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a b s t r a c t

In this paper we propose that the conventional dichotomy between exemplar-based and
prototype-based models of concept learning is helpfully viewed as an instance of what is
known in the statistical learning literature as the bias/variance tradeoff. The bias/variance
tradeoff can be thought of as a sliding scale that modulates how closely any learning pro-
cedure adheres to its training data. At one end of the scale (high variance), models can
entertain very complex hypotheses, allowing them to fit a wide variety of data very clo-
sely—but as a result can generalize poorly, a phenomenon called overfitting. At the other
end of the scale (high bias), models make relatively simple and inflexible assumptions,
and as a result may fit the data poorly, called underfitting. Exemplar and prototype models
of category formation are at opposite ends of this scale: prototype models are highly
biased, in that they assume a simple, standard conceptual form (the prototype), while
exemplar models have very little bias but high variance, allowing them to fit virtually
any combination of training data. We investigated human learners’ position on this spec-
trum by confronting them with category structures at variable levels of intrinsic complex-
ity, ranging from simple prototype-like categories to much more complex multimodal
ones. The results show that human learners adopt an intermediate point on the bias/vari-
ance continuum, inconsistent with either of the poles occupied by most conventional
approaches. We present a simple model that adjusts (regularizes) the complexity of its
hypotheses in order to suit the training data, which fits the experimental data better than
representative exemplar and prototype models.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

For about four decades, most research in human catego-
rization has assumed that mental categories are ‘‘fuzzy’’
structures exhibiting varying degrees of similarity among
category members (Posner, Goldsmith, & Welton, 1967;
Posner & Keele, 1968; Rosch, 1978; Rosch & Mervis,
1975). More specifically, most contemporary models
understand categories in terms of variations in typicality
exhibited by category members (Love, Medin, & Gureckis,
2004; Ashby & Alfonso-Reese, 1995; Nosofsky, 1986). But

researchers have been divided about how the distribution
of typicality is acquired and represented, and exactly
how new objects are evaluated.

The two dominant approaches, known as prototype the-
ories and exemplar theories, make critically different
assumptions about how people learn from experience with
category examples. Prototype theories (e.g. Smith & Minda,
1998; Nosofsky, 1987) assume that learners induce from
observed category members a central tendency, called the
prototype, and use it as a composite against which to com-
pare newly encountered items. New items judged suffi-
ciently similar to the prototype are judged to be
members of the category. Exactly how the prototype is
computed, and what information it retains, differs from
model to model, but all prototype models share this central
process of abstraction. By contrast, in exemplar theories
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(e.g. Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky,
1987), no central tendency is computed. Instead, the lear-
ner stores the attributes of observed examples, called
exemplars, along with their category labels. New objects
are classified by placing them into the category to whose
exemplars they bear the greatest similarity.

Prototype and exemplar strategies have traditionally
been presented as qualitatively different and competing ac-
counts of categorization, the former involving abstraction,
the latter not (Smith & Medin, 1981, though cf. Hahn &
Chater, 1998 for a more nuanced view). A number of
authors have argued in various ways for a continuum con-
necting the two approaches (Ashby & Alfonso-Reese, 1995;
Gentner & Medina, 1998; Rosseel, 2002, Vanpaemel,
Storms, & Ons, 2005), or have proposed overtly hybridmod-
els incorporating the benefits of both approaches (e.g.
Anderson & Betz, 2001; Nosofsky, Palmeri, & McKinley,
1994; Nosofsky & Palmeri, 1997), as will be discussed more
extensively below. Butmost commonly the two approaches
are regarded as fundamentally disparate, even to the point
of involving anatomically distinct brain systems (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Smith, Patalano,
& Jonides, 1998).

But notwithstanding their neural implementation, pro-
totype and exemplar strategies each represent solutions to
the fundamental computational problem of category for-
mation, and their similarities and differences can be most
fully appreciated when they are considered in terms of
the abstract learning procedures they embody—that is, in
the spirit of Marr’s ‘‘theory of the computation’’ (Marr,
1982). In this paper we suggest, as have others before us
(Love et al., 2004; Jäkel, Schölkopf, & Wichmann, 2007),
that prototype and exemplar strategies are helpfully seen
as points along a very basic continuum of inference often
discussed in the statistical learning literature, known as
the bias/variance tradeoff (or sometimes the tradeoff be-
tween data-fit and complexity). As we argue in more detail
below, this viewpoint not only adds a useful theoretical
perspective, but also suggests a critical empirical test that
does not seem to have been carried out before. Below, we
present an experiment along these lines, the results of
which show that neither prototype nor exemplar models
are entirely consistent with human learning learners’ posi-
tion along the bias/variance continuum.

2. The bias/variance tradeoff

The bias/variance tradeoff relates to the granularity at
which abstractions are made from training data—the
coarseness with which examples are integrated to form
generalizations. The key insight, first articulated in these
terms by Geman, Bienenstock, and Doursat (1992) (see
Hastie, Tibshirani, & Friedman, 2001 for an introduction),
is that this scale profoundly influences the effectiveness
of generalization in essentially any situation in which
inductions must be made from data.

To see why, consider the computational problem faced
by an agent attempting to form generalizations from train-
ing data. Naturally, such an agent seeks to make general-
izations in such a way as to maximize the accuracy of

future classifications from the same data source. Perhaps
counter-intuitively, this accuracy is not maximized by
learning the training data as precisely as possible. An ex-
tremely close fit to training data tends to generalize poorly
to future data, because such a fit inevitably entails fitting
random aspects of the sample (i.e., noise) as well as regular
components. Any model that learns every quantitative de-
tail of the training data—inevitably including many that
will never be repeated—misses the broader regularities in
the data. (A student who memorizes every last detail of
the teacher’s lecture inevitably retains details of the deliv-
ery at the expense of the broader ideas in the lesson.) Fit-
ting training data too closely in this sense—fitting noise
as well a real trends—is often referred to as overfitting,
while fitting it too loosely—missing real trends as well as
noise—is called underfitting. This basic tradeoff arises in a
wide variety of settings, and seems to be fundamental to
the vary nature of generalization. Every real data source in-
volves a mixture of regular and stochastic elements, and
effective generalization requires finding the right balance
between them—so that the regular (repeatable) compo-
nents may be learned and the noise disregarded. Of course,
it is impossible to know a priori what is noise and what is
not. So any learner must guess how broadly to generalize,
which means adopting a point on the continuum between
bias (a strong prior model) and variance (a weak prior
model). A learner can paint with a broad brush or a fine
quill; bias/variance is a sliding scale that determines the
size of the brush.

The critical variable modulating bias and variance is the
complexity of the hypotheses entertained by the learner:
for example, the degree of the polynomial used in fitting
a sequence of numeric data, or more generally the number
of degrees of freedom (fittable parameters) in any model.
More complex hypotheses (e.g. higher-degree polynomi-
als) can, by definition, fit the training data more closely,
while less complex ones may lack the flexibility to fit it
very well. The phenomenon can be seen schematically by
plotting generalization accuracy as a function of model
complexity (Fig. 1). Accuracy first rises to some optimum,
but then declines as overfitting sets in. Exactly where along
the abscissa the peak (optimal performance) lies depends
on the nature of the patterns to be learned. At one extreme
(simple hypotheses), the model imposes a strong expecta-
tion or ‘‘bias’’ on the data, sacrificing fit, while at the other
extreme (complex hypotheses), hypotheses are more flex-
ible (i.e., exhibit greater variance), risking overfitting. The
question then is how close a fit is desirable. There is no
‘‘right answer’’ a priori, because the optimal decision de-
pends on how much of the observed data is actually due
to stochastic processes as opposed to regular ones, which
varies depending on the nature of the data source. Hence
the optimal point on the continuum necessarily reflects
an assumption about the nature of the environment—in
the case of categorization, the statistical properties of the
categories human learners are likely to encounter. For this
reason, considering models of human categorization from
this point of view helps shed light on the assumptions
about the world they tacitly embody.

As mentioned above, it has occasionally been noted in
the literature (Love et al., 2004; Jäkel et al., 2007) that
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among traditional accounts of human categorization, pro-
totype models exemplify the ‘‘bias’’ end of the spectrum,
while exemplar models exemplify the ‘‘variance’’ end. Pro-
totype models assume a very simple, constrained form for
categories: the prototype, often realized as a unimodal dis-
tribution of feature values. Such a model imposes a strong
bias on the observations, and thus will fit data not
conforming to this schema relatively poorly. Highly
disjunctive or unstructured concepts, which are not well-
described by a single central tendency, will generally be
underfit by a prototype classifier. Data generated by a sim-
ple highly coherent source, by contrast, would be fit rela-
tively well.

Exemplar models, on the other hand, exemplify the var-
iance end of the spectrum, because in using individual
stored exemplars for comparison judgments, an exemplar
model may entertain a very complex decision surface, with
each exemplar contributing a potentially distinct ‘‘wrinkle’’
to the decision surface. Whereas a prototype model as-
sumes one central distribution, an exemplar model in prin-
ciple assumes n of them, corresponding to the n stored
exemplars. (Exactly how many peaks the learned density
will actually have—possibly far less than n—depends on
how narrow or broad each of these distributions is as-
sumed to be, an important point to which we will return
later.) Such a model, by design, can represent arbitrarily
complex collections of examples, as it imposes minimal
expectations (bias) on the structure they are liable to exhi-
bit. In this sense what exemplar models do is less like gen-
eralization and more like memorization (Blair & Homa,
2003). Such a strategy allows flexible learning, but risks
overfitting when the concepts are simple and the observed
complexities are actually noise.

That prototype and exemplar models represent oppo-
site ends of the bias/variance continuum will, we suspect,
seem obvious to experienced readers of the statistical
learning literature. Nevertheless, this perspective appears

not to have been comprehensively articulated in the psy-
chological literature on concept learning, and bears work-
ing out carefully. In particular, it suggests a natural class
of empirical experiments, in which the complexity of train-
ing data is manipulated in order to evaluate human learn-
ers’ position on this continuum, which does not appear to
have been systematically attempted before. One key ques-
tion is where human learners fit along this continuum,
which (as explained below) can only be ascertained by
evaluating their performance on training data of various
levels of intrinsic complexity—an experiment that has not
been carried out systematically before.

Hence in the experiments below we confront human
subjects with conceptual structures whose intrinsic com-
plexity we have systematically manipulated, making them
in some cases more closely resemble the assumptions
(bias) underlying prototype models, and in other cases
the assumptions underlying exemplar models, and in other
cases lie somewhere in between. This allows us to ask
where human learners fall in the bias/variance continuum,
which is, as we have argued, a very basic aspect of human
categorization. More broadly, we see this as a beneficial
way of looking at human categorization, because it allows
us to step beyond the algorithms we identify, and shed
light on the premises and assumptions that underlie them.

As mentioned, a number of prior approaches have inter-
mixed prototype and exemplar strategies. Among these are
some that parameterize the distinction between prototype
and exemplar approaches in various ways, some related to
our approach (e.g. Ashby & Alfonso-Reese, 1995; Rosseel,
2002). Some authors (Ashby & Alfonso-Reese, 1995;
Griffiths, Sanborn, Canini, & Navarro, 2008; see also
Shepard, 1957), model categorization explicitly as probabil-
ity density estimation, in which case bias/variance issues
inevitably arise, as they do in any statistical estimation
problem. Vanpaemel et al. (2005) and Vanpaemel and
Storms (2008) overtly vary the degree of abstraction im-
posed by the model, and thus substantially share our per-
spective, although the thrust of their model differs in
most other respects. But none of these approaches explic-
itly conceptualizes the prototype-exemplar distinction in
terms of bias and variance, and thus none of them allows
us to pose this very basic question about human categoriza-
tion: where do humans fit along this continuum? How
much bias do human learners impose on the patterns they
observe? More concretely, our perspective suggests an
experimental approach in which we vary the intrinsic com-
plexity of the training data presented to subjects, allowing
us to evaluate human performance—and its fit by various
models—as a function of the complexity of the training
data. The performance of each learning model on training
data at different complexity levels, and how closely this
performance matches that of human subjects, constitutes
a natural testbed in which to challenge existing models.

2.1. Varying conceptual complexity

In statistical estimation, the most common measure of
model complexity is the number of fittable parameters in
the model (for example, the number of coefficients in a
regression model) because in general this modulates how

Fig. 1. Illustration of the tradeoff between bias and variance (complexity
and data-fit). The plot shows generalization performance (proportion
correct) of a model as a function of its complexity. As the model grows
more complex (left to right) generalization improves until a peak, then
declines. At higher complexities, the model ‘‘over-fits’’ the training data
and performance suffers. The abscissa here is actually the parameter c
from GCM (Nosofsky, 1986), which acts as a bias-modulating parameter
(see text).
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closely the final model can fit the training data. As
sketched above, the variation in model complexity be-
tween prototype and exemplar models is best understood
in terms of the number of peaks or modes they ‘‘expect’’
in a natural concept, i.e. 1 in the case of prototype models
and up to n in the case of exemplar models. Hence in the
context of this experiment the most natural way to vary
the complexity of the training data is, similarly, in terms
of the number of modes or components in the training data
source. Of course this is also a modulation in the number of
fittable parameters, because each stored exemplar in d-
dimensional feature space requires d parameters to store
it, resulting in nd total parameters to store n exemplars.
A prototype model, on the other hand, needs only to store
the mean (or other central tendency) of the training exam-
ples, a far smaller number which is independent of n.

An ideal model of categorization would seek to balance
bias and variance, finding an ideal level of hypothesis com-
plexity, and thus optimizing its ability to generalize. But as
mentioned above such a perfect balance cannot be deter-
mined a priori, because it depends on the nature of the
classes to be learned. In this sense, prototype and exemplar
models reflect different tacit assumptions about the nature
of concepts in the human learner’s environment. Prototype
models presume, and thus are in principle most effective
in, an environment in which natural classes tend to take
the form of single, unimodal probability distributions. By
the same token, they would be expected to perform poorly
in more complex environments. Exemplar models, by con-
trast, presume a complex environment in which each ob-
ject could, in principle, act as a single category with itself
as the only member (see Feldman, 2003). Such a model
represents an effective strategy in a complex environment,
but may overfit spurious elements, retaining in memory
what are actually random events. Viewing prototype and
exemplar models in this way begs for the test of a model
that makes onlymid-level assumptions about the complex-
ity of the world, and thus, we also analyze the performance
of a third model that represents a point on the bias/vari-
ance continuum between purely exemplar and prototype
models.

In the following experiment, then, we aim to evaluate
human concept learning at a range of points on the bias/
variance continuum, by systematically manipulating the
complexity of concepts presented to subjects. By confront-
ing subjects with categories with varying levels of struc-
tural complexity, we may empirically examine how each
of the two popular strategies, as well as our ‘‘mid-level’’
model, performs as a model of human performance, rang-
ing parametrically between the part of the continuum tac-
itly assumed by prototype models (simple concepts) to
that tacitly assumed by exemplar models (complex con-
cepts). Of interest is the effect of conceptual complexity
on human performance, and also, more specifically, the
influence of complexity of the nature of subjects’ learning
strategies.

2.2. Experimental approach

The strategy in this study was to confront subjects with
concepts of varying levels of complexity, and then to fit a

variety of models to their classification responses, includ-
ing a representative prototype model, a representative
exemplar model, and later a new model. Our aim was to
manipulate the complexity of the concepts in a simple
and theoretically neutral manner. To accomplish this, we
defined each concept as a probability density function over
two continuous features, with the positive examples
drawn from a probability density function defined over
the two features. To vary the complexity of the concept,
we used mixtures with varying numbers of components.
A mixture (see McLachlan & Basford, 1988) is a probability
density function p(X) that is the sum of some number of
distinct components or sources gi(X), i.e.

pðXÞ ¼
XK

i¼1

wigðXÞ: ð1Þ

Here K is the number of components, and the wi are the
mixing proportions, meaning the probabilities with which
the respective components are drawn, which must sum to
one (

PK
i¼1wi ¼ 1). (In what follows we always set these

equal at 1/K.) Mixtures are a simple way of capturing the
idea of a data source with a complex internal structure of
sub-sources. For our purposes, they allow a simple way
of modulating the complexity of the concept, namely by
varying the number of components, K. A source with
K = 1 consists of a single component such as a simple mul-
tivariate Gaussian. A source with a large value of K is het-
erogeneous, with multiple types intermixed. Thus the
number K serves as a simple, theoretically neutral measure
of conceptual complexity, which we vary in what follows
in order to study the effect of complexity on subjects’
learning strategies.

In the experiment below, each concept was a mixture of
K Gaussian sources, with K ranging from 1 to 5. Fig. 2 de-
picts example distributions for the five levels of complexity
as isoprobability contour plots. At the K = 1 level, each con-
cept is a simple, unimodal Gaussian cloud (corresponding
in the plots to a single circle, Fig. 2, left). At the other ex-
treme, each K = 5 concept is a highly heterogeneous mix-
ture with five distinct modes (corresponding to five
circles, Fig. 2, right). The number K thus quantifies the
complexity of the conceptual structure in a straightfor-
ward way. Fig. 3 illustrates the generating probability dis-
tribution for a K = 3 concept as well as a sample drawn
from it.

A number of earlier studies have varied the structure of
concepts in attempts to probe subjects’ learning strategies.
McKinley and Nosofsky (1995) also used concepts com-
posed of mixtures of Gaussians, arguing that many natu-
rally occurring categories are mixtures. Smith and Minda

K = 1 K = 2 K = 3 K = 4 K = 5

fe
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e 

2

feature 1

Fig. 2. Schematic illustrations (isoprobability contour plots) of the five
concept types. Each concept consisted of a mixture of K Gaussian clouds
in a two-dimensional feature space. K modulates the complexity of the
resulting concept, ranging from 1 (left) to 5 (right).
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(1998) also included a variety of conceptual forms in their
studies, concluding (very much in the spirit of our analysis)
that the relative success of various models seems to relate
to the ‘‘diffusion’’ or ‘‘differentiation’’ of the concepts on
which the models are tested. More recently Minda and
Smith (2001) overtly varied the complexity of concepts
(though in a different way than we do), again noting that
different types of models seemed to excel with different
types of concepts. Our study takes a step forward by vary-
ing conceptual structure in a more systematic way, and by
tying the resulting variations in learning success to a fun-
damental spectrum of strategies in learning.

3. Experiment

3.1. Subjects

Thirteen undergraduate students at Rutgers University
received class credit for participation. Subjects were naive
to the purposes of the experiment.

3.2. Stimuli

The objects observed by our subjects were parameter-
ized by two dimensions loosely adapted from Ashby and
Maddox (1990), who used semicircles with a spoke radiat-
ing from the center, with the two dimensions being the
diameter of the circle and the orientation of the spoke.
Similarly parameterized figures were incorporated into
depictions of flags flying from ‘‘ships,’’ which the subjects
were asked to classify as either hostile (pirate) or friendly
(good guy) depending on the appearance of the flag
(Fig. 4). Each ship floated in from off-screen, with a flag
containing a black rectangle and a white sword. The width
of the rectangle (0–170 pixels) and the orientation of the

sword (0–359") served as the two quasi-continuous
dimensions.

3.3. Design

In the experiment, subjects were asked to learn a series
of concepts, each consisting of a set of positive examples
and a set of negative examples. For each concept, the sub-
ject was shown a series of unlabeled objects, both positives
and negatives randomly interspersed and all in random or-
der. The subject’s task was to attempt to classify each ob-
ject and indicate their guess with a keypress. Feedback
(correct or incorrect) was provided after each response,
allowing the subject to gradually learn the concept over
the series of examples. The main dependent variable was
the subject’s classification accuracy as a function of the
structure of the concept.

As sketched above, for each concept, positive examples
were drawn from a probability density function defined
over the two quasi-continuous features (flag width and
sword orientation, see above). For each concept, the positive
distribution was constructed from a mixture of K circular
bivariate Gaussians, with K ranging from 1 to 5, so that K
served as a modulation of the complexity of the concept
(Figs. 2, 3). Technically, the positive distribution p(f1, f2)
was a mixture of circular Gaussians pðf1; f2Þ /

PK
i¼1Nðf1; f2Þ,

each with a random mean and equal standard deviations,
resulting in a category structure with K distinct ‘‘modes.’’
Fig. 3 shows an example with K = 3. The negative examples
were drawn from the complementary density function
1 $ p(f1, f2), so that the ensemble of examples (positive
and negative) were uniformly distributed across the feature
space. To ensure that subjects gave their primary attention
to the positive set, which was what we were manipulating,
the total area of the positive set (i.e. the integral of the posi-
tive probability density) was held constant on all concepts
at one quarter of the total. To prevent overlap and thus
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Fig. 3. (a) An example of a probability density function (positive only) with K = 3, and (b) sample training data drawn from it, now including both positive
samples (indicated by +) drawn from the illustrated density p(f1, f2) and negatives (indicated by %) drawn from the complementary density 1 $ p(f1, f2)
(normalized). As in the experiments, the illustrated sample comprises 150 examples, about one fourth positive and the rest negative. Three clusters of
positives are plainly visible, corresponding to the three modes in the density function.

6 E. Briscoe, J. Feldman / Cognition 118 (2011) 2–16



the obscuring of the quantification of complexity, the
means of the Gaussian components of the positive distribu-
tion were separated by at least five standard deviations.
Half of the trials were drawn from the positive set and half
from the negative, randomly intermixed within a concept,
with a total of 150 items per concept. Each subject saw
one concept from each of the five complexity levels, in
random order, so all comparisons are within-subject.

3.4. Procedure

Subjects were presented with instructions indicating
that on each trial, a ship would move onto the screen
whose flag he or she must look at in order to determine
if the ship was a pirate or a ‘‘good guy.’’ Feedback was pro-
vided after each classification, from which the subject
gradually learned the correct classification. Each session
consisted of 150 such trials, taking about ten minutes. Each
subject ran one such session at each of the five complexity
levels, in random order, with short breaks in between
blocks.

3.5. Results and discussion

The most salient trend in the results is the steady de-
cline in performance as conceptual complexity increases
(Fig. 5), mirroring similar findings with other types of stim-

uli and complexity measures (Aitkin & Feldman, 2006; Fass
& Feldman, 2002; Feldman, 2000; Pothos & Chater, 2002).
Performance is generally good (nearly 90%) with single-
component K = 1 concepts, but declines to nearly chance
levels (50%) levels by K = 5. This trend reflects a simplicity
bias that is apparently ubiquitous in human learning
(Chater, 1997; Feldman, 2003): human learners perform
progressively worse as conceptual complexity increases.
As will be seen below, the performance of the various the-
oretical models tends to decrease with complexity as well,
but not necessarily at the same rate or in the same way as
human performance does.

Beyond this general simplicity bias, our main interest is
in the relative performance of various models in account-
ing for human performance as conceptual complexity var-
ies. Because of our focus on variations in performance as a
function of bias/variance, we chose fairly generic examples
of prototype and exemplar models that are very similar to
each other except for the primary difference in their num-
ber of modes they assume, i.e. in their bias. Before present-
ing fitting results we give details of the models.

3.6. Prototype model

The multiplicative prototype model proposed by
Nosofsky (1987) allows for psychological similarity to de-
crease exponentially with increasing distance. To compute
similarity between a to-be-categorized item and a proto-
type, the values of the item and the prototype are com-
pared along stimulus dimensions. The prototype is the
average of all exemplars seen from a given category. For-
mally, the scaled psychological distance between the to-
be-categorized item i and prototype P is given by

DiP ¼
Xd

m¼1

wmjxim $ Pmjr
 !1=r

: ð2Þ

The distance, DiP, is most commonly computed using a sim-
ple Euclidean metric (r = 2), where xim and Pm are the val-
ues of the to-be-categorized item and prototype on
dimension m in d-dimensional space. A weighting variable
for dimension m, represented as wm, is used to account for
the inequality of attention on each dimension. This vari-
able allows for a magnification of the psychological space
along more attended dimensions and shrinkage along less
attended dimensions (Kruschke, 1992; Nosofsky, 1986).

Similarity is then measured as a monotonically decreas-
ing function of the psychological distance between the
point representation of the stimulus and the prototype gi-
ven by

siP ¼ e$cdj ; ð3Þ

(Shepard, 1987) where c is a freely estimated sensitivity
parameter. Higher values of c ‘‘magnify’’ the psychological
space, increasing the differentiation between the proto-
types within the psychological space by increasing the
steepness of the similarity gradient around them. In
order to make a decision as to which category a particu-
lar item belongs, similarities are calculated between a
to-be-categorized item and the prototype from each cate-

Fig. 4. Examples of the pirate flag stimuli shown to subjects.

Fig. 5. Subject performance (proportion correct) as a function of concep-
tual complexity K. Error bars indicate ±1 s.e. Chance performance is 50%;
performance below dotted line is not significantly different from chance
at p = .05.
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gory. A guessing parameter g is used to represent the prob-
ability the observer chooses at random between the two
categories, with a complementary probability (1 $ g) that
the subject uses the similarities to make a decision. Simi-
larities are normalized to the summed similarity over cat-
egories. Putting all this together, the probability of
response RA to stimulus si is

pðRAjsiÞ ¼ g=2þ ð1$ gÞ
siPA

siPA þ siPB

! "
: ð4Þ

3.7. Exemplar model

The generalized context model (GCM) (Nosofsky, 1986)
assumes that the evidence for a particular category is
found by summing the similarity of a presented object to
all category exemplars stored in memory. The similarity
function is assumed to be the same for every exemplar.
Items are represented as points in multidimensional psy-
chological space, with the similarity between objects i
and j measured as a decreasing function of their distance
in that space,

sij ¼ e$cdij ð5Þ

Here, as in the prototype model, c is a sensitivity parameter
that describes how similarity scales with distance. With
large values of c, similarity decreases rapidly with dis-
tance; with smaller values of c, similarity decreases more
slowly with distance. Distances are calculated similar to
that in the prototype model, here summed from the to-
be-categorized item and every exemplar, where xim is the
value of the to-be-categorized item i on dimension m and
yjm is the value of a category exemplar j on dimension m.
As with the prototype model, wm is used as an attentional
weight granted dimension m.

dij ¼
Xd

m¼1

wmjxim $ yjmj
r

 !1=r

ð6Þ

To make a classification decision, similarities are calculated
and summed between the to-be-categorized item and the
exemplars from each category. If, for example, there are
two categories, A and B, then summing across the category
A exemplars and category B exemplars results in the total
similarity of the item to category A members and category
B members. For category A, EA represents all exemplars in
category A and EB represents all the exemplars in category
B. Using the similarity choice rule (Luce, 1963), the proba-
bility of category A response for stimulus i depends on
the ratio of i’s similarity to A to its total similarity to A
and B,

pðRAjsiÞ ¼ g=2þ ð1$ gÞ
P

j2EA sijP
j2EA sij þ

P
j2EB sij

 !
ð7Þ

where again g is a guessing parameter previously
described.

4. Analysis: model performance

4.1. Model fits to subject data

To analyze the performance of each model (GCM and
Prototype), we fit each model on each individual subjects’
responses (maximizing log likelihood). This means that
the fitted parameters are optimized to fit the ensemble of
each subject’s responses. (We first report the results aggre-
gating over subjects; later, after introducing a new model
for comparison, we give a detailed analysis of fits for indi-
vidual subjects.) These parameters reflect the settings of
the model that make the subjects’ responses most likely,
and thus cast each model in the best possible light.

As can be seen in Fig. 6, both models’ fit to subject data
generally decreased as complexity increased. This presum-
ably reflects subjects’ poorer performance with increasing
complexity, meaning that their responses become progres-
sively more random and thus more unpredictable as com-
plexity increased. At very high complexity (K = 4 and 5),
subject performance is very poor (see Fig. 5), so the two
models begin to converge in their ability to fit what are
now substantially random responses.

But at lower complexity levels, especially K = 2 and 3,
the fit of the exemplar model is substantially better than
that of the prototype model. By design, the prototype mod-
el determines similarity based on each exemplar’s distance
from the prototype, an average of all previously seen
exemplars. For K = 1, this assumption closely matches the
actual generating distribution, where there is one true cen-
ter of the positive examples about which positive exem-
plars radiate outward and the probability of a positive
exemplar becomes exponentially less likely as its distance
from the center increases. The exemplar model also fits the
data at this level of complexity well, with a summed log-
likelihood of $48.7, resulting in a fit close to that of the
prototype model, with a fit of $56.0.

At complexity K = 2, the category generative model is
a mixture of two Gaussian clouds. Though subjects’

Fig. 6. Model fit to subject data as a function of conceptual complexity,
using parameter values chosen to optimize fit to the subject data. Higher
log-likelihood indicates better fit. Error bars indicate ±1 s.e.
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performance worsens, they are still well above chance,
averaging around 80% correct. Here the probability distri-
bution in psychological space created from the prototype
model, because it allows for only one central prototype,
peaks in a region that falls between the two actual gener-
ative distributions. The prototype model cannot account as
well for the data as can the exemplar model, which is able
to represent the similarity space as a distribution with two
modes. At this level of complexity, the exemplar model is
able to fit the subject’s data with a summed log-likelihood
value of $69.7, substantially better than the prototype
model’s fit of $94.4.

The advantage provided to the exemplar model at com-
plexity level two reoccurs at K = 3, with GCM’s fit at $80.2
and the prototype model’s fit at $95.2. At complexity lev-
els K = 4 and 5, however, exemplar and prototype perfor-
mance begins to converge. At these high complexities,
subject performance drops near, but still slightly above,
chance. As their responses follow less of a discernible strat-
egy, both the exemplar and prototype models are less able
to approximate their responses. At K = 4 and 5, the models’
fits are similar at $94.8 and $93.5 for the prototype and
$91.9 and $88.6 for the exemplar model.

4.2. Model fit to concepts

The analysis above involved optimizing each model to
fit subjects’ data as well as possible. While this method
puts each model in the best possible light, for our purposes
it is undesirable in that it entails setting each models’
parameters based on information that the model (and sub-
ject) could not, in principle, have access to—namely the
performance of the ensemble of subjects on the task. That
is, these ‘‘optimal’’ parameters values are based on an anal-
ysis of the subjects’ data after the experiment is complete,
and attempt to bring the model into closest possible agree-
ment with this corpus of responses. It is obviously not rea-
sonable to suppose that subjects in the midst of the
experiment could know what these optimal parameters
would be, nor is it the subjects’ primary goal to set any par-
ticular scientific model in the best possible light. Instead,
the subject’s goal is simply to learn the examples pre-
sented as well as possible. As we have argued, these same
parameters materially influence the success of learning, in
part because they modulate the degree of generalization.
Hence from the subject’s point of view it makes sense to
optimize these parameters for learning instead of for model
evaluation. So it is only reasonable to ask how each model
performs when its parameters are set so as to maximally
achieve this goal instead.

Hence as a second analysis, we refit each model to the
data, this time setting the parameters in order to maximize
the log likelihood of the training examples observed so far
at each point in the experiment—that is, simply allowing
each model to learn the concepts as well as possible. This
method inevitably results in worse fit to the subject data,
but illustrates more accurately how each model would per-
form were it ‘‘left to its own devices’’ to learn the training
data as presented to the subject.

We acknowledge that the first analysis (optimized to
the responses) is the conventional approach, and we do

not propose the second one (optimized to the training
data) to replace it, but rather to complement it. The two
analyses are designed to reveal different aspects of the sit-
uation. Parameter estimation with learning models is a
subtle problem (Lamberts, 1997) and we present both
analyses to give what we see as the most complete picture.

Fig. 7 shows the performance of the prototype and
exemplar models, using parameters fit to the training data,
compared to the performance of subjects (replotted from
Fig. 5). Like subjects, both models decline in performance
with increasing complexity. However, the three curves do
not decline in the same way or at the same rate. At K = 1,
when the concept is a single Gaussian cloud—like the con-
cepts most often studied in the literature—performance by
both models are similar, and both closely match that of
subjects. But as complexity (K) increases, increasingly
diverging from the unimodal assumption inherent in the
prototype model, performance of the prototype model falls
off much more rapidly than subjects. But performance of
the exemplar model does not fall off rapidly enough to
match subjects; by K = 5 its performance is far superior
to that of human learners. (Indeed, at K = 5 the subjects
are essentially at chance, but GCM is still effective.) With
its inherent capacity to learn complex concepts, the exem-
plar model is able to learn complexities of the training data
that humans cannot, and in this sense overfits relative to
subjects.

This pattern can also be seen when we consider the fit
of the models. Fig. 8 shows the fit of each model to subject
data using parameters optimized to the training data. As
before, both models generally decrease in fit as complexity
increases, reflecting the generally poorer (more random)
performance of subjects at high complexities. But at higher
values of complexity (K = 4 and 5) the prototype model be-
gins to fit subjects’ data better than the exemplar model,
reflecting the fact that at these complexities the exemplar

Fig. 7. Subject performance compared to the performance of the exem-
plar model (GCM) and the prototype model when their parameters are fit
to the training data. Chance performance is 50%; performance below
dotted line is not significantly different from chance at p = .05.
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model can learn the concepts well, but subjects generally
cannot. With relatively simple multimodal concepts
(K = 2 and 3) prototype models cannot perform well (be-
cause they assume unimodality) but subjects can, showing
that subjects’ conceptual models are flexible enough to
accommodate some multimodalty. But with more complex
multimodal concepts (K = 4 and 5), subjects become essen-
tially unable to learn the concepts, but exemplar models
still can—leading to an increasingly poor fit between the
exemplar model and human performance.

In other words, the results show that as complexity in-
creases, human learners go from fitting one class of models
better to fitting the other class of models better. Prototype
models assume a unimodal concept, and their performance
degrades rapidly as K increases—more so than do subjects.
Exemplar models assume a multimodal concept, and begin
to out-perform subjects as K increases. As we modulate the
environment from the bias of prototype models (unimo-
dality, K = 1) to the variance of exemplar models (multim-
odality, K = 5), subjects go from outperforming the
prototype models to being outperformed by the exemplar
model. On the spectrum from bias to variance, human sub-
jects lie somewhere in the middle, intermediate between
the two models—more complex than the unimodal
assumption made by prototype models, but not as complex
as the super-multimodal assumption embodied by GCM.

As we have emphasized, our goal is not to pit exemplar
and prototype approaches against each other, but rather to
understand how they relate to each other, and in particular
to understand how human learning relates to the spectrum
along which they lie—bias/variance. The above analysis
helps illuminate human concept formation by making it
clear that it lies somewhere in between the two poles.

4.3. The sensitivity parameter (c) as a modulator of bias/
variance

Fitting parameters to subject data allows them to
‘‘float’’ in a way that maximally accommodates the data

(see Nosofsky & Johansen, 2000). But tuning the parame-
ters this way begs the question of why they take the values
they do—especially when one considers that alternative
values (e.g. those that optimally fit the examples) would
have improved performance from the subject’s point of
view (that is, would have allowed them to learn the train-
ing examples better). Why would subjects set their own
parameters in an apparently suboptimal way? Our argu-
ment is that they do so in order to optimize their position
along the bias/variance continuum—reducing overfitting
and thus leading to more effective learning in the long run.

As mentioned, GCM (and many similar models) in-
cludes a sensitivity parameter, c, that modulates how stee-
ply similarity falls off with distance from each example
(Eq. (5)). The ability of exemplar models to fit learning data
can very dramatically as a function of c, which has
prompted a number of discussions of how this parameter
is best interpreted (Smith, 2005; Verguts & Storms,
2004). We argue that c has the effect of modulating the
learner’s position along the bias/variance spectrum. High
values of c entail very narrow, ‘‘spiky’’ modes, while lower
values of entail smoother, broader, and less numerous
modes. High values mean that exemplars can have more
‘‘local’’ effect, influencing generalization only nearby in
the stimulus space, which results in decision boundaries
that more closely resemble the arbitrarily complicated
arrangement of exemplars. Low values mean that exem-
plars influence generalization more broadly, resulting in a
simpler decision boundary with smoother boundaries
and less abrupt transitions between positive and negative
regions of the space.

In this sense high values of c make GCM more ‘‘exem-
plar-like,’’ and low values more ‘‘prototype-like.’’ In the
language of statistical learning theory, we would say that
c regularizes the model; that is, it modulates the complex-
ity of hypotheses that it entertains. (Prototype models also
have an analogous sensitivity parameter c (Eq. (3)). But be-
cause of the fixed assumption of a single prototype per
class, this parameter does not have a similar effect, instead
simply controlling how rapidly membership in the class
degrades with distance from the induced prototype.)
Above, we spoke of exemplar models as tacitly assuming
many modes—in principle, as many as modes as the num-
ber of training examples. But in light of the variation in c,
exemplar models can be better thought of as assuming a
variable number of effective modes, with low values of c
blurring regions of the space together to form a set of im-
plicit modes that may be far less numerous than the train-
ing examples.

In other words, varying c allows GCM to fall at various
points along the bias/variance continuum, with high values
entailing high variance, and low values entailing high bias
(Fig. 1). Exactly where GCM fits on the bias/variance con-
tinuum thus depends on exactly how c is set. While proto-
type models exhibit an inflexibly high bias that (our data
show) does not account well for human performance,
GCM is more flexible, and not as firmly tied to a single fixed
point in the bias/variance continuum. When c is set very
high, exemplar models are capable of grossly overfitting
examples; the decision surface can grow as complex
as the training examples are numerous. In this sense

Fig. 8. Model fit to subject data as a function of conceptual complexity,
using parameter values chosen to optimize fit to the training data. Higher
log-likelihood indicates better fit. Error bars indicate ±1 s.e.
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exemplar models can (and our data show, often do) find a
poor point along the bias/variance spectrum. This is an
inevitable result of subjects’ attempting to learn the train-
ing examples as well as possible (which, after all, is what
they have been instructed to do). Without constraining c,
the model has the capacity to overfit the data, and nothing
preventing it from doing so (Schölkopf & Smola, 2002).

4.4. The locally regularized context model

There are, of course, many ways of modulating bias/var-
iance, as the continuum is an abstraction not tied to any
particular parameter or class of models. (There are an infi-
nite number of ways of being biased, but only one way of
being totally unbiased—which unfortunately leads to
chronic overfitting and very poor learning.) In our setting,
perhaps the most obvious way to vary bias/variance be-
tween prototype and exemplar models is simply by adopt-
ing a mixture model with a varying number of
components, much as in Rosseel (2002), and fitting the
number of components to the training data. (This would
essentially make K itself the bias/variance parameter, but
one must be careful to distinguish the actual number of
mixture components in the generating distribution K from
the estimated number of components derived from the
sample bK .) In practice, explicitly varying the number of
mixture components and varying the sensitivity parameter
c within an exemplar framework have extremely similar
effects, because (as explained above) the value of c deter-
mines the number of effective modes in the decision sur-
face. (A similar idea is implemented in density estimators
with adaptive [i.e., optimized] kernel sizes; see e.g. Jones,
McKay, & Hu, 1994.) Hence below we include in our anal-
ysis a comparison with GCM with c fit to the training
examples, which allows it to optimize the number of effec-
tive components to fit the concept.

However a number of considerations argue for a slightly
more flexible way of varying bias/variance, which we
adopt in our ownmodel. In general there is no reason to as-
sume that the gradation of typicality would be globally
uniform over the entirety of feature space, as implicitly as-
sumed when one adopts a single level of c or a simple var-
iation in the number of mixture components. If, for
example, we adjust c to match the entire ensemble of
training examples (as we do below), we may find that it
overfits in one region of the space and underfits in another.
We were inspired by an observation by Op de Beeck,
Wagemans, and Vogels (2008), who in modifying ALCOVE
(Kruschke, 1992) found that they could not achieve good
fits to their subjects’ data unless different nodes in the net-
work were allowed to take on different values of c, mean-
ing that each value of c would reign locally over one region
of the space. In natural settings, it is entirely possible for
the data-generating source (the ‘‘natural concept’’) to be
complex and variegated in one region of the space and
smooth and regular in another. In the randomly generated
multimodal concepts used in our experiments, some
modes happen to fall relatively near each other, creating
broader positive peaks and thus simpler decision bound-
aries; while other modes are relatively distant from one
another, creating narrower and more isolated peaks and

thus more complex decision boundaries. Such differences
in the typical rate of change of category membership are
essentially what c modulates.

These considerations led us to formulate a newmodel, a
simple modification of GCM, in which sensitivity c is mod-
ulated locally, or in other word, the model islocally regular-
ized. We sought to achieve this in the simplest possible
way. In the Locally Regularized Generalized Context Model
(LRGCM), we simply partition the space into distinct re-
gions, with boundaries estimated from the training data,
and set c separately and independently for each region.
The resulting model is similar to GCM in that it sums the
distance to previously seen exemplars, but unlike GCM, it
calculates similarity using parameters that are optimal
for the particular region in which the to-be-categorized
exemplar occurs. Again, we emphasize that our interest
is in the principle of local regularization, not to the imple-
mentation, and we attach little importance to the fact that
the mechanism here is exemplar-matching; the issue is
how the decision surface is shaped and why, and whether
the data support the claim that human category formation
resembles it.

The model is simple. For each dimension, we used a
standard kernel density estimator (Duda, Hart, & Stork,
2000) to estimate the probability density along that
dimension. We then placed boundaries at local minima of
this estimated density function, dividing the dimension
into distinct bins (not necessarily of equal width). The bins
in all dimensions are then crossed to create a set of rectan-
gular cells in D dimensions, restricting the total number of
cells to 9. (The exact number of cells in the grid is obvi-
ously ad hoc. For our purposes we simply needed a number
sufficient to resolve all the modes we knew our own sub-
jects would encounter. Again, our focus is on the principle,
in this case local regularization, not the implementation,
which is as simple as possible.) Each cell is then endowed
with its own local sensitivity parameter cj, whose value is
optimized to the training data over the course of learning.
This allows cj to serve as a local learning parameter rather
than a uniformly set global one.

Our approach has some similarity to other categoriza-
tion models, several of which were mentioned above. SUS-
TAIN (Love et al., 2004) attempts to add new items to
known clusters, but creates new clusters when needed,
allowing it to fit the number of clusters to the number of
modes in the training data, thus implicitly modulating bias.
Motivated by findings in neuroscience, ITCOVE (Op de
Beeck et al., 2008) allows local modifications in the granu-
larity of abstraction, modulating its distance metric in re-
sponse to training data. Verbeemen, Storms, and Verguts
(2003) also use a similar approach, instead using K-means
clustering to determine multiple prototypes, similarly
allowing for multiple abstractions within the stimulus
space. Similarly Aha and Goldstone (1992)’s GCM-ISW
model allowed the parameters of an exemplar model to
be determined by an exemplar’s neighborhood in psycho-
logical space. However, unlike the Aha & Goldstone model,
our approach varies only the parameter c, the sensitivity,
within each partition in the stimilus space, while the
attentional weighting w and the guessing parameter g
are constant over the space. This flexibility allows for
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prototype-like abstraction within each partition, while
exhibiting a multimodal structure structure similar to,
but less complex then, a straight exemplar model. The
main difference between these models and ours is in not
in the details but in the motivation, with our modification
of GCM being driven by the aim of appropriately regulariz-
ing hypothesis complexity, and in particular local hypoth-
esis complexity, in order to accomodate the learning of
heterogenous concepts such as those encountered by our
subjects.

We emphasize that the LRGCM is not intended as a full-
featured categorization model, and is not suitable for mod-
eling the many categorization phenomena encompassed
by more complex models. We propose it simply as a con-
crete proof-of-concept for its main novel feature, local reg-
ularization. The idea is simply to show that the
performance of a standard model can be substantially im-
proved by adding local modulation of bias/variance, as
demonstration that this aspect is an important component
of a more complete model of learning. Indeed, local regu-
larization is an abstract computational idea that could eas-
ily be incorporated into more elaborate processing models.
It also has a number of theoretical benefits that we discuss
below (see Section 5.2).

Next, we set out to compare performance of the three
models: GCM Prototype, and our LRGCM, by fitting them
each subject data. (All fits are to individual subjects, though
we sometimes report aggregates of the individual fits.) Be-
cause LRGCM has a variable number of parameters, we
needed a flexible way of balancing fit to the data with the
number of parameters. A standard approach to this prob-
lem is the Akaike information criterion (AIC; see Akaike,
1974), which provides a measure of fit that compensates
for extra parameters according to the following equation

AIC ¼ $2lnfþ 2q ð8Þ

where f denotes the likelihood of the model, and q the
number of free parameters it has. In our implementations,
both GCM and the prototype model have three fittable
parameters (attentional weight, the guessing parameter,
and sensitivity), while our model uses a variable number
that depends on howmany regions the space is partitioned
into (at most 9, making a total of 11 parameters). The AIC is
intended to compensate for such differences in dimension-
ality in model comparisons, providing a level playing field
in which to compare models with unequal numbers of free
parameters.1

Fig. 9 plots AIC for each of the three models, with
parameters optimized to fit the subject data. (Lower values
of AIC indicate better fit.) The plot shows that our LRGCM
consistently fits subjects’ data better than the other two
models, even when the difference in the number of param-
eters is taken into account.

With unimodal concepts (K = 1), all three of the models
demonstrate approximately equal levels of performance,
with AIC values of 97.4, 98.7, and 98 for the locally regular-
ized, exemplar, and prototype models, respectively. A
t-test shows no significant differences among the means
of the AIC values for the three models (p = .185 for proto-
type vs. LRGCM, p = .67 for GCM vs. LRGCM, p = .06 for
GCM vs. prototype). But at higher complexity levels
(KP 2) differences among models become evident. While
GCM performs better than the prototype model at these
higher levels (AIC values of 139.5 for GCM vs. 191.4 for
the prototype model), LRGCM is still better (AIC = 126.7).
By allowing the sensitivity parameter to vary locally, the
LRGCM is able to capture the variation across the space
in the concentrations of examples, setting c high where
the training example require it and low where they do
not. The subjects apparently share LRGCM’s flexibility, as
suggested by its superior fits at K = 2, 3 and 4 (vs. GCM,
respectively p = .005, .014, .012; vs. prototype, respectively
p = .001, .007, .036). There were no significant differences
at K = 5 where, as previously mentioned, performance ap-
proached chance performance and thus all fits were poor.

These results suggest that the broad properties of the
LRGCM, in particular its ability to modulate the effective
number of modes locally, allow it to fit subject data more
closely than competing models. Not only do human learn-
ers adopt a moderate position along the bias/variance con-
tinuum, they do so in a way that varies from place to place
in feature space. This allows the learner to be appropriately
‘‘tuned’’ to the concept even when the concept is of non-
uniform complexity.

4.4.1. Fit to individual subjects
We wanted to ensure that the pattern of performance

we observed was reasonably stable over subjects (Smith
& Minda, 1998). (Recall that although above we report
aggregate properties of the fitting, e.g. the mean AIC over
subjects, the fitting itself was always to individual subjects,
never to aggregate data.) Here we break down the

Fig. 9. Fit (AIC) of the three models (GCM, prototype, and LRGCM) to
subject data. Lower values indicate better fit.

1 There is a vigorous debate in the literature over the relative merits of
the AIC vs. the Bayesian information criterion (BIC) (see Burnham &
Anderson, 2004). Without entering into technical details, we note that BIC
has often been criticized for depending on the assumption that the ‘‘true’’
model lies within the model class under consideration, an assumption we
cannot regard as reasonable in our context, which certainly includes an
open-ended set of potentially superior models. Hence here we adopt the
AIC which is, in any case, the more conventional choice.
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individual fits in more detail. We found that the LRGCM
was consistently superior across individual subjects,
although of course not perfectly so. Fig. 10 shows the fit
(AIC) for each subject for each model (collapsing over com-
plexity). As can be seen in the figure, our LRGCM model fit
the data better than the prototype model in all 13 subjects,
and better than GCM in 11 out of 13 (worse in 1, and
approximately tied in 1). We conclude that the superiority
of the LRGCM is reasonably consistent over subjects and is
not an artifact of aggregation.

5. Discussion

Many researchers have previously recognized the need
to combine the benefits of prototype formation and exem-
plar memorization. The combination of different ap-
proaches has led to a number of ‘‘hybrid’’ models in the
literature exhibiting various elements of both. Most of
these overtly divide categorization into two distinct com-
ponents or phases, sometimes thought of as verbal vs. im-
plicit (Ashby et al., 1998). The RULEX model of Nosofsky
et al. (1994) has one stage involving simple logical rules,
and another involving the storage of occasional exceptions
to these rules. Erickson and Kruschke (1998) proposed a
hybrid connectionist model for categorization that consists
of single-dimensional decision boundaries, an exemplar
module for differentiating exemplars and categories, and
a gating mechanism to link the two. Their model’s behavior
predicts that the exemplar module will primarily contrib-
ute to classification judgments for stimuli similar to
learned exceptions and the rule module will dominate in
other cases. Anderson and Betz (2001) likewise formed a
hybrid connectionist model by combining both exemplar
and rule-based processes into Anderson’s ACT-R architec-
ture (Anderson, 1993). Using this framework, they added
a theory of strategy selection between an exemplar and
rule-based strategy, using the exemplar-based random
walk (EBRW) model (Nosofsky & Palmeri, 1997) and the
rule-plus-exception (RULEX) model of Nosofsky et al.

(1994). While not overtly a hybrid model, the SUSTAIN
model of Love et al. (2004), discussed above, allows new
clusters to form to accomodate examples that do not fit
well into existing clusters, thus allowing the learner to
effectively represent multimodal categories similar to
those in our experiments.

Apart from the details of particular models, though, our
main focus has been the broader theoretical issue of how
various models fit on the bias/variance continuum, and
again our own LRGCM model is primarily intended as a
way of understanding where human learners fit along it.
In this spirit, other researchers have also treated prototype
and exemplar models as points along some kind of contin-
uum. Smith and Minda (1998) suggested that the balance
between prototype or exemplar strategies depends on
the stage of concept learning, with prototype strategies
prevailing in the early stages, and exemplar models in
the late stages. As discussed in Nosofsky (1991), the well-
known adaptive model of Anderson (1991) can be seen
as equivalent to GCM in the presence of ‘‘poor category
structure,’’ which in our context means high complexity.
The model of Vanpaemel et al. (2005) incorporates both
prototype and exemplar aspects by placing them at the ex-
tremes of a ‘‘varying abstraction’’ model. In their model,
the number of items to which a new item can be compared
may vary, allowing the model to form representations that
lie between pure prototype and exemplar type structures.
Implicit in this conceptualization is a core idea we wish
to make more explicit, namely that these two extremes dif-
fer in how ‘‘abstract’’ they are, i.e. in our terms where they
lie along the bias/variance continuum. Ashby and Alfonso-
Reese (1995) conceptualized this spectrum in a somewhat
different way, emphasizing the more traditional statistical
dichotomy between parametric (prototype) and nonpara-
metric (exemplar) models, seeing both as varieties of den-
sity estimation. The distinction between parametric and
nonparametric statistics is very well-established in tradi-
tional statistics, and is indeed related to the bias/variance
distinction which arises in machine learning and statistical
estimation theory. But the latter differs in that it explicitly
connects the estimation procedure to the effectiveness of
generalization with further samples from the same data-
generating source. In a related vein, Rosseel (2002) has
proposed an explicit mixture model, assuming a general-
ization space that, like the concepts used in our experi-
ment, is a finite mixture of multivariate probability
distributions. By allowing the number of mixture compo-
nents to vary, this model can mimic both parametric (pro-
totype) and nonparametric (exemplar) performance.
Finally, the recent models of Feldman (2006) and Goodman
et al. (2008) place probabilities over rule-like structures,
deriving similarity-like relations from probability calcula-
tions in a setting of logic-like rules—again, though in a very
different way, placing both approaches in a common for-
mal framework.

In the context of the argument we have made about
bias and variance, we would argue that the benefit of a hy-
brid or mixed approach is to allow the learner some flexi-
bility in setting the bias. ‘‘Natural’’ concepts take on a wide
range of complexity levels—not just the two levels favored
by conventional models—and learners need be able to
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Fig. 10. Fit (AIC) of individual subjects to the three models (GCM,
prototype, and LRGCM). Lower values indicate better fit. LRGCM is lowest
(best) in 11/13 subjects.
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modulate their bias to the examples they encounter. In this
light, pure prototype and pure exemplar systems might be
seen as laboratory artifacts, which only emerge in pure
form in the context of unnaturally simple—or, respectively,
unnaturally complex—artifactual concepts.

5.1. Finding the right balance between bias and variance

In this connection, it is natural to ask: what is the ‘‘true’’
level of complexity of naturally-occurring concepts? We
would have to know the answer to this question in order
to determine what level of abstraction by a learner was,
in fact, optimal—because, by definition, only a level appro-
priately matched to the data-generating source will gener-
alize optimally. Some authors have occasionally touched
on this topic, but rarely in a very quantitatively precise
way. Rosch (1978) famously suggested that natural con-
cepts tended to comprise subtypes, in a branching typol-
ogy involving a hierarchy of superordinate and
subordinate classes. Augmenting this idea, Keil (1981) pro-
posed that human typologies obey a strict branching-only
cladistic structure. More recently, several papers given
more quantitative accounts of the inference of such hierar-
chies (Feldman, 2006; Navarro, 2008; Roy, Kemp, Mans-
inghka, & Tenenbaum, 2006). All these proposals assume
that natural concepts contain a certain amount of sub-
structure, but none quantify exactly how much—e.g. how
many subdivisions a natural concept typically contains.
Without this number, or more precisely without a proba-
bility distribution over this parameter, bias and variance
cannot be completely optimized for nature.

We argue that this question is impossible to answer
definitively, however, for several reasons. First, exactly
howmany subtypes a concept contains is essentially a sub-
jective question, depending on exactly how a learner
chooses to partition the data, which is precisely what we
are trying to optimize; thus it cannot be answered defi-
nitely without a vicious circle. Second, even if the complex-
ity of concepts could be objectively quantified, it would
surely be context-dependent. Classes of fish, for example,
could not be assumed to contain the same degree of inter-
nal homogeneity and subtypology as do classes of rocks.
Nature is heterogenous, and it is heterogeneously
heterogeneous.

What we can say is what the human learning mecha-
nism assumes about the natural complexity of the environ-
ment. Our results suggests that human learners assume an
intermediate number of components or subtypes in a typi-
cal concept (in our data, about two or three, though the ex-
act number presumably depends on the number of training
examples)—not one, as assumed by prototype models, nor
many, as assumed by pure exemplar models, but some-
where in between.

Of course, the limit on the number of subtypes per con-
cept might—like all forms of bias—be viewed as a perfor-
mance limitation (in this case a memory limitation)
rather than an inductive assumption. That is, perhaps hu-
man learners simply can’t keep track of too many subtypes
per concept. But our argument in effect places a functional
interpretation on such a limitation. Limiting the number of
modes or exemplars that can be stored, rather than ham-

pering learning, might actually enhance it, by adjusting
the bias in a way that better suits the environment and
thus improves generalization.

5.2. Compositionality

Local regularization as exemplified by the LRGCM
places human category formation at an intermediate point
on the bias/variance spectrum, specifically allowing the
learner to ‘‘split’’ concepts into some small number (in
our data, typically 2 or 3) of component concepts. This as-
pect bears an important relationship to historical argu-
ments about the nature of human concepts, which we
briefly mention.

In the philosophical literature on concepts, prototype
models have occasionally been criticized for not handling
the problem of compositionality, namely that concepts are
built from, and derive their meaning from, constituent con-
cepts (Fodor, 1996, though see e.g. Kamp & Partee, 1995;
Smith & Osherson, 1984). (The philosophical community
generally uses the term prototypes to refer to fuzzy concepts
built on gradations in typicality, thus including both proto-
type and exemplar models in the psychologist’s terminol-
ogy. The philosophical literature has taken little notice of
exemplar models as such, and thus has not seriously
considered the debate between prototype and exemplar
models that is so prominent in psychology.) The central
problem from this perspective is that prototypes are
thought to lack internal compositional structure. In a para-
digmatic example, the concept pet fish has a typicality gra-
dient that seems unrelated to the typicality gradients of its
apparent constituents pet and fish. Notwithstanding this
criticism, Goodman, Tenenbaum, Feldman, and Griffiths
(2008) have proposed a system for computing Bayesian be-
lief over logical forms that can capture both the composi-
tional structure of concepts as well as observed variations
in typicality, apparently accommodating both perspectives.
The concept of local regularization brings out another
perspective on how prototype-like and compositional
aspects of category structure can be reconciled.

Our data show that human learners are happy to treat
concepts as, in effect, mixtures of several constituent com-
ponents (cf. Rosseel, 2002), each of which has a separate
typicality gradient and thus granularity (operationalized
in themodel as a locally prevailing value of c). Indeed, ‘‘pro-
totypes’’ in the psychologist’s sense—meaning, roughly,
unitary statistical summaries of observed instances—are

Concept

subconcepts (mixture components)

subsubconcepts

Etc.

Fig. 11. Hierarchical structure arising in a composite concept with K = 3.
Unimodal (K = 1) prototypes have no composite structure, but higher
values of K can induce recursive subtypologies, giving rise to a recursive
hierarchy as depicted here.
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not compositional, in that they do not comprise constituent
subtypes. But more complex mixtures such as those readily
learned by our subjects—no longer prototypes in the psy-
chologists’ sense, but still prototypes in the philosopher’s
sense—are, by definition, composites of simpler subcon-
cepts. Thus the subconceptual fission introduced by mix-
tures induces compositionality. In principle this idea can
be extended hierarchically to create tree structures, with
concepts built from several constituent subconcepts,
which in turn are built from several sub-subconcepts,
and so forth (Fig. 11). The resulting picture recapitulates
the well-established hierarchical structure of human con-
cepts mentioned above (Rosch, 1978; Keil, 1981), and al-
lows typicality gradients to coexist harmoniously with a
complex compositional structure. While prototype models
(in the psychological sense of the term) assume that cate-
gories comprise a single undifferentiated ‘‘type,’’ and
exemplar models assume they comprise a large (poten-
tially unbounded) number of individual instances, a locally
regularized model assumes that categories are composed
of a small number of subtypes—which opens the door to
a recursively hierarchical constituent structure not avail-
able in either conventional approach.

6. Conclusion

Several conclusions, both empirical and conceptual, can
be drawn from this study.

First, subjects are proficient at learning K = 1 concepts,
and though their performance declines as complexity in-
creases, are also fairly competent at learning K = 2 and
K = 3 concepts. At complexity levels K = 4 and 5, subjects
are less successful, approaching chance performance. All
models tested also decrease in performance as complexity
increases, though not all at the same rate, and not all in a
way that is equally consistent with the human data: the
prototype model we tested fell off too quickly to match hu-
man performance, and the exemplar model not quickly en-
ough. Indeed the exemplar model was able to learn very
complex (K = 5) concepts on which subjects were at
chance.

Second, more broadly, conceptual complexity influ-
ences the degree to which each strategy accurately ac-
counts for human performance. At low but multimodal
levels of complexity (K = 2 and 3), where the subjects are
still able to learn the concepts fairly effectively, prototype
models underfit the training data and perform poorly.
Their heavy bias towards unimodality means they cannot
modulate their decision surfaces so as to accomodate such
complex concepts—in contrast to the subjects, who appar-
ently can. At high levels of complexity (K = 4 and 5), sub-
jects are no longer able to keep up with the complexity
of the concept. But the exemplar model, left to its own de-
vices (i.e. unregularized) can, thus demonstrating an over-
fit relative to human learners. Our model, the LRGCM, with
greater flexibility to regularize where necessary, fits the
subject data better. This suggests that human learners have
a position along the bias/variance continuum—that is, a set
of assumptions about conceptual complexity—that is both
more intermediate and more flexible.

Third, prototype and exemplar approaches to categori-
zation may effectively be regarded as points along a basic
continuum of model complexity, reflecting a spectrum of
possible assumptions about the complexity of concepts in
the environment. Models that can vary their complexity lo-
cally, such as the locally-regularized model we presented
here, can therefore subsume the desirable aspects of both
prototype an exemplar approaches.

Finally, we draw an important methodological conclu-
sion. When carrying out studies of human learning, con-
cepts with a range of complexity values must be
included. The K = 1 concepts, which are unimodal Gaussian
clouds and thus resemble many concepts studied in the lit-
erature, elicited very similar performance from prototype
and exemplar models—which, in light of their very diver-
gent results at other complexity values, must be consid-
ered misleading. Indeed, this result alone sheds some
light on the many decades of controversy about the rela-
tive merits of the two approaches, which are indeed diffi-
cult to distinguish if experimental concepts are poorly
chosen. Because clear differences between the two strate-
gies only emerged at complexity K = 2 and higher, it seems
imperative to include such concepts in any study of human
concept learning. Indeed, it seems important that complex-
ity should be systematically varied over a range of levels,
as for all the reasons detailed above it has the power to
modulate the relative merits of competing models. Only
this type of comprehensive investigation can guarantee a
sufficiently broad view of human generalization under
arbitrary conditions.
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