior also be required to satisfy some
compatibility condition. We remain agnostic about what this condi-
tion should be: it is an important question that should be taken up
with examples in hand.
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rules, together with compatible prior probability and likeli-
hood functions, the latter relating rules to observed objects
through their features.

We will assume for simplicity that we are in a fully ob-
served world W consisting of a set of objects E and the fea-
ture values f1(x), . . . , fN(x) of each object x ∈ E. (In the
models developed below we could use standard Bayesian
techniques to relax this assumption, by marginalizing over
unobserved features, or an unknown number of objects
(Milch & Russell, 2006).) We consider a single labeled con-
cept, with label `(x)∈{1, 0} indicating whether x is a positive
or negative example of the concept. The labels can be unob-
served for some of the objects—we describe below how to
predict the unobserved labels given the observed ones.

Let us say that we’ve specified a grammarG—which gives
rise to a hypothesis space of rules HG—a prior probability
P(F) for F∈HG, and a likelihood function P(W, `(E)|F). We
may phrase the learning problem in Bayesian terms: what
degree of belief should be assigned to each rule F given the
observed world and labels? That is, what is the probability
P(F|W, `(E))? As in Eq. 1, this quantity may be expressed:

P(F|W, `(E)) ∝ P(F)P(W, `(E)|F) (2)

We next provide details of one useful grammar, along with an
informal interpretation of the rules generated by this gram-
mar and the process by which they are generated. We then
give a more formal semantics to this language by deriving a
compatible likelihood, based on the standard truth-functional
semantics of first-order logic together with a simple noise
process. Finally we introduce a simple prior over this lan-
guage that captures a complexity bias—syntactically simpler
rules are a priori more likely.

Logical Representation for Rules
We represent rules in a concept language which is a frag-

ment of first-order logic. This will allow us to leverage the
standard, compositional, semantics of mathematical logic in
defining a likelihood which is compatible with the grammar.
The fragment we will use is intended to express definitions
of concepts as sets of implicational regularities amongst their
features (Feldman, 2006). For instance, imagine that we
want to capture the concept “strawberry” which is “a fruit
that is red if it is ripe.” This set of regularities might be
written (T⇒fruit(x))∧(ripe(x)⇒red(x)), and the definition of
the concept “strawberry” in terms of these regularities as
∀x strawberry(x)⇔((T⇒fruit(x))∧(ripe(x)⇒red(x))).

The full set of formulae we consider, which forms the hy-
pothesis spaceHG, will be generated by the context-free “im-
plication normal form” (INF) grammar, Fig. 1. This grammar
encodes some structural prior knowledge about concepts: la-
bels are very special features (Love, 2002), which apply to
an object exactly when the definition is satisfied, and impli-
cations among feature values are central parts of the defi-
nition. The importance of implicational regularities in hu-
man concept learning has been proposed by Feldman (2006),
and is suggested by theories which emphasize causal regular-
ities in category formation (Ahn, Kim, Lassaline, & Dennis,

2000; Sloman, Love, & Ahn, 1998; Rehder, 1999). We have
chosen to use the INF grammar because of this close rela-
tion to causality. Indeed, each implicational regularity can
be directly interpreted as a causal regularity; for instance,
the formula ripe(x)⇒red(x) can be interpreted as “being ripe
causes being red”. We consider the causal interpretation, and
its semantics, in Appendix A.

(1) S → ∀x `(x)⇔I “Definition of `”
(2) I → (C⇒P) ∧ I “Implication term”
(3) I → T
(4) C → P ∧C “Conjunction term”
(5) C → T
(6) P → F1 “Predicate term”

...
P → FN

(7) F1 → f1(V) = 1 “Feature value”
(8) F1 → f1(V) = 0

...
FN → fN(V) = 1
FN → fN(V) = 0

(9) V → x “Object variable”

Figure 1. Production rules of the INF Grammar. S is the start
symbol, and I,C, P, Fi,V the other non-terminals. There are N pro-
ductions each of the forms (6), (7), and (8). In the right column are
informal translations of the meaning of each non-terminal symbol.

Let us illustrate with an example the process of generating
a hypothesis formula from the INF grammar. Recall that pro-
ductions of a context-free grammar provide re-write rules, li-
censing replacement of the left-hand-side non-terminal sym-
bol with the string of symbols on the right-hand-side. We
begin with the start symbol S , which becomes by production
(1) the “definition” ∀x `(x)⇔I. The non-terminal symbol I
is destined to become a set of implication terms: say that we
expand I by applying production (2) twice (which introduces
two implications), then production (3) (which “ties off” the
sequence). This leads to a conjunction of implication terms;
we now have the rule:

∀x `(x)⇔ ((C⇒P) ∧ (C⇒P) ∧ T )

We are not done: C is non-terminal, so each C-term will
be expanded into a distinct substring (and similarly for the
other non-terminals). Each non-terminal symbol C leads, by
productions (4) and (5),4 to a conjunction of predicate terms:

∀x `(x)⇔ ((P ∧ P⇒P) ∧ (P⇒P))

Using productions (6) and (7) each predicate term becomes
a feature predicate Fi, for one of the N features, and using
production (8) each feature predicate becomes an assertion

4 The terminal symbol T stands for logical True—it is used to
conveniently terminate a string of conjunctions, and can be ignored.
We now drop them for clarity.
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that the ith feature has a particular value5 (i.e. fi(V) = 1,
etc.):

∀x `(x)⇔(
( f1(V)=1) ∧ ( f3(V)=0)⇒( f2(V)=1)

)
∧ (( f1(V)=0)⇒( f4(V)=1))

Finally, there is only one object variable (the object whose
label is being considered) so the remaining non-terminal, V
denoting a variable, becomes x:

∀x `(x)⇔
(( f1(x)=1) ∧ ( f3(x)=0)⇒( f2(x)=1))
∧ (( f1(x)=0)⇒( f4(x)=1))

Informally, we have generated a definition for ` consisting of
two implicational regularities relating the four features of the
object—the label holds when: f2 is one if f1 is one and f3 is
zero, and, f4 is one if f1 is zero. To make this interpretation
precise, and useful for inductive learning, we must specify
a likelihood function relating these formulae to the observed
world.

Before going on, let us mention a few alternatives to the
INF grammar. The association of definitions with entries in a
dictionary suggests a different format for the defining prop-
erties: dictionary definitions typically have several entries,
each giving an alternative definition, and each entry lists nec-
essary features. From this we might extract a disjunctive
normal form, or disjunction of conjunctions, in which the
conjunctive blocks are like the alternative meanings in a dic-
tionary entry. In Table 2(a) we indicate what such a DNF
grammar might look like (see also Goodman et al., in press).
Another possibility, inspired by the representation learned by
the RULEX model (Nosofsky, Palmeri, & McKinley, 1994),
represents concepts by a conjunctive rule plus a set of excep-
tions, as in Table 2(b). Finally, it is possible that context-free
grammars are not the best formalism in which to describe
a concept language: graph-grammars and categorial gram-
mars, for instance, have attractive properties.

(a) (b)
S → ∀x `(x)⇔(D) S → ∀x `(x)⇔((C) ∧ E)
D → (C) ∨ D E → ¬(C) ∧ E
D → T E → T
C → P ∧C C → P ∧C
C → T C → T
P → Fi P → Fi
Fi → fi(V) = 1 Fi → fi(V) = 1
Fi → fi(V) = 0 Fi → fi(V) = 0
V → x V → x

Figure 2. (a) A dictionary-like DNF Grammar. (b) A rule-plus-
exceptions grammar inspired by Nosofsky et al. (1994).

Likelihood: Compositional Semantics and Out-
liers

Recall that we wish the likelihood function to be compat-
ible with the grammar in the sense that each production rule

has a corresponding “semantic operation”. These semantic
operations associate some information to the non-terminal
symbol on the left-hand side of the production given infor-
mation for each symbol of the right-hand side. For instance
the semantic operation for F1→ f1(V)=1 might associate to
F1 the Boolean value True if feature one of the object asso-
ciated to V has value 1. The information associated to F1
might then contribute to information assigned to P from the
production P→F1. In this way the semantic operations allow
information to “filter up” through a series of productions.

Each hypothesis in the concept language has a grammat-
ical derivation which describes its syntactic structure: a se-
quence of productions that generates this formula from the
start symbol S . The semantic information assigned to most
symbols can be of any sort, but we require the start symbol
S to be associated with a probability value. Thus, if we use
the semantic operations one-by-one beginning at the end of
the derivation for a particular hypothesis, F, we will arrive
at a probability—this defines the likelihood P(W, `(E)|F).
(Note that compositionality thus guarantees that we will have
an efficient dynamic programming algorithm to evaluate the
likelihood function.)

Since the INF grammar generates formulae of predicate
logic, we may borrow most of the standard semantic op-
erations from the model-theoretic semantics of mathemati-
cal logic (Enderton, 1972). Table 1 lists the semantic op-
eration for each production of the INF grammar: each pro-
duction which introduces a boolean operator has its conven-
tional meaning, we diverge from standard practice only when
evaluating the quantifier over labeled objects. Using these
semantic rules we can evaluate the “definition” part of the
formula to associate a function D(x), from objects to truth
values, to the set of implicational regularities. We are left
(informally) with the formula ∀x `(x)⇔D(x). To assign a
probability to the S -term we could simply interpret the usual
truth-value

∧
x∈E `(x)⇔D(x) as a probability (that is, prob-

ability zero if the definition holds when the label doesn’t).
However, we wish to be more lenient by allowing exceptions
in the universal quantifier—this provides flexibility to deal
with the uncertainty of the actual world.

To allow concepts which explain only some of the ob-
served labels, we assume that there is a probability e−b that
any given object is an outlier—that is, an unexplainable ob-
servation which should be excluded from induction. Any
object which is not an outlier must satisfy the “definition”
`(x)⇔D(x). (Thus we give a probabilistic interpretation to
the quantifier: its argument holds over a limited scope S⊆E,
with the subset chosen stochastically.) The likelihood be-

5 For brevity we consider only two-valued features: fi(x)∈{0, 1},
though the extension to multiple-valued features is straightforward.
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Table 1
The semantic type of each non-terminal symbol of the INF grammar (Fig. 1), and the semantic operation associated to each
production.
Symbol Semantic Type Production Semantic Operation
S p S → ∀x `(x)⇔I Universal quantifier with outliers (see text).
I e→ t I → (C⇒P) ∧ I For a given object, True if: the I-term is True, and, P-term is True if the C-term is True.

I → T Always True.
C e→ t C → P ∧C For a given object, True if both the P-term and C-term are True.

C → T Always True.
P e→ t P→ Fi True when the Fi term is True.
Fi e→ t Fi → fi(V)=val True if the value of feature i for the object identified by the V-term is val.
V e V → x A variable which ranges over the objects E.

Note: each semantic operation associates the indicated information with the symbol on the left-hand-side of the production,
given information from each symbol on the right-hand-side. The semantic type indicates the type of information assigned to
each symbol by these semantic rules: p a probability, t a truth value, e an object, and e → t a function from objects to truth
values.

comes:

P(W, `(E)|F) ∝
∑
S⊆E

(1 − e−b)|S |(e−b)|E|−|S |
∧
x∈S

`(x)⇔D(x)

=
∑

S⊆{x∈E|`(x)⇔D(x)}

(1 − e−b)|S |(e−b)|E|−|S |

= e−b|{x∈E|¬(`(x)⇔D(x))}|.
(3)

The constant of proportionality is independent of F, so can
be ignored for the moment, and the last step follows from
the Binomial Theorem. If labels are observed for only a
subset Obs ⊆ E of the objects, we must adjust this like-
lihood by marginalizing out the unobserved labels. We
make the weak sampling assumption (Tenenbaum & Grif-
fiths, 2001), that objects to be labeled are chosen at random.
This leads to a marginalized likelihood proportional to Eq. 3:
P(W, `(Obs)|F) ∝ P(W, `(E)|F). In Appendix B we give the
details of marginalization for both weak and strong sampling
assumptions, and consider learning from positive examples.

A Syntactic Prior
By supplementing the context-free grammar with proba-

bilities for the productions we get a prior over the formulae
of the language: each production choice in a grammatical
derivation is assigned a probability, and the probability of the
derivation is the product of the probabilities for these choices
(the is the standard definition of a probabilistic context-free
grammar used in computational linguistics (Chater & Man-
ning, 2006)). The probability of a given derivation is:

P(T |G, τ) =
∏
s∈T

τ(s), (4)

where s ∈ T are the productions of the derivation T , and τ(s)
their probability. The set of production probabilities, τ, must
sum to one for each non-terminal symbol. Since the INF

grammar is a unique production grammar—there is a single
derivation, up to order, for each well-formed formula—the
probability of a formula is given by Eq. 4. We will write
F for both the formula and its derivation, hence Eq. 4 gives
the prior probability for formulae. (In general, the probabil-
ity of a formula is the sum of the probabilities of its deriva-
tions.) Note that this prior captures a syntactic simplicity
bias: smaller formulae have shorter derivations, thus higher
prior probability.

Since have no a priori reason to prefer one set of values
for τ to another, we assume a uniform prior over the pos-
sible values of τ (i.e. we apply the principle of indifference
(Jaynes, 2003)). The probability becomes:

P(T |G) =
∫

P(τ)
∏
s∈F

τ(s)dτ

=

∫ ∏
s∈F

τ(s)dτ

=
∏
Y∈N

β(|{Y∈F}| + 1),

(5)

where β(~v) is the multinomial beta function (i.e. the normal-
izing constant of the Dirichlet distribution with vector of pa-
rameters ~v, see Gelman, Carlin, Stern, and Rubin (1995)),
and |{Y∈F}| is the vector of counts of the productions for non-
terminal symbol Y in the derivation of F.

The RRINF Model
Collecting the above considerations, the posterior proba-

bility is:

P(F|W,`(Obs))

∝

∏
Y∈N

β(|{Y∈F}| + 1)

 e−b|{x∈Obs|¬(`(x)⇔D(x))}|.
(6)

This posterior distribution captures a trade-off between ex-
planatory completeness and conceptual parsimony. On the
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one hand, though some examples may be ignored as outliers,
concepts which explain more of the observed labels are pre-
ferred by having a higher likelihood. On the other hand, sim-
pler (ie. syntactically shorter) formulae are preferred by the
prior.

Eq. 6 captures ideal learning. To predict empirical results
we require an auxiliary hypothesis describing the judgments
made by groups of learners when asked to label objects. We
assume that the group average of the predicted label for an
object e is the expectated value of `(e) under the posterior
distribution, that is:

P(`(e)|W, `(Obs)) =
∑

F∈HINF

P(`(e)|F)P(F|W, `(Obs)). (7)

Where P(`(e)|F) will be 1 if `(e) is the label of e required by
F (this exists uniquely for hypotheses in our language, since
they provide a “definition” of the label), and zero otherwise.
This probability matching assumption is implicit in much of
the literature on rational analysis. We will refer to this model,
the posterior (Eq. 6) and the auxiliary assumption (Eq. 7), as
the Rational Rules model of concept learning based on the
INF grammar, or RRINF.

We can also use Eq. 6 to predict the relative weights
of formulae with various properties. For instance, the
Boolean complexity of a formula (Feldman, 2000), cplx(F),
is the number of feature predicates in the formula. (E.g.,
T⇒( f1(x)=1) has complexity 1, while ( f2(x)=0)⇒( f1(x)=1)
has complexity 2.) The weight of formulae with complexity
C is the total probability under the posterior of such formu-
lae: ∑

F st. cplx(F)=C

P(F|W, `(Obs)). (8)

Similarly, the weight of a feature in formula F is the number
of times this feature is used divided by the complexity of F,
and the total feature weight is the posterior expectation of this
weight—roughly, the expected importance of this feature.

Comparison with Human Concept Learning
The RRINF model provides a simple description of concept

learning: from labeled examples one forms a posterior prob-
ability distribution over the hypotheses expressible in a con-
cept language of implicational regularities. How well does
this capture actual human concept learning? We compare the
predicted generalization rates to human data from two influ-
ential experiments.

The second experiment of Medin and Schaffer (1978) is
a common first test of the ability of a model to predict hu-
man generalizations on novel stimuli. This experiment used
the category structure shown in Table 2 (we consider the hu-
man data from the Nosofsky et al. (1994) replication of this
experiment, which counter-balanced physical feature assign-
ments): participants were trained on labeled positive exam-
ples A1. . . A5, and labeled negative examples6 B1. . . B4, the
objects T1. . . T7 were unlabeled transfer stimuli.

As shown in Table 2 the best fit of the model7 to human
data is quite good: R2=0.97. Other models of concept learn-
ing are also able to fit this data well: for instance R2=0.98

Table 2
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model at b=1.
Object Feature Values Human RRINF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.22
B4 1111 0.15 0.08
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.94
T4 1101 0.40 0.44
T5 1010 0.32 0.29
T6 1100 0.53 0.57
T7 1011 0.20 0.14

for RULEX, a process model of rule learning (Nosofsky et
al., 1994), and R2=0.96 for the context model of Medin and
Schaffer (1978). It is worth noting, however, that the RRINF
model has only a single parameter (the outlier parameter b),
while each of these models has at least four parameters.

We may gain some intuition for the RRINF model by ex-
amining how it learns this concept. In Fig. 3(a) we have plot-
ted the posterior complexity distribution after learning, and
we see that the model relies mostly on single-feature rules. In
Fig. 3(b) we have plotted the posterior feature weights, which
show greater use of the first and third features than the others.
Together these tell us that the RRINF model focuses primarily
on single feature rules using the first and third features (i.e.
∀x `(x) ⇔ (T⇒( f1(x)=0)) and ∀x `(x) ⇔ (T⇒( f3(x)=0))),
with much smaller contributions from other formulae.

The object T3=0000, which never occurs in the training
set, is the prototype of category A in the sense that most of
the examples of category A are similar to this object (differ
in only one feature) while most of the examples of category
B are dissimilar. This prototype is enhanced relative to the
other transfer stimuli: T3 is, by far, the most likely transfer
object to be classified as category A by human learners. The
Rational Rules model predicts this prototype enhancement
effect (Posner & Keele, 1968) because the dominant formu-
lae ∀x `(x)⇔ (T⇒( f1(x)=0)) and ∀x `(x)⇔ (T⇒( f3(x)=0))

6 Participants in this study and the next were actually trained on
a pair of mutually exclusive concepts A and B. For simplicity, we
account for this by averaging the results of the RRINF model where
A is the category and B the complement with vice versa. More
subtle treatments are possible.

7 We have optimized very roughly over the parameter b, taking
the best fit from b=1, ..., 8. Model predictions were approximated
by Monte Carlo simulation.
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Figure 3. (a) Posterior complexity distribution (portion of posterior weight placed on formula with a given number of feature literals) for
the category structure of Medin & Schaffer (1978), see Table 2. (b) Posterior feature weights.

agree on the categorization of T3 while they disagree on
many other stimuli. Thus, together with many lower prob-
ability formulae, these hypotheses enhance the probability
that T3 is in category A, relative to other training stimuli.

A similar effect can be seen for the prototype of category
B, the object B4=1111, which is in the training set. Though
presented equally often as the other training examples it is
judged to be in category B far more often in the test phase.
This enhancement, or greater degree of typicality, is often
taken as a useful proxy for category centrality (Mervis &
Rosch, 1981). The Rational Rules model predicts the typi-
cality effect in a similar way.

Another important phenomenon in human concept learn-
ing is the tendency, called selective attention, to consider as
few features as possible to achieve acceptable classification
accuracy. We’ve seen a simple case of this already predicted
by the RRINF model: single feature concepts were preferred
to more complex concepts (Fig. 3(a)). However selective at-
tention is particularly interesting in light of the implied trade-
off between performance and number of features attended.
Medin, Altom, Edelson, and Freko (1982) demonstrated this
balance by studying the category structure shown in Table 3.
This structure affords two strategies: each of the first two
features are individually diagnostic of category membership,
but not perfectly so, while the correlation between the third
and fourth features is perfectly diagnostic. It was found that
human learners relied on the more accurate, but more com-
plicated, correlated features. McKinley and Nosofsky (1993)
replicated this result, studying both early and late learning by
eliciting transfer judgments after both initial and final train-
ing blocks. They found that human subjects relied primarily
on the individually diagnostic dimensions in the initial stage
of learning, and confirmed reliance on the correlated features
later in learning. (Similar results have been discussed by
Smith and Minda (1998).) Our RRINF model explains most of
the variance in human judgments in the final stage of learn-

ing, R2=0.99 when b=6, and a respectable amount early in
learning: R2=0.70 when b=3. These fits don’t depend on
precise value of the parameter; see Fig. 4 for fits at several
values. We have plotted the posterior complexity weights
of the model for several values of parameter b in Fig. 5(a),
and the feature weights in Fig. 5(b). When b is small the
model relies on simple formulae along features 1 and 2,
much as human learners do early in learning. The model
switches, as b becomes larger, to rely on more complex, but
more accurate, formulae, such as the perfectly predictive rule
∀x `(x)⇔ (( f3(x)=1)⇒( f4(x)=1)) ∧ (( f4(x)=1)⇒( f3(x)=1)).
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Final block.
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Figure 4. The fit (R2) of RRINF model predictions to human gener-
alizations of McKinley & Nosofsky (1993) (see Table 3), both early
and late in learning, for several different values of the parameter b.
(Error bars represent standard error over five runs of the Metropolis
algorithm used to approximate model predictions.)

These results suggest that grammar-based induction is a
viable approach to the rational analysis of human concept
learning. Elsewhere (Goodman et al., in press) we further



8 NOAH D. GOODMAN1, JOSHUA B. TENENBAUM1, THOMAS L. GRIFFITHS2, AND JACOB FELDMAN3

Table 3
The category structure of Medin et al. (1982), with initial and final block mean human classification responses of McKinley &
Nosofsky (1993), and the predictions of the RRINF model at parameter values b=3 and b=6.
Object Feature Values Human, initial block Human, final block RRINF, b=3 RRINF, b=6

A1 1111 0.64 0.96 0.96 1
A2 0111 0.64 0.93 0.59 0.99
A3 1100 0.66 1 0.96 1
A4 1000 0.55 0.96 0.60 0.99
B1 1010 0.57 0.02 0.41 0.01
B2 0010 0.43 0 0.04 0
B3 0101 0.46 0.05 0.41 0
B4 0001 0.34 0 0.04 0
T1 0000 0.46 0.66 0.14 0.64
T2 0011 0.41 0.64 0.14 0.63
T3 0100 0.52 0.64 0.51 0.64
T4 1011 0.5 0.66 0.51 0.64
T5 1110 0.73 0.36 0.86 0.36
T6 1101 0.59 0.36 0.86 0.36
T7 0110 0.39 0.27 0.49 0.36
T8 1001 0.46 0.3 0.5 0.36

investigate the ability of the Rational Rules model (based on
the DNF grammar of Fig. 2(a)) to predict human generaliza-
tion performance and consider in detail the relationship be-
tween the full posterior distribution and individual learners.

Role-governed Concepts

So far we have focussed on a concept language which can
describe regularities among the features of an object. Is this
feature-oriented model sufficient? Consider the following
anecdote: A colleague’s young daughter had been learning
to eat with a fork. At about this time she was introduced
to modeling clay, and discovered one of its fun properties:
when you press clay to a piece of paper, the paper lifts with
the clay. Upon seeing this she proclaimed “fork!” It is un-
likely that in extending the concept “fork” to a lump of mod-
eling clay she was finding common features with the spiky
metal or plastic forks she had seen. However, it is clear that
there is a commonality between the clay and those utensils:
when pressed to an object, they cause the object to move with
them. That is, they share a common role (in fact, a causal
role—see Appendix A).

This anecdote reminds us that an object has important
properties beyond its features—in particular, it has relation-
ships with other objects. It also suggests that the defining
property of some concepts may be that of filling a particu-
lar role in a relational regularity. Indeed, it is easy to think
of such role-governed concepts: a key is something which
opens a door, a predator is an animal which eats other an-
imals, a mother is a female who has a child, a doctor is a
person that heals illnesses, a poison is a substance that causes
illness when ingested by an organism, and so forth. The crit-
ical commonality between these concepts is that describing
them requires reference to a second object or entity; the con-
trast with simple feature-based concepts will become more

clear in the formal representations below. The importance
of relational roles in concept formation has been discussed
recently by several authors. Markman and Stilwell (2001)
introduced the term role-governed category and argued for
the importance of this idea. Gentner and colleagues (Gen-
tner & Kurtz, 2005; Asmuth & Gentner, 2005) have exten-
sively considered relational information, and have found dif-
ferences in the processing of feature-based and role-based
categories. Goldstone, Medin, and Gentner (1991) and Jones
and Love (2006) have shown that role information effects the
perceived similarity of categories.

It is not difficult to imagine why role-governed concepts
might be important. To begin, role-governed concepts are
quite common. In an informal survey of high frequency
words from the British National Corpus, Asmuth and Gen-
tner (2005) found that half of the nouns had role-governed
meaning. It seems that roles are also more salient than fea-
tures, when they are available: children extend labels on the
basis of functional role (Kemler-Nelson, 1995) or causal role
(Gopnik & Sobel, 2000) in preference to perceptual features.
For instance, in the study of Gopnik and Sobel (2000) chil-
dren saw several blocks called “blickets” in the novel role of
causing a box (the “blicket detector”) to light when they were
placed upon it. Children extended the term “blicket” to other
blocks which lit the box, in preference to blocks with similar
colors or shapes. However, despite this salience, children
initially form feature-based meanings for many categories,
such as “uncle” as a friendly man with a pipe, and only later
learn the role-governed meaning (Keil & Batterman, 1984).

We have demonstrated above that grammar-based induc-
tion, using a concept language that expresses feature-based
definitions, can predict effects found in concept learning that
are often thought to be incompatible with definitions. It is
interesting that many authors are more willing to consider
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Figure 5. (a) Posterior complexity distribution on the category structure of Medin et al. (1982), see Table 3, for three values of the outlier
parameter (b) Posterior feature weights.

role-governed concepts as definitional (Markman & Stilwell,
2001) or rule-like (Gentner & Kurtz, 2005), than they are for
feature-based concepts. Perhaps then a concept language,
like that developed above, may be especially useful for dis-
cussing role-governed concepts.

Representing Roles

Just as one of the prime virtues of compositionality in cog-
nition is the ability to explain the productivity of thought, a
virtue of grammar-based induction in cognitive modeling is
a kind of “productivity of modeling”: we can easily extend
grammar-based models to incorporate new representational
abilities. The hypothesis space is extended by adding ad-
ditional symbols and production rules (with corresponding
semantic operations). This extended hypothesis space is not
a simple union of two sets of hypotheses, but a systematic
mixture in which a wide variety of mixed representations
exist. What’s more, the inductive machinery is automati-
cally adapted to this extended hypothesis space—providing
a model of learning in the extended language. This exten-
sion incorporates the same principles of learning that were
captured in the simpler model. Thus, if we have a model
that predicts selective attention, for instance, in a very sim-
ple model of concepts, we will have a generalized form of
selective attention in models extended to capture richer con-
ceptual representation.

How can we extend the feature-based concept language,
generated by the INF grammar, to capture relational roles?
Consider the role-governed concept “key”, which is an ob-
ject that opens a lock. We clearly must introduce relation
primitives, such as “opens”, by a set of terminal symbols
r1, . . . , rM . With these symbols we intend to express “x opens
y” by, for instance, r1(x, y); to do so we will need additional
variables (such as y) to fill the other roles of the relation.
With relation symbols and additional variables, and appro-
priate production rules, we could generate formulae like:

∀x `(x)⇔(r1(x, y)=1), but this isn’t quite complete—which
objects should y refer to? We need a quantifier to bind the ad-
ditional variable. For instance, if there is some lock which the
object must open, we might write ∀x `(x)⇔(∃y r1(x, y)=1).

In Fig. 6 we have extended the INF grammar to sim-
ple role-governed concepts. The generative process is
much as it was before. From the start symbol, S , we get
∀x `(x)⇔(Qy I). The new quantifier symbol Q is replaced
with either a universal or existential quantifier. The impli-
cation terms are generated as before, with two exceptions.
First, each predicate term P can lead to a feature or a relation.
Second, there are now two choices, x and y, for each variable
term V . We choose new semantic operators, for the new pro-
ductions, which give the conventional interpretations8.

Let us consider the concepts which can be described
in this extended language. The concept “key” might be
expressed: ∀x Key(x)⇔(∃y (T⇒Opens(x, y)). There is a
closely related concept, “skeleton key”, which opens any
lock: ∀x Key(x)⇔(∀y (T⇒Opens(x, y))9. Indeed, this formal
language highlights the fact that any role-governed concept
has a quantification type, ∀ or ∃, and each concept has a twin
with the other type.

Though we have been speaking of role-governed and
feature-based as though they were strictly different types
of concept, most concepts which can be expressed in this
language mix concepts and features. Take, for instance
∀x shallow(x)⇔∀y (likes(x, y)⇒beautiful(y)), which may be
translated “a shallow person is someone who only likes an-

8 That is, ‘R j → r j(x, y)=val’ evaluates the jth relation, ‘Q → ∀’
associates the standard universal quantifier to Q (and, mutatis mu-
tandis, for ‘Q → ∃’), and V is assigned independent variables over
E for x and y. It would be more complicated, but perhaps useful, to
allow outliers to the additional quantifier, as we did for the quantifier
over labeled objects. This would, for instance, allow skeleton keys
which only open most locks.

9 We name relations and features in this discussion for clarity.



10 NOAH D. GOODMAN1, JOSHUA B. TENENBAUM1, THOMAS L. GRIFFITHS2, AND JACOB FELDMAN3

other if they are beautiful”. It has been pointed out be-
fore that concepts may be best understood as lying along a
feature–relation continuum (Gentner & Kurtz, 2005; Gold-
stone, Steyvers, & Rogosky, 2003). Nonetheless, there is a
useful distinction between concepts which can be expressed
without referring to an additional entity (formally, without an
additional quantifier) and those which cannot. (Though note
the concept “narcissist”, a person who loves himself, which
involves a relation but no additional entity.)

S → ∀x `(x)⇔(Qy I)
Q → ∀
Q → ∃
I → (C⇒P) ∧ I
I → T
C → P ∧C
C → T
P → Fi
P → R j
Fi → fi(V) = 1
Fi → fi(V) = 0
R j → r j(V,V) = 1
R j → r j(V,V) = 0
V → x
V → y

Figure 6. The INF Grammar extended to role-governed concepts.
(Indices i ∈ {1 . . .N} and j ∈ {1 . . .M}, so there are M relation
symbols Ri and etc.)

Learning Roles
The posterior for the feature-based RRINF model can be

immediately extended to the new hypothesis space:

P(F|W, `(Obs)) ∝∏
Y∈N

β(|{Y∈F}| + 1)

 e−b|{x∈Obs|¬(`(x)⇔(Qy D(x,y)))}|,
(9)

where D(x, y) is the set of implicational regularities, now
amongst features and relations, and Qy D(x, y) is evaluated
with the appropriate quantifier. We now have a model of
role-governed concept learning. Defining this model was
made relatively easy by the properties of compositionality,
but the value of such a model should not be underestimated:
to the best of our knowledge this is the first model that has
been suggested to describe human learning of role-governed
concepts. (There have, however, been a number of Bayesian
models that learn other interesting conceptual structure from
relational information, for instance Kemp, Tenenbaum, Grif-
fiths, Yamada, and Ueda (2006).)

The extended RRINF model is, unsurprisingly, able to learn
the correct role-governed concept given a sufficient number
observed labels (this limit-convergence is a standard prop-
erty of Bayesian models). It is more interesting to exam-
ine the learning behavior in the case of an ill-defined role-
governed concept. Just as a concept may have a number of
characteristic features that rarely line up in the real world,

there may be a collection of characteristic roles which con-
tribute to the meaning of a role-governed concept. (This
collection is much like Lakoff’s idealized cognitive models
(Lakoff, 1987); the ‘entries’ here are simpler yet more rigor-
ously specified.) For instance, let us say that we see someone
who is loved by all called a “good leader”, and also someone
who is respected by all called a “good leader”. It is reason-
able to think of these as two contributing roles, in which case
we should expect that someone who is both loved and re-
spected by all is an especially good “good leader”. Let us
see whether we get such a generalized prototype effect from
the RRINF model.

Starting with our “good leader” example we construct a
simple ill-defined role-governed concept, analogous to the
concept of Medin and Schaffer (1978) considered above. In
Table 4 we have given a category structure, for eight objects
with one feature and two relations, that has no feature-based
regularities and no simple role-based regularities. There are,
however, several imperfect role-based regularities which ap-
ply to one or the other of the examples. Transfer object T4
is the prototype of category A in the sense that it fills all
of these roles, though it is not a prototype by the obvious
distance measure10.

Table 5 shows formulae found by the extended RRINF
model, together with their posterior weight. The highest
weight contributors are the two imperfect role-based regu-
larities (“someone who is loved by all” and “someone who
is respected by all”), each correctly predicting 75% of la-
bels. After these in weight comes a perfectly predictive, but
more complex, role-governed formula (“someone who is re-
spected by all those who don’t love her”). Finally, there are
a number of simple feature-based formulae, none of which
predicts more than 50% of labels. The predicted general-
ization rates for each object (i.e. the posterior probability of
labeling the object as an example of category A) are shown
in Table 6. There is one particularly striking feature: trans-
fer object T4 is enhanced, relative to both the other transfer
objects and the examples of category A. Thus, the extended
RRINF model exhibits a generalized prototype enhancement
effect. This is a natural generalization of the well-known ef-
fect for feature-based concepts, but it is not a direct extension
of similarity-based notions of prototype. The emergence of
useful, and non-trivial, generalizations of known learning ef-
fects is a consequence of compositionality.

We can also explore the dynamics of learning for role-
governed concepts. We would particularly like to know if
the reliance on features relative to that on relations is ex-
pected to change over time. To investigate this we generated
a world W at random11, and assigned labels in accordance
with the role-governed concept ∀x `(x)⇔(∃y r1(x, y)=1). As

10 Prototypes are often treated as objects with smaller bit-distance
(Hamming distance between feature vectors) to examples of the
category than to its complement. If we extend this naively to bit-
distance between both feature and relation vectors we find that the
distance between A1 and T4 is larger than that between B1 and T4,
so T4 is not a prototype of category A.

11 Each random world had 15 objects, 5 features, and 2 relations.
The binary features were generated at random with probability 0.5,
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Table 4
An ill-defined role-governed category. The objects A1 and A2 are positive examples, B1 and B2 are negative examples, and
T1-T4 are unlabeled transfer objects. It may be convenient to think of r1 as “loved-by” and r2 as “respected-by”, and the
concept label as “good leader”.
Object f1 r1: A1 A2 B1 B2 T1 T2 T3 T4 r2: A1 A2 B1 B2 T1 T2 T3 T4
A1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0
A2 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1
B1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1
B2 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1
T1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
T2 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1
T3 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1
T4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5
The six highest posterior weight formulae from the extended
RRINF model applied to the world of Table 4.
weight formula
0.178 ∀x `(x)⇔(∀y (T⇒(r2(x, y)=1)))
0.178 ∀x `(x)⇔(∀y (T⇒(r1(x, y)=1)))
0.049 ∀x `(x)⇔(∀y (((r1(x, y)=0) ∧ T )⇒(r2(x, y)=1)))
0.016 ∀x `(x)⇔(∀y (T⇒( f1(x)=1)))
0.016 ∀x `(x)⇔(∀y (T⇒( f1(y)=0)))
0.016 ∀x `(x)⇔(∃y (T⇒( f1(y)=1)))

a measure of feature and relation weights we use the poste-
rior expectation of the number of features or relations used in
a formula; by averaging over many random worlds we get a
qualitative prediction for typical learning. In Fig. 7 we have
plotted these feature and relation weights against the number
of observed labels. We see a clear feature-to-relation transi-
tion: early in learning features are of primary importance, as
observations accumulate relations become more important,
and eventually the correct role-governed concept is learned.

Recall children’s shift for words like “uncle”, from a
feature-based interpretation to a role-based one. The quali-
tative feature-to-relation transition predicted by the extended
RRINF model suggests that this shift may in fact be the result
of rational belief updating rather than limited resources or a
domain general shift (e.g. from concrete to abstract under-
standing).

Discussion

The previous sections may be thought of as an ex-
tended example illustrating our view on what composition-
ality should mean in Bayesian rational analysis. The key fea-
tures of our grammar-based induction approach to concept
learning are the use of a concept language and a likelihood
function compatible with the grammar of this language—the
concept language lays the foundation for the virtues of com-
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Figure 7. A feature-to-relation transition: the posterior weight of
features and relations versus number of labels observed. Labels are
consistent with the role-governed concept ∀x `(x)⇔(∃y r1(x, y)=1).
Error bars are standard deviation over 10 randomly generated
worlds.

positionality, while compatibility gives the theory its seman-
tic teeth. The RRINF model is a case study of this approach.

We compared the feature-based version of the RRINF
model to human data from two concept learning experiments,
and found extremely good fits, comparable to the best ex-
isting models. This is particularly encouraging because the
RRINF model has only one free parameter—far fewer than
other models. The RRINF model has similarities with sev-
eral well established models of concept learning. Like the
RULEX model of Nosofsky et al. (1994), the RRINF model
learns a mixture of rule-like representations. However, while
RRINF is a computational-level rational model, the RULEX
model is a process-level model. Thus the RRINF model com-
plements other efforts by providing a missing level of expla-
nation to the rule-based approach to concept learning. RRINF

the binary relations had probability 0.05 (providing sparse matri-
ces).
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Table 6
Generalization rates predicted by the extended RRINF model for the category of Table 4.
Object: A1 A2 B1 B2 T1 T2 T3 T4
Rate: 56% 59% 25% 23% 25% 26% 56% 81%

shares with other rational analyses of concept learning, such
as Anderson’s rational model (Anderson, 1990), its under-
lying Bayesian inductive principles—but existing rational
models learn similarity-based representations that lack com-
positionality. One of the primary objections to similarity-
based theories of concepts has been the lack of composition-
ality, which makes it difficult to to express rich relationships
between concepts (Murphy & Medin, 1985) or to usefully
combine concepts (Osherson & Smith, 1981). The grammar-
based induction approach is well suited to address these con-
cerns while still providing precise, and testable, computa-
tional models.

We leveraged compositionality to extend the RRINF model
to role-governed concepts by adding additional primitives to
the concept language (relations and an additional quantified
variable), expanding the set of productions to make use of
these primitives, and specifying semantic operations for the
new productions. Because the inductive semantics of RRINF
is compositional, the new pieces integrate naturally with the
old, and the learning model continues to “makes sense” in the
extended setting. This extension provides usefully expressive
representations, and several interesting learning effects were
noted, but future work is needed to empirically test and refine
this form of the model.

The representations used in the RRINF model were derived
from mathematical logic. We drew not only on the syntax
of logic, but also, in order to build a compatible likelihood,
on the model-theoretic semantics of logic. These model-
theoretic methods have already been used in several branches
of cognitive science. In the psychology of reasoning, for
instance, mental-model theory (Johnson-Laird, 1983) was
inspired by model-theoretic notions of deductive truth. A
bit farther afield, formal semantics, beginning with Mon-
tague (1973), has elaborated a detailed mathematical logic
of natural language semantics. This intensional logic is also
founded on mathematical model theory, though on the more
modern notion of possible worlds. Formal semantics has de-
veloped a unique array of rich, and mathematically rigorous,
representations relevant to cognition. These representations
go far beyond the first-order logic used here, and are sure to
be of interest as grammar-based induction is extended.

We have emphasized the notion of a concept language
in which hypotheses are represented. This concept lan-
guage, of course, is meant to be an internal mental language,
which may not be verbalizable or even consciously acces-
sible. Philosophical theories of mind based on an internal
mental language (“mentalese”) have a considerable history,
via the language of thought hypothesis (Fodor, 1975). A
key argument for these theories is that a language of thought

might be sufficiently expressive for cognition because it in-
herits the virtues of compositionality; but an unresolved puz-
zle is what form the compositional semantics might take, in
order to usefully connect mentalese to observations of the
world. Our efforts in this chapter offer one solution: the
language of thought can find its semantics in compositional
prescriptions for induction—in particular, in likelihood and
prior functions compatible with the syntax of mentalese. A
moral can also be drawn in the other direction: the hypothe-
sis spaces of Bayesian cognitive modeling, to the extent that
they describe actual mental representations, can be seen as
portions of the language of thought.
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Appendix A
Causal Regularities

The INF grammar, which we have used to generate the
concept language of the RRINF model, represents the defin-
ing properties of a concept as a set of implicational regu-
larities. As we indicated in the main text, it is intuitive to
interpret these implications as causal relations. For instance
the regularity Ripe(x)⇒Red(x) for the concept “strawberry”,
might be interpreted as meaning that, if x is a strawberry,
then x being ripe causes x to be red. This interpretation be-
comes especially interesting for the extension of RRINF to
role-governed concepts. Take the example of a “poison”; a
poison is a substance that, when inside an organism, causes
injury. We might write this as:

∀x poison(x)⇔(∀y in(x, y)∧organism(y)⇒injured(y)).

To see why the causal interpretation is important, con-
sider the case of Socrates, who drank hemlock and died. If
Socrates had been cured in the nick of time, should we con-
clude that hemlock is not a poison? This is the conclusion
we must draw if we interpret the ‘⇒’ as material implica-
tion. From the causal interpretation, however, hemlock may
still be a poison: by intervening on the injury of socrates
we supersede the causal regularity that would otherwise hold
(Pearl, 2000). Indeed, interpreted causally this definition of
“poison” is useful for crafting many interventions—e.g. if
we’d like to injure someone, we may introduce a poison into
them—and answering counterfactuals—e.g. if Socrates had
been a rock, the poison hemlock would not have injured him.

Causal knowledge tells you how to make things happen—
this is the thesis that has recently been argued in philosophy
(Woodward, 2003) and cognitive science (Pearl, 2000; Gop-
nik et al., 2004; Lagnado & Sloman, 2002; Steyvers, Tenen-
baum, Wagenmakers, & Blum, 2003). Thus, if we have a
causal feature-based definition of a concept A, we know how
to make things happen to the properties of an A, by manip-
ulating other properties of that A (e.g. we know to make a
strawberry red by ripening it). If we have a causal role-
governed definition of concept A, we know how to make
things happen to an A using another object, or vice versa
(e.g. we can open a lock by using its key). (Notice that it is
a very small step from here to the notion of using an object
as a tool.) Formally, a regularity is causal if we know how to
evaluate it under all possible sets of interventions.

We can formally extend the compositional semantics of
the RRINF model to this causal interpretation by specifying
the likelihood function under intervention. We follow the
structural equation approach of Halpern and Pearl (2001),
with some embellishments to maintain compatibility of the
likelihood with the grammar. Say that the intervention condi-
tionI is the set of interventions performed: each intervention
is on one feature-object pair or relation-object-object triple.
Let WI and `(E)I be the observed features and labels under

this intervention condition. We first extend the semantic in-
formation associated with the evaluation of a feature or rela-
tion: fi(x)=val is now associated to a function from objects to
a pair of truth values. The second truth value, the interven-
tion value, indicates whether an intervention has been per-
formed at this feature-object pair (i.e. whether the pair fi, x
is in I). The same extension holds, mutatis mutandis, for
relations. Next we alter the semantic operation associated
to the (production which introduces an) implication C⇒P:
when the intervention value of the P-term is True, the im-
plication is evaluated as True (i.e. it is ignored), otherwise
it is evaluated as usual. The remaining semantic operations
are unchanged. Putting these together we may evaluate the
extended likelihood P(WI, `(E)I|F,I) under a given inter-
vention condition.

This extension is conceptually simple—ignore any impli-
cational regularities on whose implicand an intervention is
performed—the slight subtlety comes from the need to main-
tain compatibility between the likelihood and grammar. We
achieved this by extending the semantic information given
a specific intervention condition, and adjusting the seman-
tic operations. Another, more general, option would be to
extend the semantic types to include interventions as an ar-
gument (e.g. e→t would becomes (e, i)→t). This is simi-
lar to the possible worlds technique used in intensional logic
(Montague, 1973).

Appendix B
Sampling Assumptions

In the main text we derived an expression for the likeli-
hood of a world with observed labels for all objects:

P(W, `(E)|F) ∝ e−bO`(E). (10)

Where O`(E) = |{x ∈ E|¬(`(x)⇔D(x))}| is the number of
labeled examples which don’t satisfy the “definition” part of
F. If labels are observed for only a subset Obs ⊆ E of the
objects, then we must marginalize over the unobserved la-
bels (we write Obs = E \ Obs for the set of objects with
unobserved labels):

P(W,`(Obs),Obs|F)

=
∑
`(Obs)

P(W, `(E),Obs|F)

=
∑
`(Obs)

P(Obs|F,W, `(E))P(W, `(E)|F)

∝
∑
`(Obs)

P(Obs|F,W, `(E))e−bO`(E)

= e−bO`(Obs)
∑
`(Obs)

P(Obs|F,W, `(E))e−bO`(Obs)

(11)

Now we will need to make a sampling assumption (Tenen-
baum & Griffiths, 2001) about how the objects with observed
labels were chosen from among all the objects. Two standard
choices are weak sampling, that Obs are chosen at random,



COMPOSITIONALITY IN RATIONAL ANALYSIS:GRAMMAR-BASED INDUCTION FOR CONCEPT LEARNING 15

and strong sampling, that Obs are chosen explicitly to be
positive (or negative) examples of the concept.

Weak Sampling

If Obs is chosen independent of F,W, `(E), for instance if
it is chosen at random from among all objects, then:

P(W, `(Obs),Obs|F) ∝ e−bO`(Obs)
∑
`(Obs)

e−bO`(Obs)

= e−bO`(Obs)
|Obs|∑
i=0

(
|Obs|

i

)
e−bi

∝ e−bO`(Obs)

(12)

Where we have used the fact that `(x)⇔D(x) is true for ex-
actly one of the two values of `(x), and the sum is then inde-
pendent of F.

Weak sampling is a reasonable assumption when there are
both positive and negative examples, and no external reason
to assume that examples are chosen to be exemplary. We
have used this weak sampling likelihood for the examples in
the main text, since it is both reasonable and simple in those
settings.

Strong Sampling

If, on the other hand, only positive examples are observed
(Tenenbaum, 1999), or in certain pedagogical situations (Xu
& Tenenbaum, 2007), it is more reasonable to make a strong
sampling assumption: positive (and negative) examples are
chosen from among those objects which satisfy (respectively,
don’t satisfy) the concept at hand.

For simplicity let us assume that we have only positive
examples, that is `(x)=1 for all x∈Obs. We will assume that
Obs is chosen at random from among objects which satisfy
the concept, thus:

P(x∈Obs|F,W, `(E)) ∝
1

|{y∈E|`(y)=1}|
. (13)

(Note that we have allowed repeated samples, for simplicity.)
From this we can derive an expression for the likelihood:

P(W,`(Obs),Obs|F)

∝ e−bO`(Obs)
∑
`(Obs)

 ∏
x∈Obs

P(x∈Obs|F,W, `(E))

 e−bO`(Obs)

= e−bO`(Obs)
∑
`(Obs)

 ∏
x∈Obs

1
|{y∈E|`(y)=1}|

 e−bO`(Obs)

= e−bO`(Obs)
∑
`(Obs)

e−bO`(Obs)

|{y∈E|`(y)=1}||Obs|

(14)
Learning from Positive Examples

Using the strong-sampling-based likelihood, Eq. 14, we
may describe learning from only positive examples. Impor-
tantly, the denominator in Eq. 14 causes the smallest concept
consistent with the labeled examples to be the most likely
(this is the size principle of Tenenbaum (1999)); this leads
the learner to select the most restrictive (hence informative)
concept even when the evidence is equally consistent with
broader concepts. This learning situation has been studied
extensively in the context of feature-based categories (Tenen-
baum, 1999; Xu & Tenenbaum, 2007; Muggleton, 1997), but
it is particularly interesting in the setting of role-governed
concepts. Indeed, note that any set of positive examples
that is compatible with a universally quantified regularity is
also compatible with an existential regularity (but not vice
versa: the existential form is less restrictive than the uni-
versal form). For instance, if we see several “poisons” in-
jure several different people, should we infer that “poison”
is governed by a universal or existential quantifier (i.e. that
there is someone who every poison injures, or that a poison
injures anyone)? Under the weak sampling likelihood we
must wait until these are distinguished by negative evidence
(e.g. a non-poison which injures a few people), but with the
strong sampling likelihood the more restrictive hypothesis—
the universal regularity—is favored, all other things being
equal.


