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Symbolic representation of environmental variables is a ubiquitous and often debated com-
ponent of cognitive science. Yet notwithstanding centuries of philosophical discussion, the
efficacy, scope, and validity of such representation has rarely been given direct consideration
from a mathematical point of view. This paper introduces a quantitative measure of the
effectiveness of symbolic representation, and develops formal constraints under which such
representation is in fact warranted. The effectiveness of symbolic representation hinges on
the probabilistic structure of the environment that is to be represented. For arbitrary probabil-
ity distributions (i.e., environments), symbolic representation is generally not warranted.
But in modal environments, defined here as those that consist of mixtures of component dis-
tributions that are narrow (“spiky”) relative to their spreads, symbolic representation can be
shown to represent the environment with a relatively negligible loss of information. Modal
environments support propositional forms, logical relations, and other familiar features of
symbolic representation. Hence the assumption that our environment is, in fact, modal is

a key tacit assumption underlying the use of symbols in cognitive science.

© 2012 Elsevier B.V. All rights reserved.

1. Perspectives on symbolic representation

The structure, function, and even existence of symbolic
representations has been a central issue in cognitive science
ever since its inception, and often a contentious one.
Philosophical perspectives on this issue have centered on
the sufficiency of internal symbolic mechanisms to afford
a genuinely representational (“intensional”) status with re-
spect to the world. For example Putnam (1988) has rejected
a completely computational account of mental representa-
tion, meaning one that depends only on the form of symbolic
expressions inside the head, on the grounds that the truth
conditions of such expressions inevitably relate to condi-
tions outside the head. Some connectionists have taken as
a founding premise that symbolic representations are inad-
equate to model the dynamic, variegated and intrinsically
continuous world (Harnad, 1993; Rumelhart, McClelland,
& Hinton, 1986). Others (e.g. Holyoak & Hummel, 2000) have
argued that symbols remain an essential and ineliminable
component of mental representation. But, like many foun-
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dational controversies, this debate has featured a wide vari-
ety of conceptualizations of key terms, impeding a clear
understanding of exactly how symbols might contribute
(or, alternatively, fail to contribute) to mental representa-
tion. In this paper, I consider this problem from a mathemat-
ical point of view, attempting to quantify the information
that symbolic representations capture about the environ-
ment, and the fidelity with which they capture it (cf.
Dretske, 1981; Usher, 2001). To preview the argument, the
fidelity of symbolic representations turns out to depend
heavily on what we assume about the environment. In some
environments, symbolic representations make demonstra-
bly faithful models, while in others, they do not. This paper
attempts to understand the factors that modulate the de-
gree of fidelity, and thus to shed light on the foundations
of the symbolic representations that are so ubiquitous in
cognitive science.

Roughly speaking, symbols are discrete mental repre-
sentations that reliably correspond to stable, distinguish-
able entities in the world. But very little in this vague
phrase admits to a precise definition. A particularly basic
case of symbolic representation, which nevertheless re-
tains most of the definitional difficulties of the general
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case, is that of Boolean or other discrete-valued features.!
These are variables that take on several distinct levels or val-
ues, like big/little, on/off, or animal/vegetable/mineral. Discus-
sions of symbolic representations in cognitive science often
devolve into debate about the aptness or “naturalness” of
such discrete features, as compared to corresponding con-
tinuous ones (tall/short for height, heavy/light) for weight,
etc.). Discrete-valued features are sometimes derided as
unnatural on the grounds that classical physics employs
continuous variables exclusively as its underlying parame-
ters (e.g. position, mass, time). Yet this accusation lacks a
firm empirical foundation; how, after all, do we know ex-
actly what is objectively “natural” independently of the
choice of variables we use to measure it? Conversely, affir-
mations that some naturally-occurring variables seem essen-
tially Boolean (male/female, inside/outside) seem equally
feeble, for precisely the same reason. What is the principle
at work here? When are variables intrinsic to the environ-
ment, and when are they “merely” approximations?

In what follows I pursue a mathematical rather than a
philosophical perspective on this question, though I will
occasionally draw attention to salient connections to tradi-
tional philosophical questions. The main emphasis will be
on whether, and to what degree, symbolic representations
preserve functionally useful information about the outside
world. Nevertheless the thrust of the argument shares with
many philosophical treatments an emphasis on the
environment as the source of validation for mental repre-
sentations. But in contrast to many accounts, here the
question “Are symbolic representations legitimate?” will
turn out to have a range of answers, which depend on
the probabilistic structure of the environment.

2. Mixtures and modality

We begin with the intuition that some Boolean vari-
ables seem more “natural” than others, in the sense that
they represent more effective summaries of their continu-
ous counterparts. Many Boolean variables are derived from
related continuous variables, e.g. by dividing them at some
threshold; tall/short might really mean (height > six feet)/
(height < six feet), and so forth, although such thresholds
are notoriously context-sensitive (Shapiro, 2006). The key
idea in all of what follows is that how useful such a classi-
fication is cannot be determined in a vacuum, but rather
depends on the way the continuous variable is distributed
in the environment—that is, on the structure of the proba-
bility distribution that governs it. For example, if this dis-
tribution of height is conspicuously bimodal (Fig. 1a), that
is, has two distinct peaks, then it seems well-justified to

! The intended scope of the term “symbol” in this paper will become
more clear as the argument unfolds, but it should be understood that not all
senses of the word necessarily fall within it. What is meant here is discrete
symbols, meaning mental tokens that are intended to correspond to
individual phenomena or attributes in the world. The symbols used in
algebraic operations, such as the x and y in the expression x + y, correspond
to continuous variables, and thus to infinite collections of states of the
world; these fall outside the intended scope. Of course, these various senses
of “symbol” are related. The section below entitled Observability develops
some of these connections, suggesting how the representation of discrete
states informs the choice of continuous parameters.
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Fig. 1. Given a conspicuously bimodal density (panel a), one feels
justified in treating the underlying variable x as an approximately
Boolean variable x having two distinct values or bins X(1) and x(2)
(indicated along the x axis). But discretization does not seem similarly
reasonable with a unimodal density (panel b), even though as shown it
could also be the sum of distinct (but poorly separated) sources. The
figure illustrates how either observed distribution p(x) could be the
mixture (sum) of two component distributions, labeled g; and g,. In panel
a, the components are well-separated, in that the distance |u; — us|
between their respective means p; and y; is large compared to the larger
of their standard deviations ¢ ,,x. This results in a visibly bimodal mixture
in which each of the symbols (¥(1) and X(2)) refers to one of the mixture
components (g; and g5). In panel b, the distributions are poorly separated,
resulting in a unimodal mixture, no discretization, and no such reference.
These mathematical aspects will be explained more thoroughly later in
the paper.

treat height as approximately dichotomous. But conversely
if height is unimodal or uniform (Fig. 1b), such a Boolean-
ization seems arbitrary.

Extending this idea, in what follows we develop the
degree of modality (“spikiness”) as the parameter that
modulates the effectiveness of symbolic representation.
The basic reasoning is illustrated by this simple one-
dimensional example, but nevertheless the most interest-
ing aspect of this approach turns out to be what happens
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in higher dimensions, where the situation expands richly.
In higher dimensions, instead of a simple probability dis-
tribution we have a potentially more complicated joint
probability distribution among multiple variables, and
the symbols derived from these variables must combine
to represent it. Broadly speaking, the paper is simply an
extended elaboration of the idea of modality—that is,
“spikiness” in the probability distribution at work in the
environment—and its role in rendering mental symbol
systems coherent and useful.

In keeping with the viewpoint conventional in the nat-
ural sciences, we will begin by regarding the environment
as a system of bounded (non-infinite) continuous variables
X ={x1,X2,...,xp} governed by a probability density func-
tion (PDF) p(X), which assigns probabilities to states of
the world. In order to proceed I will assume that the set
of parameters X constitutes a closed, comprehensive defi-
nition of the world under consideration. Of course it should
be borne in mind that this is merely a working assumption,
and that other parameters outside the range of our analysis
may well exist; we can hope that other parameters will be
systematically related to those in X, but we cannot guaran-
tee it. (Partly for this reason, most of the properties we will
be concerned with below are invariant to smooth transfor-
mations of the parameters, which protects us from too
much dependence on our choice of parameterization.)
But with this caveat in mind, we assume that X fully en-
codes the environment under consideration, and p(X) de-
scribes what tends to happen in this world, in the sense
that it says how often each state tends to happen. Most
of the following discussion concerns what is reasonable
or useful to assume about the structure of this PDF, and
how symbolic representations of this structure succeed
or fail as a result of these assumptions.

The term modality has often been used to refer to envi-
ronmental regularity and its role in cognition, perhaps
most overtly in Richards’ “Principle of natural modes” (Jep-
son, Richards, & Knill, 1996; Richards, 1988; Richards & Bo-
bick, 1988), closely akin to Shepard’s notion of
environmental regularities (Shepard, 1994) and to Barlow’s
(1961, 1974, 1990, 1994) ideas about their role in inform-
ing the neural code. The grandparent of all these ideas is
perhaps Hume’s Principle of the Uniformity of Nature, with
which they share an overarching emphasis on structure
and regularity in the environment as the ultimate source
of its comprehensibility by the mind. The exact meaning
of “regularity” in this context is potentially vague, but
has received a number of different technical definitions,
including the tendency for natural parameters to “clump”
at special values (i.e., modes); and the tendency for natural
parameters to correlate with one another. However these
tendencies are difficult to quantify precisely, and the pre-
cise nature of their relationship to mental structures has
never been fully explicated.

In this paper I attempt to realize the idea of modality via
the technical instrument of mixture distributions.? A mix-

2 Also called mixture densities (when the parameters are continuous) or
simply mixtures. The most common term is mixture models, but this is more
properly reserved for methods for estimating a mixture rather than the
mixture itself.

ture is a probability density function that is composed of
some number K of distinct components or sources from which
observations may be drawn (see McLachlan & Basford, 1988;
McLachlan & Peel, 2000; Titterington, Smith, & Makov,
1985). Typically, each source has a distinct mean y; € RP,
variance ¢2, and prior probability w; of being chosen as the
source of any given observation x. Thus for example a set
of fish drawn from the river might be a mixture of two spe-
cies, and thus the observed distribution of lengths and
weights might be a population-weighted mixture of the
two individual species’ distributions. Similarly, the set of ob-
jects in front of you on your desk might be a mixture of
books, papers, and pens, with a corresponding multicompo-
nent mixture of shapes, sizes, colors, or whatever other
parameter you choose to measure. We will generally assume
that each source is unimodal (like a Gaussian or normal
density), meaning that each has a single most probable
value, with other values diminishing in probability around
it. Pearson (1894) was perhaps the first to clearly recognize
the importance of decomposing observations into their dis-
tinct generating sources, when he decomposed a set of crab
forehead measurements into a mixture of two distinct
Gaussians, inferring (as it happens, correctly) the emergence
of two distinct species. Similarly, in what follows I will argue
that mental symbols “effectively” represent the environ-
ment when they (or in higher dimensions, combinations of
them) correspond to individual components of the mixture
present in the environment.

Technically, mixtures provide a variety of interesting
challenges. In general the observer does not know the true
source for any given observation, nor even the number of
sources, but rather must estimate them from observations,
which makes it difficult to formulate an accurate predic-
tive model of future observations. Mixtures make a con-
vincing model of many natural cognitive situations,
because they capture the general idea of a heterogeneous
combination of sources that the world confronts us with:
a disjunction of categories, events, objects, and other stable
aspects of the world that are all combined into in a single
complex stream as they are propelled at our senses. In or-
der for the observer to understand the environment and
reason about it, it is first necessary to disentangle this
stream into the coherent ensemble of environmental regu-
larities that actually generated it. The main idea of this pa-
per is that mental symbols make sense when they
correspond reliably to distinct components of the mixture
that governs the environment.

I will refer to PDFs generated by mixtures as “modal”,
meaning literally that they are constructed from a set of
distinct modes or peaks. However it is essential in what
follows to note that separate peaks are often not actually
distinguishable in mixture densities or in the samples
drawn from them, when the modes are close to each other
relative to their spreads and thus collapse into a single
peak. Fig. 2 shows several examples of mixtures of various
levels of modality or separability. (The figure also illus-
trates the measure of modality introduced later in the
text.)

A note on ontology. It is natural to ask whether the dis-
tributions we will speak of as defining the environment—
and in particular the mixture components—are in fact “in



64 J. Feldman / Cognition 123 (2012) 61-83

M=4 M=6 M=9 M=14
5 45 2 1.8
45 4 1.8 16
s g 35 1-2 1.4
3 P g 1.2 1'?
P 25 ' !
2 0.8
2 0.8
15 15 0.6 0.6
1 1 04 0.4
0.5 0.5 0.2 0.2
0 0

0 0.10.20.30.40.50.60.70.80.9 1
X X

0
0 0.10.20.30.40.50.60.70.80.9 1

0
0 0.10.20.3040.50.60.70.80.9 1 0 0.10.20.3040.50.60.70.80.9 1
X X

Fig. 2. Examples of mixture PDFs, each with five components, showing various levels of modality M (see text). Each PDF tabulates probability along the
parameter x. Note that at low levels of modality (left), the five components tend to blend together (fewer than five modes are visible), while at higher levels
of modality (right), all 5 are increasingly distinguishable, leading to a symbolic representation that corresponds closely to the generating sources.

the world” or are better thought of simply as descriptions
of reality and thus “in the head”. For ease of exposition, I
will speak of them as if they were real, but it is probably
best understood that this is only a convenient way of get-
ting started. In my own view, pronouncements about the
“true” properties of Nature are generally meaningless, as
every description of reality embodies a system of assump-
tions about what it actually consists of (see Hoffman,
2009). In this sense probability models in general, and mix-
tures in particular, are best thought of simply as familiar
and technically well-developed tools by which science
may describe reality. Thus in what follows when I write
“if the world is composed of a mixture... ” the reader
should understand something like “if the world can be de-
scribed with reasonable observational fidelity by a mix-
ture... ”. I have chosen to use mixture distributions to
play the role of “objective reality” in this paper because
they are intuitive and conventional, and will already be
familiar to statistically-minded readers, not because they
are “correct”. The aim is to show that this simple premise
leads some interesting conclusions.

2.1. Synopsis of the paper

The goal of the paper is to investigate the consequences
of modality in the environment—meaning its generation by
a mixture—for an observer attempting to represent and
comprehend it. The main conclusion is that such environ-
ments are capable of being represented by symbols and
combinations of symbols, while arbitrary environments—
that is, worlds that are statistically typical of the set of
all possible worlds—generally are not. In this Section 1 give
a brief conceptual overview of the paper, emphasizing ba-
sic principles and intuitions. Subsequent sections flesh out
the argument in more mathematical detail, although in a
way that is still intended to be readily comprehensible by
a wide audience. Mathematical details, including deriva-
tions of the results presented in the text, are in the appen-
dices (labeled Appendices A.1-A.6).

To preview the flow of the argument, first consider the
one-dimensional case. As in the example above, if one
takes samples of the world along a single dimension—
selecting a set of objects and measuring them along some
fixed yardstick x, and tabulating the results—one may find
multiple modes or peaks in the resulting distribution. It is
natural to refer to the distinct modes by distinct symbols,

such as the discrete values of a discrete variable, and as-
sume that they correspond to distinct phenomena in the
world. (Mixture distributions are simply a formalism for
expressing this idea.) In this sense a symbolic description
represents a compact summary of the information in the
original measurements. The first part of the paper below
describes technical conditions for this reduction to be rea-
sonably faithful. The main result is that the more modal or
“spiky” the environment, in a technical sense defined be-
low, the more faithful is the corresponding symbolic
representation.

The situation becomes much more interesting when
one considers multiple dimensions, where the topography
of the modes grows substantialy more complex (Ray &
Lindsay, 2005). Fig. 3 shows several examples of multi-
modal worlds in two dimensions. As in 1D, while some
worlds are cleanly separable into their component peaks
(Fig. 3a), others are less so (Fig. 3b), because their compo-
nents are either too broad or two closely spaced to be eas-
ily discriminated. Now, each of the individual dimensions
has a PDF of its own, the marginal PDF, which tabulates
probability along that dimension while integrating over
the other one (see figure). The marginal PDF p(x;) can be
thought of as the projection of the world onto x; (Diaconis
& Freedman, 1984; Friedman & Tukey, 1974), or, equiva-
lently, the viewpoint of an observer who is sensitive only
to x; and cannot “see” x,.

Consider what each of the worlds pictured in Fig. 3
looks like from the viewpoint of one axis, say x;. Because
the joint PDF is modal, the marginal density p(x;) will also
tend to be modal (and likewise p(x,)). But some compo-
nents that are plainly visible in the “God’s-eye view” of
the joint PDF will no longer be distinguishable in the mar-
ginal density p(x;), because they align or nearly align along
the “line of sight”, and thus collapse in the marginal PDF.
By the argument sketched above, the modality along x,
means that it can be approximately reduced to a discrete
symbolic variable. Likewise, the other dimension x, will
also reduce to a (different) symbolic variable. The full joint
PDF then corresponds to some logical combination of these
two symbolic variables. But what combination best repre-
sents the joint PDF, and how well does it do so? That de-
pends on how the geometry along one dimension relates
to the geometry along the other dimension, that is, it de-
pends on the relative placement of the modes in the joint
PDF. The effectiveness of the entire system of symbols in
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Fig. 3. Two worlds in two dimensions, each containing five modes (K = 5) with different levels of modality M: (a) a more modal one (M = 135), and (b) a less
modal one (M = 75). Note that all five components cannot be distinguished in panel (b). The figure also illustrates the marginal PDFs p(x) and p(y), which
collapse several of the modes. Panel (b) also illustrates the difference in perspective when the mixtures is “viewed” (marginally projected) from an
alternative direction (A) instead of the axes. The dotted circle indicates the range of possible viewpoints, i.e. the “observer hypersphere” explained later in

the text.

representing the entire probabilistically defined world de-
pends on the nature of geometrical relations among the
modes in the mixture. Much of this paper is devoted to
exploring these geometrical relations, and the impact they
have on symbolic representations of the joint PDF.

Before proceeding further, it is worth remarking on how
profoundly ambiguous this situation is. To an observer
attempting to discover the structure of the world by sam-
pling only individual features—like the fabled blind men
and the elephant—the geometry of the modes inside the
space is unknown. A simple metaphor helps make the nat-
ure of the ambiguity clear. Think of the world as a “cloud”
of unknown internal structure, which we are attempting to
probe by taking a set of measurements (distinct yardsticks;
see Fig. 4). Prior to taking measurements, not only is the
world’s structure unknown, but—without some strong
assumptions—so is the relationship among the various

measurements. Do they represent substantially similar
information, or substantially independent information?
One cannot know a priori. This is Davidson (1973)’s notion
of radical interpretation, the puzzle of translation across
languages, applied to the interpretation of PDFs. Like
speakers of foreign languages without intermediaries, the
multiple observers of the cloud (multiple yardsticks) can-
not be sure if their referents correspond.

How can the readings taken from the various probes be
combined or compared? If the first measurement x; reveals
(say) three modes (as illustrated in Fig. 4), suggesting three
distinct structures within the cloud, and the second x, also
reveals three modes, can we feel confident that the three
modes in x; correspond to the three in x,? Without any
assumptions, the answer is no. The world might contain
as few as three modes (if the modes on x; corresponded ex-
actly to the modes on x;); or six (if the three on x; were
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Fig. 4. The “cloud” metaphor. Prior to observation, the world consists of
joint PDF of totally unknown structure. We probe it by collecting some
number of measurements (here, x; and x,), sampling the frequency of
values along them. We may find modes along each of them (three each in
the example), which can be represented by discrete symbols (X7 and x3).
But a priori we do not know the relation among the various symbols,
because we do not know the relations among the various modes inside
the cloud (the PDF). The goal of the paper is to understand the conditions
under which combinations of symbols effectively represent what is going
on within the cloud.

distinct from those on x5); or, in fact, many more (see Fig. 4).
(Recall that what appears to be a single mode on one
dimension might resolve to two more on the other.) Multi-
plying this situation with larger numbers of measurements,
with potentially more complex relations among them, sim-
ply adds to the perplexity. Without some assumptions
about the structure inside the cloud, we simply cannot
make sense of the measurements we make. To solve this
problem—and thus to establish how representations
derived from individual yardsticks can be combined to cre-
ate an accurate representation of the world—requires an
understanding of how the logical relations among the vari-
ous symbols relate to the geometric relations among the
modes hidden within the cloud. On the main goals of the
paper is to unravel the possible geometric relations and
establish their correspondence to familiar logical forms.
The remainder of the paper lays out the above argu-
ment in more technical terms, developing the mathemati-
cal substance underlying it. The key idea is to establish
mathematical criteria for a world, i.e., a probability distri-
bution of unknown structure, to be representable by sym-
bols. Again, it turns out that we can relate the degree of
modality of the world to the degree of fidelity of the corre-
sponding symbolic reduction. In one dimension, the basic
idea was that a feature is symbolically representable if

the best symbolic representation of it represents it suffi-
ciently faithfully—that is, loses little enough information.
This is generally possible if the world is sufficiently modal,
generally impossible if it is not. In multiple dimensions, the
situation is more complicated. In order for the world to be
symbolically represented by a system of symbols, not only
does it have to have modes, but the modes have to relate to
each other in a particular way.

The next section of the paper treats the 1D case, devel-
oping an information-theoretic criterion (called e-repre-
sentation) under which continuous features can be
effectively discretized; this establishes conditions for the
validity of individual symbols. Subsequent sections treat
the multidimensional case, establishing analogous criteria
for the representation of multidimensional joint probability
densities. As mentioned, this turns out to be a far richer and
more interesting situation, involving how the symbols that
arise from the individual dimensions combine with each
other to form complex representations of the joint PDF. Ex-
actly how well they can represent it depends on the quali-
tative geometric relations among the mixture components
within the joint PDF, which can get complicated in multiple
dimensions. The basic contribution of this paper is to show
how symbolic representations are related to the geometry
of mixtures—how the combinatoric possibilities of symbols
relate to the geometric relations among the corresponding
modes. Then we consider how standard elements of sym-
bolic representations, such as propositional formulae and
logical relations, relate to the multidimensional geometry
of the mixture components in the probabilistic environ-
ment that they help represent. Finally, we consider how
modality in the multidimensional distribution relates to
the “meaningfulness” of the features themselves.

3. Discrete symbols in one dimension

This section considers the situation depicted in Fig. 1 in
more mathematical detail, establishing criteria for a con-
tinuous variable to be treated “effectively” as a discrete
symbolic variable. The basic idea, e-representation, is that
symbolic representation serves as a reasonably faithful
approximation if the underlying probability distribution
is modal in the sense discussed above.

Consider a single continuous feature x (e.g. height or
weight in the examples mentioned above). We assume for
concreteness that x runs over the unit interval [0, 1], which
for ease of calculation we quantize by sampling at a large
number N of small equal intervals. (This is simply a math-
ematical convenience and should not be confused with the
coarser discretization which is the main focus below.?) A
mixture consists of a set of K («N) sources with means
ui € [0,1], standard deviations ¢;, and weights (mixing pro-
portions) w; which sum to one (3} ;w; =1). We make no
assumptions about the functional form of these sources
(e.g. Gaussian or otherwise) except that they are unimodal

3 We could avoid the quantization by using uncertainty as defined over
continuously defined probability density functions, called differential
entropy. But differential entropy has a number of peculiarities, like
dependence on the parameterization, and the possibility of negative values,
which would unnecessarily muddy the exposition here.
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and have finite means and variances. The mixture p is then
simply the weighted sum of the components,

pix) =) wig (). M

How well can x be approximated by a discrete variable?
First, it is important to see that if the components are clo-
sely spaced relative to their spreads, the mixture may be
very difficult to separate. McLachlan and Basford (1988)
suggest as a rule of thumb that when two components’
means differ by less than twice their common standard
deviation, their mixture will actually be unimodal (have
only one maximum). Exactly where between two compo-
nents a boundary will be found, and indeed whether two
sources can be separated at all, will depend on the nature
of the discretization method employed. Many methods
have been developed (e.g. Bay, 2000; Dougherty, Kohavi,
& Sahami, 1995; Fayyad & Irani, 1993; see Dy, 2008 for a
useful review). Here though we are not concerned with
the details of the method, but with the effectiveness of
the resulting discretization, in a sense to be defined. All
that we need to assume for the ensuing argument is that
in general sources are more easily distinguished when they
are further apart, and that as they are spaced more closely
they eventually become practically impossible to separate
given finite data, which is true for all known methods.

3.1. A measure of modality

Intuitively, mixtures are natural candidates for discret-
ization, with the values of the discrete variable corre-
sponding to the distinct components of the mixture. The
aim of this section is to unpack and quantify this intuition.

A variable x acts something like a discrete variable
when the mixture p(x) is very “spiky”, that is, when the
os are narrow relative to the intervals between the means
w; (Fig. 1a). With K = 2, a conventional measure of the de-
gree of separation between the modes is Cohen’s d
d |lu1 - lu2| (2)

g )

(Cohen, 1988), often used as a measure of the size of a sta-
tistical effect, here the size of a mean difference relative to
the noise in the measurements (signal to noise ratio).# The
demoninator ¢ represents the common standard deviation
of the two modes, or usually their root mean square if they
are unequal (usage in the literature varies depending on the
situation). Cohen’s d is high when the two distributions are
well-separated relative to their spreads, and low when they
substantially overlap, going down to 0 if they coincide. Intu-
itively, a mixture of two well-separated modes (high Co-
hen’s d) is effectively Boolean, and in fact is treated so by
human subjects (Aitkin & Feldman, submitted for publica-

4 Cohen’s d is closely related to the response measure d’ (d prime)
familiar from signal detection theory (Green & Swets, 1966). Like Cohen’s d,
d' is a ratio of signal (separation between peaks) to noise (variability), but it
usually is computed from a sample of responses rather than from the
parameters of the generating distribution, as here. Hence to minimize
confusion I will henceforth avoid this terminology.

tion). Our immediate aim is to quantify this idea and gener-
alize it to larger numbers of modes.

For more than two modes (K > 2), a natural generaliza-
tion of Cohen’s d is to replace the distance between the
us in the numerator with the overall spread among the
component means, quantified by the standard deviation
of the ensemble (the ;), defined by

S =E[(1; — 0)*)'"?, (3)

where E(-) indicates the expectation or average value. We
then define the modality M as

Mo @

Jrnax

that is, twice the ratio of the spread S to the largest compo-
nent standard deviation o.x. Loosely speaking, M mea-
sures how spread out the modes are relative to their
internal spreads, which determines how cleanly separated
they are. Note that M reduces to Cohen’s d in the case of
two modes (see Appendix A.1). Fig. 2 shows several exam-
ples of worlds with various levels of M. At high values the
mixture is very modal or “spiky” and all the modes are
clearly visible, while at low values the components tend
to blend together and are no longer plainly separable.

3.2. Mixtures can be effectively discretized

We next ask how well the a continuous variable x can
be discretized—binned and treated as a discrete vari-
able—as a function of the modality M of its governing den-
sity p(x). Intuitively, when M is low, the resulting mixture
becomes very homogeneous and difficult to separate
(Fig. 1b), because the components overlap (so any given x
has a substantial probability of having been generated by
more than one source). At the other extreme, when M is
high, the distribution become extremely spiky: each x
can be readily classified as originating from a particular
distinct source, and the mixture more and more closely
approximates a discrete variable (Fig. 1a). In intermediate
cases, sources may overlap to an intermediate degree,
making the resulting distribution somewhat but not per-
fectly discrete. This means that the modality parameter
M modulates the degree to which it is “reasonable” to treat
x as a discrete variable.

A discretization of x is a partitioning of x into “bins”, not
necessarily of equal width, with each bin treated as a dis-
tinct value of a new discrete variable denoted X, with the
bins denoted x(1),x(2)...%(K). Our aim is to quantify the
degree to which the continuous variable x can be effectively
captured by its discrete counterpart X. When we discretize,
we lose some information, because we are throwing away
the precise original value of x. But depending on the nature
of the PDF p(x), we may not be throwing away very much
information. To quantify this more precisely, we measure
the Shannon uncertainty of the value of x once the discret-
ized value x is known. Shannon uncertainty, the basic
measure of information in the modern theory of informa-
tion (see Cover & Thomas, 1991) quantifies the degree to
which a signal improves the receiver’s state of knowledge.
(See Dretske, 1981; Usher, 2001 for other applications of
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information theory to problems of mental representation,
and Feldman & Singh (2005) and Resnikoff (1985) for appli-
cations to perceptual representations.) For any PDF p, the
uncertainty H(p) is given by H(p) = — >_ plogp. In our con-
text, the uncertainty contained in our original parameter x
before discretization is

N

Hp(x)] = HX) = = > p(x) log p(x)). (5)
j

(From here on, when the choice of PDF is unambiguous we

will abbreviate H[p(x)] to H(x).) But once x has been dis-

cretized into bins x(i), and the value i of the discretized var-

iable is known, the uncertainty becomes

Hx[x(i)] = = > p(x;|x(i)) log p(x; (1)), (6)
jex(i)

which sums up the uncertainty within the ith bin—i.e., the
uncertainty that remains once we know what bin x falls in.
This represents a reduction in uncertainty compared to be-
fore the binning, because the remaining possible values of
x have been narrowed. In what follows we will focus on the
average value of this uncertainty across bins, referred as
the symbol uncertainty, and defined as

E[H(x|x(i) Zp

that is, the sum of the uncertainties in each bin H[p(x|x(i))]
weighted by the probability of each bin p[x(i)]. For brevity
the symbol uncertainty will be notated H(x|x), with the
omission of the subscript i indicating that we have taken
the expectation across all bins.

The symbol uncertainty is the uncertainty about the
state of the world after we know what its symbolic repre-
sentation is: for example, your uncertainty about a per-
son’s height after you have been told that he or she is
“tall”, (or “short”—averaging across both cases); or your
uncertainty about the location of your car keys once you
find out that they are somewhere in the kitchen (or in
some other room, etc.). The symbol uncertainty quantifies
how much, on average, is still unknown about the true
state of the world x once we know what bin x falls in—that
is, how much uncertainty remains about the world after
we know its symbolic representation. If this expected
uncertainty is sufficiently small, it is reasonable to say that
the discrete variable x “effectively captures” the true state
of the world x, in that it represents it with only a negligible
residual uncertainty.

DIH[p(x|x())], (7)

3.3. e-representation

This motivates the following definition. We say that the
discrete variable X e-represents the continuous feature x if
the symbol uncertainty is less than e,

H(x|x) < €. (8)
(for some arbitrary threshold €), and likewise we say that a

particular world p(x) is e-representable if there exists a
non-trivial discretization x that e-represents it.> A world

5 A trivial discretization is one with K approaching N, in which case the
discretization is not really “discrete” at all; see below.

p(x) that is e-representable is capable of being symbolically
represented with negligible loss of information (that is, with
loss bounded by €). This means that an observer who repre-
sents it that way is approximately “right”.

In the optimal discretization of a modal world, each of
the K values of the discrete variable would correspond to
one of the K generating sources. This tends to happen as
modality M grows large, and the components each become
increasingly spiky and well-separated. In the limit, as M
goes to infinity, each mode becomes an infinitely narrow
spike, and the uncertainty within each bin goes to zero, be-
cause all the probability mass within it is located at one
position (). In this case, once one knows the bin, no uncer-
tainty remains about the actual value of x. In technical
terms, as M goes to infinity, H(x|x) goes to zero.

At the other extreme, when M is 0, the components,
though they exist, overlap completely with each other, so
knowing the value of x provides no information about the
true value of x. In this case no symbolic representation of
p is more useful than any other, and this world is not effec-
tively representable by symbols.

Less obvious, but more revealing, is the general case,
where M is somewhere in between 0 and infinite; here
the components overlap somewhat but not completely.
Here, the goal is to express the symbol uncertainty of p
as a function of its modality M—that is, to quantify just
how effectively the world can be represented symbolically,
as a function of how modal it is. It can be shown (see
Appendix A.2) that for a mixture with K sources and
modality M, the symbol uncertainty is bound by an expres-
sion of order

H(x[x) < O(K,—logM). 9)

meaning that the bound on symbol uncertainty rises as a
linear function of the number of mixture components K,
and decreases with the logarithm of the modality M. (The
notation O(-) means “on the order of’; see Appendix A.2
for details of the bound.) This limit depends on the fact that
though the components may overlap, the magnitude of the
overlap is guaranteed to decrease as modality M increases
and the modes get more separated. Eventually as M gets
large enough this results in a highly modal distribution
with small residual symbol uncertainty. Intuitively, the
more components there are (larger K), the more they tend
to overlap; but the spikier they are (larger M), the less they
tend to overlap. Hence the more modal the world is, and
the fewer components it has, the more effectively it can
be represented by symbols.

3.4. Uncertainty of a mixture

The previous section established that once we know the
state of a modal world symbolically, relatively little uncer-
tainty about it remains. This argument can be extended to
show that the total uncertainty H(p) of a modal world
tends to be low. This is because the total uncertainty of p
is simply the sum of the symbol uncertainty plus the
uncertainty in the symbolic representation itself (that is,
how much you know when you know what symbol
applies). The total amount of information in p is the
information in its symbolic representation plus the infor-
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mation the remains once its symbolic representation is
known.

In mathematical terms, because p(x) = p(x|x)p(x), the
total uncertainty of p is simply the sum of the average
uncertainty within each bin (that is, the symbol uncer-
tainty) plus the uncertainty about which bin x is falls in,
Hp(x)], which has expectation logK (averaging over all dis-
tributions). This latter quantity is the uncertainty inherent
in the symbolic variable itself (x), which the observer auto-
matically takes on by representing the environment sym-
bolically. This value is small as long as the number of
levels K is small, while the symbol uncertainty (the
remaining uncertainty after the symbol value is known)
will be small if the environment is modal, i.e. M is high.
Specifically, for a mixture p of K sources g; and modality
M, the average (expected) total uncertainty is bound by

E[H(p)] < H(xi%) +logK, (10)

which again rises about linearly with K and decreases with
log M.

As a concrete illustration, Fig. 5 shows the actual com-
puted uncertainty of 500,000 simulated mixtures of Gaus-
sians, plotted alongside the theoretical bound derived
above, both plotted as a function of K and M. The bound
plainly tracks the computed uncertainty values, confirming
that the derived dependencies on K and M are correct when
applied to real PDFs.®

In summary, modal worlds can be effectively discret-
ized; and the more modal they are, the more effectively
they can be discretized. For high M and low K, mixtures
can be effectively represented by symbols; they are e-rep-
resentable with € dependent on M and K. With environ-
ments in the real world, modes may overlap, and
consequently symbolic representation may be imperfect,
because the symbols will not refer quite perfectly to the
corresponding sources. But if the world is sufficiently mod-
al, the imprecision of symbolic representation is modest
(bounded by €), and symbolic representation is effective.
Modal worlds have low uncertainty because they have
good models—namely, symbolic ones.

3.5. But most distributions cannot be effectively discretized

But cannot any distribution p(x) be discretized? Yes, but
not effectively. Mixtures are, in this sense, very atypical. To
see this, consider an arbitrary density p(x). By “arbitrary”
we mean one without any particular special structure—
such as being a Gaussian, being a mixture, etc.—but that in-
stead is statistically “typical” of the entire set of possible
distributions. This is an enormous set exhibiting a vast
variety of structures, but information theory allows us to
characterize in general terms the average properties of its
members.

Specifically, it can be shown (see Appendix A.4) that
most possible PDFs are approximately uniform, and thus
have uncertainty about logN. (Recall that N is the number
of steps into which we have quantized the parameter x.)

6 The bound is substantially higher than the computed values because it
makes no distributional assumptions, whereas the simulation contains
mixtures of Gaussians.
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Fig. 5. Uncertainty of mixtures of Gaussians as a function of the number of
components (K, top) and the modality (M, bottom). The black curves
illustrate the numerically calculated Shannon uncertainty drawn from
500,000 randomly chosen mixtures, while the red curves illustrate the
theoretical bound derived in the text (Eq. (26), Appendix A.2). The bound is
generally higher than the simulated values because it does not presume
Gaussian sources. Note that as K increases or M decreases, both the
mixtures and the theoretical bound eventually hit the absolute theoretical
bound of logN (black line), at which point they are effectively non-modal
and symbolic representation ceases to be valuable. (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Obviously, many distributions are extremely non-uniform
and will thus have much lower uncertainty—including
the modal ones that are the main focus of the paper—but
statistically such cases are greatly outnumbered by the
nearly uniform ones. Putting this another way, if one were
to imagine choosing a world “at random”, with no con-
straint (see Appendix A.4 for an explanation of exactly
what this means), the world would most likely have nearly
maximal uncertainty. This means that statistically typical
environments are not generally e-representable—they can-
not be effectively represented by symbols.

But as shown above, the uncertainty of a mixture is rel-
atively small (Eq. (10)). The contrast becomes more and
more extreme as N increases (we quantize the world more
finely), K decreases (the world has fewer modes) or M in-
creases (the world gets more modal). The more modal
the world is, and thus the more effectively it can be repre-
sented by symbols, the more statistically atypical it is. In
this sense, representing the environment symbolically—as
in many theories of cognition—constitutes a substantial
commitment to the assumption that it is modal.

This is really a special case of the idea of Kolmogorov
complexity (Chaitin, 1966; Kolmogorov, 1965; see Chater
& Vitanyi, 2003; Li & Vitanyi, 1997), which entails that only
a small fraction of possible structures are compressible
(capable of being represented by short strings of symbols)
while the vast majority are incompressible and thus essen-
tially random. Analogously, here we have shown that only
a small fraction of worlds are e-representable (capable of
being faithfully represented by symbols) while the vast
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majority are not. This is a counting argument, not a prob-
abilistic assumption; we are not making any assumptions
about how often either type of world actually occurs. In
fact, e-representable worlds, though outnumbered in the
set of all worlds, seem to occur all the time in practice—
which is why symbolic representations are so often useful.
Mixture distributions are ubiquitous in the world, and
symbolic representations are pervasive in many accounts
of mental representation. This paper argues that these
two facts are fundamentally connected. Symbol systems
are an effective “compression” of many real phenomena
because natural probabilistic systems tend to be modal.
Summarizing, the argument is:

(i) mixtures are e-representable, meaning they can be
symbolically represented with small loss of informa-
tion if M is sufficiently high and K sufficiently low,
but

(ii) most worlds (PDFs) are not e-representable, mean-
ing that if they are represented by symbols, the
approximation is poor.

4. Discrete symbols in multiple dimensions

The previous section established the basic logic of sym-
bolization in 1D, showing how the modality of the environ-
ment licenses the conversion of a continuous feature into a
discrete symbolic feature with qualitatively distinct values.
This section extends this logic into multiple dimensions,
meaning multiple interacting symbols. With multiple
dimensions, the probability distribution governing the
world becomes a multidimensional joint density describ-
ing the probabilistic interaction among a number of con-
tinuous variables; and the symbolic description of the
world becomes a system of logically interacting symbolic
features. This section describes how the logical relations
among these symbols relate to the probabilistic relations
among their continuous counterparts, and in particular
(as in the 1D case) on the modality of the joint density.

The leap to multiple dimensions introduces several new
issues. Given a PDF p(xy, x,) defined over two dimensions
x1 and x, having discretizations x; and X, respectively, we
must now consider (a) how X7 and x; relate (compare and
contrast) with one another, and (b) how they may be com-
bined to create an effective representation of the joint den-

1-degenerate

sity p(x1, X2). As in one dimension, the answers to these
questions hinge on the modal structure of the PDF.

In general, we consider a D-dimensional space X = {x,
X2...,xp} over which is defined a PDF p(X). The parameters
X1,X2...,Xp are said to be conjointly modal if p(X) is a
mixture

K
pX) = > wigi(X), (11)
i=1

where components g; have means ;, and covariance matri-
ces X;. For example, in two dimensions, a PDF would be
conjointly modal if it was produced by a mixture of (say)
three Gaussian sources, though as before we will generally
make no assumptions about the functional form of the
components, except (as above) that they are unimodal
and have finite means and covariance matrices. This defini-
tion exactly parallels the 1D definition: a PDF is conjointly
modal if it is produced by a mixture.

The main new idea in multiple dimensions is that the
logical relations among the various separate symbols,
X1,X2,... depend on the geometrical relations among the
modes in the mixture. The key issue is how the modes “line
up” with respect to the axes. Recall that modes that are
sufficiently aligned with respect to one feature will col-
lapse in the marginal PDF, projecting to a single broad peak
(Fig. 6). This in turn determines how that feature will be
discretized, since the projected mode, a blend of two
modes in the other dimension, will correspond to a single
level of the resulting discrete variable. Modes that are dis-
tinct in multiple dimensions collapse into single symbol
values whenever such an alignment occurs. This in turn al-
ters the structure of the individual component symbols
and the logical relations among them.

The geometry of modes in multiple dimensions can thus
be broken down into qualitative cases depending on how
the modes align. Fig. 6 shows the possible cases in the sim-
plest possible multidimensional situation, two modes
(K=2) in two dimensions (D =2). The main focus from
here on is on the modal structure in the marginal densities,
i.e. the projections of p(X) on each of the x;, relates to the
full joint density p(X). Each marginal density is subject to
discretization, inducing an alphabet of symbols on that
dimension, e.g. dividing x; into bins X;(1),x;(2),.... The
Cartesian product of these bins forms a grid XP, each cell
of which is one possible combination of symbols (Fig. 7).
The main issue from here on is how (or whether) the

(a) generic, X, =X, (b)
O
O

QO X, %

(C) 2-degenerate

X4

X4 X4

Fig. 6. Qualitative configurations of two modes with two parameters (K =2, D = 2), illustrating marginal projections (with implied discretizations, not
shown). Modes are illustrated schematically as circles (i.e. contour plots of circular Gaussians), though in general they need not be circular and need not be

the same size.
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Fig. 7. The grid X? of combinations of the alphabet X, here with D =2,
K =4, and 3 discretized bins on each of the dimensions. The shaded areas
are the theory ¢(X), which in this case e-represents the PDF. Here
¢=K(1)AXR3)]V[X(2) A (X(1) VR(2)] V K(3) A% (2)]-

symbols drawn from the various dimensions can be com-
bined to form an effective symbolic representation of the
joint density p(X).

Fig. 6a shows the “typical” case, which is said to be gen-
eric (in general position) in that none of the modes’ means
align along any single dimension.” In the generic case, K
modes in two dimensions project to K modes in each of
the dimensions. Alternatively, two modes may line up in a
given dimension, in which case they are said to be degener-
ate in that dimension. (Again, degeneracy does not require
perfect alignment, but simply that the two modes project
to a marginal density that is so unimodal that they cannot
be recovered by the discretization method in use.) In the
generic case (Fig. 6a), the two discrete variables X; and x;
“agree” with each other: each of them discretizes the world
in the same way, in that one level of x; corresponds precisely
to one level of X, and to one of the two modes. If p is con-
jointly modal, then this is the typical way that the symbol
X1 “unfolds” when Xx; is considered: that the levels of X7
and the levels of Xx; are isomorphic, although we may not
know the correspondence.

A useful way to imagine this, which will be developed
below, is to think of the two variables as independent
observers of the world, e.g. two agents using different mea-
surements or “yardsticks” (as mentioned above in connec-
tion with the cloud metaphor; cf. Bennett, Hoffman, &
Prakash, 1989). In the generic case, these two observers,
after rendering their worlds symbolically, would find that
the their representations agree: both carve up the world
in the same manner. Like Davidson (1973)’s interlocutors,
these two observers’ symbols might in principle refer to
different phenomena, but if the world is assumed to be a
generic conjoint mixture in the above sense, the referred
phenomena will be approximately the same. In the generic
case, the two representations x; and x; are redundant with

7 Later I will use a different notion of general position, requiring that no
three modes be collinear, no four coplanar, etc. Here we only require only
general position with respect to the axes.

one another, and each of them fully expresses the modal
structure of p.

This is not true in degenerate cases, as when the modes
align in one dimension (Fig. 6b) or in both dimensions
(Fig. 6¢). In the 1-degenerate case (Fig. 6b), X7 is capable
of adequately representing the world, in that its distinct
levels are isomorphic to the modes; but x; is not, because
it conflates the modes. In the 2-degenerate case (Fig. 6¢),
the modes are conflated in both dimensions, and neither
variable captures the structure. Such a world is not e-rep-
resentable, because no symbol nor combination of symbols
allows a representation that is isomorphic to the multidi-
mensional modes.

With three modes (Fig. 8) the situation becomes slightly
more complex. Again there is a single generic case (Fig. 8a),
in which the two features are isomorphic to each other and
to the modes. Fig. 8b shows the 1-degenerate case, and
Fig. 8c shows the 2-degenerate case. Fig. 8d shows a differ-
ent kind of partly degenerate case that will be taken up in
the next section.

Notice that it is possible for two marginal densities, say
p(x1) and p(x,), to each be individually modal without
p(x,y) being conjointly modal; in this case we say x; and
X, are disjointly modal. Fig. 9 shows an example. In the fig-
ure, x; and x, can each be seen to be modal by itself, but
the joint PDF is not a mixture of 2-dimensional sources;
instead, each parameter separately is the product of inde-
pendent modal sources. Parameters that are either con-
jointly modal or disjointly modal are called jointly modal.
The main question in the rest of the paper is how jointly
modal multidimensional PDFs can be represented by com-
binations of symbols drawn from their one-dimensional
projections—in other words, whether modal PDFs can be
represented symbolically. As in the 1D case, the main con-
clusion is that jointly modal PDFs generally can be effec-
tively represented by symbols, wheareas statistically
typical multidimensional PDFs generally cannot.

(a) generic, X, X, (b) 1-degenerate

O O
% O % O
O O

X X,
2-degenerate compositional
(c) (d)
O O
S
O
X1 X1

Fig. 8. Qualitative configurations of three modes and two parameters
(K=3,D=2).
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X4

Fig. 9. A disjointly modal density in two dimensions.

4.1. The importance of degeneracy

One trend that becomes increasingly salient as the
dimension increases is that (perhaps ironically) generic
cases are actually statistically unusual. Recall that align-
ment between modes does not need to be perfect in order
to break genericity, but only sufficiently close to induce
two modes to project to a unimodal marginal in any one
dimension. By McLachlan and Basford (1988)'s rule of
thumb, this will happen whenever any two modes venture
within approximately 2¢ of each other (see Ray & Lindsay,
2005 for more detailed analysis of the conditions support-
ing multimodality). “Merging” of modes has increasingly
high probability as M decreases or K increases (see Appen-
dix A.5). The result is that fully generic cases are very unu-
sual. For example with M=D=K=3 the probability of
complete genericity is less than 1%. Statistically speaking,
degenerate cases are the norm, not the exception. For this
reason the next section considers varieties of degeneracy
in more detail.

4.2. Compositionality: mixtures and logical forms

Fig. 8d presents a new wrinkle. There, both X; and x; are
degenerate (they are both bimodal while the joint PDF is
trimodal), but they are not isomorphic to one another (they
conflate different modes). This means that neither x; nor x;
effectively represents p; nor does the Cartesian product
X1 x X3, because it has four cells while p has only three
modes. What is needed is a selection function that identifies
which combinations of x; and X; correspond to the modes
g;, and thus effectively capture p. Such a function would
map the grid XP to (0, 1), with 1 indicating a legal combina-
tion and 0 an illegal one. Such a function is conveniently
viewed as a Boolean function, easily represented by a prop-
ositional form ¢(X) defined over the alphabet X7,%,...
(Fig. 7). Following logical terminology, I will henceforth re-
fer to ¢ as a theory and the legal combinations of XP that
satisfy it (i.e for which ¢(X)=1) as its models M =
my,mp....

This suggests an appropriate multidimensional general-
ization of definition of e-representation. By analogy to the
1-D case, the symbol uncertainty of ¢(X) is the expected
symbol uncertainty

HIX|p(X)] = E, x4 [HXIX)], (12)

where the expectation is now taken over legal cells (i.e.
such that ¢(X) = 1). As in the 1D case, this is the uncer-
tainty that remains about p(X) once we know its symbolic
representation ¢(X), including both its multivariate dis-
cretization X and the theory ¢ defined over it. Note that
this definition encompasses the 1D definition if we tacitly
regard the theory there as a trivial one in which ¢(x) =1
for all values of x.

With this definition, the representation ¢(X) (defined
over the discretized alphabet X) e-represents the PDF
p(X) (defined over the continuous space X) if

HIX|¢(X)] < €. (13)

Conceptually, this definition is just like the 1D version.
A world p is e-representable if the uncertainty that remains
once you know its symbolic representation is small (less
than €). Moreover, all the main properties of e-representa-
tion carry over: the magnitude of the symbol uncertainty
increases linearly with K and decreases linearly with logM
(see Appendix A.6).

More specifically, #(X) will e-represent p(X) if each
component g; of p falls in a distinct legal cell of ¢, and all
legal cells contain exactly one mode. If so, there will be
an isomorphism between the modes g; and the legal cells
of ¢. (It also follows that any two theories that both e-rep-
resent p must themselves be isomorphic, a point that will
be developed below.) In this situation, the theory ¢ exactly
expresses the structure of the PDF, and all the properties of
e-representation follow. As M increases, each of the modes
will increasingly predominate within its cell, contributing
an increasingly large proportion of the probability mass,
with a decreasing proportion coming from other modes.
As M increases each legal cell of ¢ becomes an increasingly
“pure” product of a single generating source.

It is clear that a necessary condition for such a theory ¢
to exist is that every pair of modes in p be resolved by at
least one feature in X, i.e. that any distinct modes project
to distinct values of some symbol. If so, then the grid XP
will contain a distinct cell for each mode g;. Some subset
of these cells actually contain a mode, and this subset de-
fines a ¢ that e-represents p. Conversely, if two modes
are fully degenerate—conflated in all dimensions—then
this condition is not met, and p is not e-representable. Note
though that any two modes can be resolved if M is large
enough (unless they coincide exactly); any mixture of K
distinct modes can be effectively represented if the modes
are sufficiently narrow.

As in the 1D case, an observer who represents a modal
world p(X) via a symbolic representation ¢(X) that e-repre-
sents it is approximately “right”. Note that e-representation
does not mean that the world obeys the propositional
description perfectly. There may be, and generally is, some
non-zero probability of exceptional cases, meaning values
of X that do not obey ¢. But the conditions of e-representa-
tion mean that the probability of such cases is small, or
more specifically, that an observer whose representation
discounts such cases will not be surprised too often, with
expected total surprise (i.e. uncertainty) bound by €.

The remainder of this section shows that representa-
tions of modal worlds obey all the familiar properties of
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logical forms: they correspond to propositional formulae,
they compose, and they support logical relations. That
e-representation composes means that combinations of
e-representable worlds are themselves e-representable;
and moreover the theory representing the joint world is
a composition (specifically, a conjunction) of the compo-
nent theories. What is more, we can generate all and only
e-representable worlds by combinations of simpler
e-representable worlds. This means that any symbolically
representable world can be thought of as systematic
combinations of simpler worlds. This means that e-
representable world can generally be reasoned about via
logic—while, again, arbitrary worlds generally cannot.

4.3. Modal worlds correspond to propositional formulae

The intimate relationship between mixtures (modal
PDFs) and propositional formulae can be more fully appre-
ciated by observing that all mixtures (other than fully
degenerate ones) are e-represented by some formula on a
suitable alphabet; and that all propositional formulae e-
represent some mixture. We establish this correspondence
separately in each direction.

The first direction, that any non-fully-degenerate mix-
ture is e-represented by some ¢, was already established
above. To see the other direction, that any formula repre-
sents some world, simply observe that any propositional
formula ¢ is equivalent to a disjunction of conjunctions
each of which includes a positive or negative mention of
each variable (called a complete disjunctive normal form
formula or complete DNF). This complete DNF defines the
legal cells of ¢ over X. We can place one component (with
sufficiently small ¢) in the center of each bin correspond-
ing to one term of the DNF, and their mixture will be a
PDF that is e-represented by ¢.

Clearly an infinite number of other mixtures (e.g. slight
perturbations of this one) will also be e-represented by
¢. Similarly, an infinite number of distinct formulae can
e-represent the same mixture. This relation between for-
mulae, which will be important below, is referred to as
metagruence. Two formulae ¢, and ¢, are metagruent, de-
noted ¢ = ¢, if they both e-represent the same mixture p.

4.4. Modal worlds compose

It follows immediately from the above that if two PDFs
are e-representable, then their combination (joint density)
is also e-symbolically representable, specifically by a the-
ory that is a conjunction of the two component theories.
Specifically, if X; and X, are jointly modal, and p(X;) is
€,-represented by ¢;(X;), and p(X,) is €,-represented by
¢,(X3), then the joint density p(X;,X) will be e-repre-
sented by ¢, A ¢, (defined over the alphabet X; UX>), with
€ = max(€y,€;). That is, modal worlds compose to form
modal worlds. Note however that the fidelity of the repre-
sentation, the magnitude of €, only gets worse, never bet-
ter, as worlds combine (and the dimension increases). As
the world gets more complex, the effectiveness of any
symbolic representations of it tend to degrade.

In the specific case of conjointly modal worlds, we can
be more specific about the nature of the conjoined repre-

sentation. If ¢,(X;)e-represents p, then its models m;_q,
my_y... each correspond to one of the modes g;, meaning
that each legal cell contains one and only one ;. If
¢,(X3) also e-represents p, then its models m;_1, my_». ..
must also correspond to the same modes. From this it fol-
lows that the two representations ¢, and ¢, must be iso-
morphic to each other; they pick out exactly the same K
modes. This means that the conjoined theory has form

{m_i} & {myi}, (14)

after suitable renumbering of the models. This is a bicondi-
tional relation between ¢, and ¢,. For example, the simple
2-mode configuration in Fig. 6a has two features, X; and x5,
each of which e-represent p. Each of them has two models,
corresponding to the two modes, and the conjoined theory
¢ is just

¢ =X(1)AX2)] v [x(2) A x2(1)], (15)
which is equivalent to the biconditional
¢ ={x()} < {x()} (16)

(after renumbering of the values). More complex examples
with more dimensions and more modes would work simi-
larly. If both theories e-represent the same world, then
when one representation takes a particular set of values,
it implies that the other takes a corresponding set of val-
ues, and vice versa. In this sense the two theories are
mutually redundant; they contain the same information
and represent the same world in perfectly isomorphic
ways.

This isomorphism is an example of metagruence as de-
fined above. Putting this in the language of observers, this
means that if two observers independently observe a com-
mon world p through distinct measurement languages X;
and X, respectively, if they assume only that X; and X, are
conjointly modal, they can reasonably infer that their obser-
vations are essentially equivalent—that phenomena in p re-
ferred to by symbols in the X; language are the same
phenomena referred to in the X, language. Again, such an
isomorphism does not hold in principle, and is not valid in
non-modal worlds (indeed it is not even true in worlds that
are disjointly modal but not conjointly modal). This suggests
that conjoint modality is a key assumption underlying the
mutual intercomprehensibility of distinct representational
systems—solving, at least for the case of PDFs, the problems
ofradical translation or radical interpretation posed respec-
tively by Quine (1960) and Davidson (1973). Martians and
Earthlings, observing the same universe via completely
incommensurate measurements and conceptual structures,
can nevertheless assume common referents—if they assume
conjoint modality, but generally not otherwise.

If we assume that every set of mixture components has
a uniform dimension® (is generated across a fixed number
of features), then it follows that every jointly modal PDF p
can be divided into conjointly modal “bubbles”, within
which all dimensions are conjointly modal, but between
which all dimensions are only disjointly modal. Within each
bubble, features are conjointly modal, so non-trivial logical

8 The situation with mixed-dimension mixture components is more
complicated, and will be deferred to a future paper.
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relations between features may exist, and distinct e-repre-
sentations are metagruent, meaning that (like the Martians
and Earthlings in the example above) they share common
referents (the modes within the common bubble). But be-
tween bubbles, since there is no conjoint modality, there
are no common referents, no logical connections, and repre-
sentations that are fundamentally incommensurate because
there are no common structures to refer to. This creates a
“Rashomon’-like situation in which distinct observers view-
ing what is nominally the same world will nevertheless
draw totally unrelated conclusions about it (cf. Breiman,
2001). For such observers, mutual translation—even while
talking about the same world—is indeed impossible (again
see Davidson, 1973; Quine, 1960).

4.5. Modal worlds support logical relations

All the above arguments taken together suggest that
modal mixtures support logic, in the sense that they are
capable of approximately satisfying logical inferences
(see Ali, Chater, & Oaksford, 2011). More specifically,
e-representation respects logical implication. If a formula
¢pe-represents a world p, and ¢ logically entails another for-
mula ¢/,

b=¢, (17)

then ¢’ e-represents p as well. Specifically, such an implica-
tion will hold whenever the models of ¢’ are a subset of the
models of ¢, and thus correspond to a subset of the mix-
ture components of p. Logical statements of the form if A
then B can be regarded as approximately true when refer-
ring to modal worlds—or, putting this more strictly, an ob-
server who believes them to be true will rarely be
surprised (expected surprise, i.e. uncertainty, less than €).
Modal worlds are capable of being the approximate exten-
sions (models) of logical implications, but statistically typ-
ical worlds generally are not.

A narrow but important example of this is an implica-
tion entailed by a single discrete symbol, say x(v) (see
Feldman, 2006). If the world under observation is not mod-
al, then such an observation cannot in general be assumed
to imply anything about any other variable, and in this
sense is quite literally meaningless. If you know that the
object you are holding is a blicket (not a dax), but the blic-
ket/dax distinction is not conjointly modal with any other
variable, then this knowledge has literally no value. But if x
is conjointly modal with some other set of variables X, then
the world p will generally be e-representable by some for-
mula over the alphabet x U X. It is still possible that x may
happen to be logically independent of the other variables
X. But more generally it may not be, in which case there
will be some formula(e) ¥ such that

X(v) =y, (18)

“if x(v) then y is true”, e.g. “if blicket then edible”. In this
case observing X( ) means something potentially important.

4.6. Multidimensional modality: summary

In one dimension, mixtures can be effectively repre-
sented by discrete features, though most PDFs cannot. In

multiple dimensions, mixtures can generally be effectively
represented by potentially complex combinations of fea-
tures drawn from their 1D projections. This composition
generally corresponds to a propositional formula, the exact
form of which depends on the pattern of degeneracy
(conflationary alignments) along individual dimensions in
the mixture.

Syllogisms and other law-like logical relations lie at the
heart of symbolic reasoning, but in a complex stochastic
context, one might imagine they would rarely hold per-
fectly. Indeed this doubt is central to skepticism about
the cognitive validity of symbolic representations. But a
logical law need not be perfectly valid to be useful; it only
needs to be accurate enough so that adopting it rarely
leads one astray. This is the criterion captured by e-repre-
sentation. Modal worlds are potential extensions for logi-
cal laws, albeit imperfect ones; while arbitrary worlds
generally do not satisfy logical relations to any reliable
degree.

5. The choice of features

Above we have regarded the choice of dimensions as gi-
ven, i.e. we have assumed a fixed set of subspaces x1, X>. ..
of X through which p is observed. But more generally, if X
can rotate freely (in psychological terminology, if its
dimensions are integral), we might imagine other choices
of dimension through the space, e.g. linear combinations
of the x; which correspond to diagonal slices through X. In-
deed, assuming the x; to be given begs the question of ex-
actly why these dimensions make more sense than others
in the first place. So relaxing this assumption allows us to
ask more basic questions about feature selection: which
dimensions of X are most helpful in contributing to an
effective representation of p?

Geometrically, what this means is that we will now spin
the space X freely, sampling arbitrary one-dimensional fea-
tures and combinations thereof, instead of being limited to
the arbitrary coordinate frame we began with (Fig. 10).
This way the question of how p can be represented by com-
binations of features can be expanded beyond the original
symbol vocabulary. As before, the main focus is on the
marginal densities projected onto these subspaces, and
how discretizations of them combine to form effective
symbolic representations of p.

A useful way of thinking about this situation is to imag-
ine each measurement as a different observer of the same
world. Each observer measures the same world from a dis-
tinct, unique vantage point, assessing a distinct character-
istic—technically, sampling along a distinct subspace. The
set of possible observers corresponds to the set of distinct
subspaces, which form a hypersphere, which I will refer to
as the observer hypersphere (Fig. 11). (Technically it is a
hemihypersphere, because each viewpoint v is inter-
changeable with the inverse viewpoint —v). The main
question now becomes: how can a set of observers com-
bine their measurements to adequately represent the
structure of the world “inside the cloud” (Fig. 4)? More
specifically, how can the discrete symbols drawn from
their measurements be combined to form an effective
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symbolic representation of the structure within the cloud?
A broader view of this problem is introduced when one
considers arbitrary (non-orthogonal) viewpoints.

5.1. Representational equivalence

Looking at Fig. 10, one can see that there will be many
dimensions that provide essentially the same information
about the modes. For example, any sufficiently slight per-
turbation (rotation) of one feature yields another that re-
solves the same set of modes (Fig. 12), and thus provides
approximately the same representational benefit. This sort
of equivalence is not limited to slight perturbations, but is
shared by any alternate variable whose discretization plays
the some role in compositional formulae that represent p,
which can include broad swaths of the observer hyper-
sphere. We adopt the following definition. Assume p is €-
represented by some formula ¢ over an alphabet X which
includes a symbol x. Construct ¢’ by replacing X with an-
other symbol X' wherever it appears in ¢. Then if ¢’ also
e-represents p, then x and X' are representationally equiva-
lent, denoted x ~ x'. Loosely speaking, x ~x' means that
features drawn from x and features drawn from x' are
interchangeable in descriptions of the world; they serve
the same role in symbolic descriptions because they pick
out the same modes. Representationally equivalent sym-
bols in modal worlds, while not precisely equivalent, are
mutually interpretable in the sense of Davidson (1973).

Representational equivalence is obviously an equiva-
lence relation (it is reflective, symmetric, and transitive),
so it divides the observer hypersphere into equivalence
classes of symbols, referred collectively to as the observer
chart (Fig. 13). The observer chart is an exhaustive map
of the possible qualitatively alternative symbols for
representing p. Intuitively, each symbol class in the chart

X,(2)

(1)
X1

Fig. 10. Non-orthogonal dimensions of observation induce a non-per-
pendicular grid XP, upon which may be built an e-representation ¢
(shaded) just as in the orthogonal case.

observer direction

v

Fig. 11. The observer hypersphere in three dimensions.

Fig. 12. Representational equivalence (x ~ x’). The two features x and x’/,
while distinct, provide qualitatively the same contribution to a represen-
tation of p because they resolve the same two modes. The dotted circle is
the observer hypersphere in two dimensions.

contains an infinity of symbols which, while not exactly
the same, resolve exactly the same modes in p, and are
thus interchangeable with respect to symbolic descriptions
of it. The boundaries between the classes represent those
points in observer space where the projection shifts from
resolving one set of modes to resolving a different set of
modes (larger, smaller, or simply different). That is, within
each class the pattern of degeneracy is uniform, but be-
tween classes it changes. Exactly where the boundaries
lie depends on the discretization method in use. But the
qualitative structure of the chart of classes depends only
on the geometry of the modes.

The observer chart summarizes what meaningfully dis-
tinct symbols are available to any observer of a given
world. Symbols within each class are qualitatively equiva-
lent, in the sense the choice makes no difference in how
the world is symbolically represented. Symbols in different
classes are qualitatively distinct.

5.2. Bases
This naturally raises the question of which combinations

of symbols (or really symbol classes, since symbols within
a class are interchangeable) are sufficient to represent p.
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Fig. 13. Observer chart with (a) K= 2 and (b) K = 3. In each case, the space of observing directions (the observer hypersphere, dotted circle) is divided into a
set of regions (equivalence classes). In (a), there two classes, @ (within which all measurements have one mode) and b (within which all have two). Here b €-
represents p, but a does not. In (b), there are four classes, a, b, ¢ and d, with respectively 3, 2, 1, and 2 modes. Some combinations jointly e-represent the joint

distribution, but others do not.

For example, looking at the observer chart in Fig. 13a, sym-
bol b is sufficient by itself to represent p (b e-represents p),
while a is unhelpful because it conflates the two modes.
(Generally, any symbol that conflates all K modes contrib-
utes nothing to representation.) With three modes
(Fig. 13b), the situation is more complicated. One can see
that b and d are jointly sufficient to represent p, because
they define a 2 x 2 grid in which each mode has its own
cell. a is sufficient all by itself, because it resolves the three
modes. Symbol ¢ (like a in Fig. 13a) is unhelpful because it
conflates all three modes. With more complex worlds with
more modes, one can easily imagine that there would be a
variety of combinations that would represent p in distinct
ways, some with more symbols, others with fewer, but al-
ways jointly sufficient to resolve all K modes. As explained
above, any combination that induces a grid fine enough for
each mixture component to inhabit a distinct cell is suffi-
cient to represent p.

A set of symbol classes that are jointly sufficient to
e-represent a PDF p will be called a basis for p. A basis
can be thought of as an alphabet sufficiently expressive
to serve as a representation.’ Obviously, every e-represent-
able PDF has a basis, while other PDFs—i.e. most PDFs—do
not. In fact, most modal worlds will have many distinct
bases. At one extreme, every mixture of K modes in general
position (no three modes collinear, no four modes coplanar,
etc.), and with sufficiently high M, will have one (unique) ba-
sis consisting of a single variable with K levels (referred to as
a 1-basis). This is the direction of maximum *“projection
index” defined by Friedman and Tukey (1974), i.e. the direc-
tion which maximally reveals clusters in the data. In addi-
tion, there will be various 2-bases, 3-bases, etc. In general,
for every composite number K > K, there will be at least

9 The use of the term basis here should not be confused with its use
elsewhere in Boolean algebra, where it refers to a set of operators jointly
sufficient to represent all propositional forms. Here it is a set of symbols,
not a set of operators, and more similar in meaning to the basis of a vector
space.

one basis for every factorization of K, up to and including
the next power of two above K. For example, five sufficiently
separated modes in general position will have one 1-basis,
one 2-basis (a subset of the 2 x 3 grid), and one 3-basis (a
subset of a 2 x 2 x 2 grid). The largest basis is the one in
which all the variables are Boolean. If the modes are not suf-
ficiently separated (M too low), not all of these bases will
necessarily exist, though at least one of the must since we
have assumed that p is e-representable.

Representations of p over distinct bases are metagruent
(see definition above). Again this is a very abstract notion
of equivalence, more so than logical equivalence (which re-
quires provably equivalent formulae), or congruence,
meaning equivalence after permutation of variables (see
Feldman, 2003). Metagruent representations must have
the same number of models, as they are isomorphic to each
other and to the components of the mixture they repre-
sent. In the example given above, a mixture of K = 5 modes
has several bases including one 2-basis (2 x 3) and one 3
basis (2 x 2 x 2). Representations expressed over these
bases will be metagruent because they e-represent the
same world, even though they are obviously neither equiv-
alent nor congruent. Indeed, unlike equivalence or congru-
ence, metagruence is not a syntactic concept at all, but a
semantic one. It cannot be defined solely in terms of the
relations among the symbols in ¢; and ¢», but rather de-
pends on the relationship of ¢; and ¢, to the world p to
which they both refer.

It should be added that from this perspective there is no
meaningful distinction between atomic features and oth-
ers, nor between simple and complex concepts. The same
set of modes can be represented by a single feature (a 1-ba-
sis) or by a (metagruent) composition of multiple features
(a B-basis for B> 1). No feature is intrinsically primitive,
though some features play the role of primitive features
in particular representations. No one basis is intrinsically
superior to all others regardless of modal structure, though
some features may resolve more modes in the environ-
ment of a particular organism, perhaps making them desir-
able choices as basic perceptual features.
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5.3. What makes a feature meaningful?

Jepson and Richards (1992) have argued that a percep-
tual feature is “meaningful”—conveys functional signifi-
cance above and beyond an arbitrary measurement—when
its taps the natural modes of the environment. This paper
expands on this point, with the notion of modes explicitly
identified with components in a mixture. Above, features
were described as meaning “essentially the same thing”
(being representationally equivalent) when they were
mutually interchangeable in representations of the world.
Expanding on this idea, we can postulate that the meaning
of a feature lies in its ability to aid in representations of
the world, and thus to participate in reliable inference about
the world—which as developed above means its ability to
resolve modes. This suggests that any feature’s “true” mean-
ing consists in its ability to carve up the world in a way that
relates to the carving due to other features. Some have ar-
gued that features take on meaning in virtue of their role
within a larger system of other features (conceptual role
semantics; see Harman, 1987). Here we have grounded this
idea by understanding these interacting roles in terms of
formal relations among features in a multidimensional PDF.

To be concrete, imagine we observe an apple to be red,
not green. Why is this meaningful to us? If the color itself is
a random variable, generated as a random deviate from a
single “apple” color mode, then learning its value conveys
nothing of value; the only stable property of the object is
that it is an apple, while its exact color value is inconse-
quential. But if the color feature is conjointly modal with
another feature—say, species (Macintosh or Granny Smith),
or ripeness (ripe or unripe)—then its color thereby takes
on meaning. As in conceptual role semantics, color is not
inherently meaningful in the absence of assumptions about
what color pertains to; it acquires meaning in virtue of its
relationship (specifically, conjoint modality) with other
features. More abstractly, consider an observer viewing
Fig. 6a (a generic configuration of two modes in two
dimensions) viewed through feature x;. The symbol X
has two values, corresponding to the two modes. Why do
we care which value it takes? Without an assumption of
conjoint modality, there is actually no reason to. But if
we assume that x; is conjointly modal with other, un-
known dimensions (such as it in fact is, with x,), then
knowing the value of X; conveys something potentially
useful about their values. In other words, if having ob-
served x; we assume that the world p unfolds into higher
dimensions as a multidimensional conjointly modal mix-
ture (as it actually does, from the “God’s eye” vantage point
in Fig. 6a), x; thereby takes on tangible meaning.

The vast majority of cognitive science presumes simple
physical features (size, shape, luminance) as the naive ba-
sis for psychological representations of the physical world.
Nevertheless, more ontologically skeptical authors (e.g.
Hoffman, 2009) have argued forcefully that the physical
features subjectively available to cognition constitute a
infinitesimal, and in some ways arbitrary, fraction of the
physically possible features. Indeed, contemporary physics
assumes only a handful of truly atomic features (length,
duration, charge, spin, and a few others; see Richards,
1988)—which correspond poorly to human perception.

Some authors (Feldman & Richards, 1998; Goldstone &
Steyvers, 2001; Koenderink, 1993; Richards & Koenderink,
1995; Schyns, Goldstone, & Thibaut, 1998) have attempted
to articulate criteria for the creation of perceptual features,
but the principles separating “meaningful” features from
others are still foggy.

The current argument suggests that features’ meaning
derives, in effect, from the modal structure of the environ-
ment being represented (Richards & Bobick, 1988). Red vs.
green is meaningful if it is biconditional with some other
feature (e.g. ripe vs. unripe, stop vs. go)—or participates in
some other non-trivial representation of the world (again
cf. conceptual role semantics). But if it does not, it is liter-
ally meaningless.

6. Summary and extensions

The main argument of this paper is simply that environ-
ments constructed from mixtures can be effectively repre-
sented by discrete symbols, while others generally cannot.
Modal worlds contain statistically stable structures to
which symbols may refer, allowing compact, logic-like rep-
resentations to be reasonably faithful. In contrast, the vast
majority of statistically possible worlds contain no probabi-
listically stable structures, and thus nothing for symbols to
refer to. The degree to which symbolic representation is
effective is modulated by its degree of modality, quantified
by M (the separation among the modes) and K (the number
of modes). As M falls and K rises, the modes becomes broad-
er and more numerous, the mixture increasingly resembles
a uniform density, and the effectiveness of symbolic repre-
sentation progressively degrades. This quantitative rela-
tionship is in some ways more revealing than broad
philosophical arguments about symbols. Many familiar as-
pects of symbolic representation, such as compositionality,
logical implication, and propositional forms, can be seen as
arising from the rich pattern of geometrical relationships
among modes that arise in higher dimensions.

As connectionists have argued, the world may indeed be
too complex and stochastic for clean symbolic representa-
tions to work perfectly—indeed most possible worlds are
like that, though perhaps not our world. Symbolists have
argued that symbolic description allow us to comprehend
the world at a desirably broad level of abstraction—but
obviously this is possible only if only the descriptions are
reasonably faithful. The contribution of this paper is to
establish conditions under which such symbolic descrip-
tions apply enough to be useful.

The well-known “No free lunch” theorem of Wolpert
(1996) (which shows that no inferential procedure is uni-
formly superior to all others across all possible environ-
ments), and the “Ugly duckling theorem” of Watanabe
(1969) (which shows that one cannot infer meaningful sim-
ilarity relations without making some non-trivial assump-
tions about the environment) suggest, broadly speaking,
that one cannot make effective inferences about the envi-
ronment without first making some assumptions about its
form. Broadly speaking, abstract arguments about the valid-
ity of symbolic representations—without any stipulations
about the nature of the environment—are hopeless. Like
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all other methods of inference and representation, symbolic
representations work well or poorly depending on the envi-
ronment in which they are applied. Thus the assumption
that the environment is a mixture—i.e. the principle of nat-
ural modes—is a critical assumption licensing the use of
symbolic representations. Since modal worlds can be effec-
tively represented by symbols, but arbitrary worlds gener-
ally cannot, the the use of symbols entails a tacit
assumption of modality in the world.

Several extensions and generalizations should be briefly
mentioned. Above I have assumed that every mixture com-
ponent was centered at a point y; € X. But many concep-
tions of natural regularities assume them to take the
form of correlations among parameters (Murphy & Wis-
niewski, 1989; Richards & Bobick, 1988). Correlations,
meaning covariance among multiple continuous parame-
ters, can be thought of as components (modes) with
dimension higher than 0—space curves, planes, and more
generally manifolds with multiple intrinsic dimensions.
The mathematics becomes much more complicated in this
case, though the basic questions of symbolic representa-
tion, discretization, and observability are all fundamentally
similar. Another aspect not yet developed involves compo-
nents of mixed rank, such as when one component is con-
jointly modal among several dimensions, but another only
among a subset. Finally, another important extension is to
establish representational conditions for 1st-order logic
(rather than simple propositional logic as developed
above), a more complex and challenging setting for logical
representations. These and other technical extensions
await future work.

7. Conclusions

This paper began by asking: what is the difference
between a continuous variable and a discrete one? This
question is the leading edge of a far broader issue: the rela-
tionship between continuously-parameterized stochastic
worlds and the discrete compositional symbol systems of-
ten used to represent them (Goodman, Tenenbaum, Feld-
man, & Griffiths, 2008; Smolensky & Legendre, 2006). The
long tradition of symbolic models in cognitive science,
emphasizing composition and crisp logical relations, is of-
ten set in opposition to the world of statistical models,
including the newly resurgent class of probabilistic
Bayesian models (Chater & Oaksford, 2008) which empha-
size statistical regularities and messy data. But the argu-
ment in this paper is that these worlds are connected by
the concept of modality, as formally captured in mixture
models. In modal probabilistic worlds, faithful, meaningful
symbolic representation is demonstrably possible, though
only approximately so; they may well have residual aspects
not accurately reflected in their symbol representations,
but only up to an identifiable bound (e-representation).
But arbitrary (non-modal) worlds generally do not support
symbolic representation, in the sense that their structure is
generally too random to be effectively summarized by sym-
bols. In this regard the conception has much in common
with that in various other probabilistic renderings of logic,
including default logics (Reiter, 1980), probabilistic non-

monotonic reasoning (Pearl, 1988), and probabilistic mod-
els of deduction (Oaksford & Chater, 2009), and moreover
establishes conditions on the world for these approxima-
tions to obtain. The degree to which various logical forms
constitute reasonably faithful glosses of the world can be
quantified in terms of the degree of modality, in the sense
defined above. The contribution of this paper is to quantify
this approximation, thus bridging what is often viewed as a
chasm between probabilistic and symbolic models.

Because symbolic representation is mathematically jus-
tifiable for modal worlds, but generally not otherwise, the
assumption of modality must be viewed as a key element
of the justification for the use of symbolic representations
in cognitive models. That is, symbolic representations can-
not be used to represent stable and recurring phenomena
in statistically typical (non-modal) worlds, because such
worlds generally do not contain such phenomena. But sym-
bols generally do work in modal environments, in that the
symbol uncertainty (and thus total uncertainty) in such
worlds is demonstrably low. So cognitive systems that em-
ploy symbolic representations rest on a tacit assumption
that the world being represented actually has a modal
structure. As mentioned above, this conclusion can be seen
as a special case of a standard result from the theory of
complexity, namely that most structures (here, PDFs) are
incompressible, while a small fraction are compressible
in the sense that they can be concisely summarized (here,
represented by symbols).

That is, most probabilistically-defined worlds are not, in
principle, compressible to the extent that they can be rep-
resented by a mental symbol system with a reasonable de-
gree of fidelity. Conversely, we have identified one well-
defined class of environments, modal ones, that are sym-
bolically compressible in this sense. Our cognitive appara-
tus is capable of representing the environment because the
environment is modal, or, more specifically, to the extent
that it is modal.

As Marr (1982) famously observed, models of mental
mechanisms cannot get far without a substantive consider-
ation of the conditions under which they will be effective.
Modality can be regarded as a (very broad) Marrian con-
straint: an environmental condition that helps makes effec-
tive symbolic representation and logical inference possible.
Statistical structure abounds in the natural environment,
and a complete understanding of cognitive mechanisms is
impossible until we fully understand how this fact informs
the mind. To paraphase Warren McCulloch (1960), the key
question is not What is a symbol, that it may represent the
world? but rather What is the world, that a symbol may
represent it?
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Appendix A. Derivations and details
A.1. The modality parameter M

As explained in the text, the modality parameter M is
defined as twice the ratio of the standard deviation of the
component means to the maximum component standard
deviation,

2S
M= ) (19)

Gmax

This makes it a close relative of the traditional F ratio: spe-
cifically M? « F after normalization of degrees of freedom.
However I avoid this notation because in the context of this
paper there is generally no reason to expect M? to be dis-
tributed as Fisher’s F distribution. If we draw K samples
from a common Gaussian distribution (not a mixture),
and separately estimate their within-sample standard vari-
ances a,? and between-sample variance S2, then we would
indeed expect the ratio of these variance estimates to be
distributed as F. But the premise of the current paper is spe-
cifically that the environment is not unimodal in this sense,
but rather that the distinct sources g; have independent
means ;, in which case the measured M? would be ex-
pected to distributed very high relative to F. In this regard
the “Hypothesis of Natural Modes” (that distinct modes
have distinct causal sources) can be regarded as the nega-
tion of the classical Fisherian null hypothesis in the context
of analysis of variance (namely, that apparently separate
samples are all drawn from a common distribution.)

A.2. e-representation, one-dimensional case

We seek to establish a bound on the expectation of the
uncertainty H[p(x|x)] after the value of value of the discret-
ized variable x is known, expressing this bound as a func-
tion of the parameters M and K of the mixture that
generated p(x). As in the text, we assume a mixture
p(x) = ;,wig;(x) having K components gj(x) with respec-
tive means y; and standard deviations a;, of which the larg-
est is omax. The ensemble of y; has standard deviation S,
and as in the text we define the modality M = 2S/0max.
Fig. 14 illustrates the situation with K= 3.

We establish an approximate upper bound on the
uncertainty H[p(x|X)] by observing that “most” of the prob-
ability mass within the ith interval is due to the ith mode,
while some portion 1 of it is due to other sources j # i. The
probability mass within the interval is a mixture of these
sources, so we establish a bound by (i) finding a bound
on the uncertainty of the ith component, (ii) finding a
bound on the uncertainty when a PDF p is mixed with 7
of another PDF, and (iii) establishing a bound on the mag-
nitude of 4. Combining (i)-(iii) establishes a bound on the
uncertainty of the mixed PDF within the ith interval, i.e.
on the expectation of H(p(x|X)).

(i) Each component g;(x) has been assumed to be uni-
modal, but we have made no other assumptions
about its functional form (although note that Diaco-
nis & Freedman (1984) have shown that 1-D projec-

~g,

0 01 02 03 04 054 0
M1 I 2 M3
S 'EL S
X

Fig. 14. A mixture of K = 3 Gaussian modes, illustrating the computation
of uncertainty within each bin of the corresponding discretized variable.
The three components have respective means p,, 1, and us, which have
overall mean [t and standard deviation S. Within a given bin (here the
middle one, ¥(2), shaded), the PDF is a mixture of the ith component (here
g>) with smaller contributions from the other components. The bound
given in the text shows how the expected uncertainty within this bin is
bound by the is a sum of the uncertainty of a Gaussian g, plus a small
contribution (bounded by 1) due to the addition of probability mass from
the other K — 1 components.

tions of higher-dimensional densities tend to be
Gaussian under broad assumptions). But even with-
out making any such assumptions, we can still place
a bound on its uncertainty by observing that among
all densities with a given mean and standard devia-
tion o, the Gaussian has maximum uncertainty
log(ov27e). Because 6 < Omax, and M =25/ it
follows that o < 2S/M. Hence the expectation of
the uncertainty of g; is bounded by

25V 2me
M

E[H(g)] < log( ; (20)

This quantity decreases with logM, which means that as
modality increases and the mixture gets more spiky, the
(bound on the expectation of the) uncertainty due to each
mode decreases.

(ii) Inside the ith interval the density p is a mixture of g;
with some small quantity of additional probability
mass due to other sources. Uncertainty is concave,
meaning that when an g; is mixed with other PDFs
the uncertainty generally rises. But it is a continuous
function, suggesting that if the total mass of the
additional source is small, the rise in uncertainty
should also be small.

In general, consider the change in uncertainty of a
PDF g when it is mixed with a total quantity 4 drawn
from another PDF. We establish an upper bound on
the uncertainty of the mixture g’ using the following
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inequality, which guarantees that for arbitrary den-
sities r and s, if

N 1
Silri—si| <4< 5, 1)
: 2
i=1
then
IH(r) — H(s)| < —A‘log%. (22)

(See Cover & Thomas, 1991, Thm. 16.3.2.) In our situation
the roles of r and s are played by q and ¢’, whose total dif-
ferential 3_!'|q — ¢'| is bound by 2. This means that

H(q) < H(q) + 2logN.. (23)

(iii) To place a bound on 4, consider how much of the
mass generated by g; is likely to fall outside the ith
interval i. Somewhere between each pair of adjacent
means there exists an optimal classification bound-
ary 0 that minimizes the expected uncertainty
within the bins. We instead choose to divide bins

at the midpoints between them (e.g. X1y know-
ing that this necessarily yields a higher expected
uncertainty. The expectation of the distance
between any two modes is 2S (because by assump-
tion y; have been drawn from a distribution with
standard deviation S). The expected radius from
the center of each bin to the boundary of another
bin is therefore S/a, which is just M/2. Chebyshev’s
inequality establishes that given any p(x) with stan-
dard deviation o, the total probability mass falling
further that zo outside the mean must be less than

1
p(jx —pl > 20) < . (24)

In the current situation this means that the total mass due
to g; falling more than M away from y; (i.e. outside the
interval x(i)) is less than

4
Z p(xlgy) < v (25)
xex (i)
This bound holds regardless of the form of the distributions
Si-

Conversely, within the ith interval the contribution
from each other source j # i obeys the same bound. There
are K — 1 other sources, so the total probability mass with-
in x(i) due to sources other than i is less than or equal to

4K-1)
M2
Finally, combining (i)-(iii) allows us to conclude that
the expected symbol uncertainty is bound by

2S5V 2me
M

) < . (26)

EH(x|x)] < log< — 2log 2/N, (27)

with 2 =4(K— 1)/M?. This quantity bounds the expected
residual uncertainty about the parameter x after the value
of the discrete value X is known. By definition this estab-
lishes that p(x) is e-representable with € equal to the above
expression (Eq. (27)). This quantity is of order O(K) and

O(—logM), justifying the summary given in the text (Eq.
(9)).

A.3. Uncertainty of a mixture

We can extend the above reasoning to establish a bound
on the uncertainty H of a mixture p(x), by noting as in the
text that p(x)=p(x|g;))p(g:), which means that the total
uncertainty of p(x) is simply the sum of the expected
uncertainty in each bin (which is bounded by Eq. (26)) plus
the uncertainty in the discrete variable —>¥,w;logw;,
which has expectation logK. Hence the uncertainty in a
mixture is bounded by

EH(p)] < H(x|x) + logK, (28)

with the first term bounded as in Eq. (26). As M decreases
or K increases, the mixture generally gets “flatter” and
uncertainty rises, and symbolic representation becomes
progressively less useful; but note that it can never exceed
the theoretical bound of logN. See Fig. 5 for numerical cor-
roboration of these analytical results. Again, the derived
bound is very loose because of the loose Chebyshev bound,
which makes no distributional assumptions, but the simu-
lation confirms the functional dependence on M and K.

A.4. Uncertainty of an arbitrary distribution

We aim to show that “most” distributions have high
uncertainty. A probability distribution is simply an assign-
ment of probability mass p(x) to the N bins along x such
that >";p = 1. We aim to show that “most” distributions
of this form have nearly maximal entropy, about logN.

This is actually just a special case of the Wallis formula-
tion of the maximume-entropy principle discussed in Jaynes
(2003), which shows that among all distributions satisfy-
ing some fixed set of constraints, almost all have entropy
near the maximum. Here we simply set the constraints
to be empty, allowing all distributions to qualify. In the
Wallis formulation, we imagine creating a quantized prob-
ability density function by assigning some large number T
of quanta of probability mass to bins along x, in a way that
satisfies some set of constraints (here, none). Among all
ways of assigning the quanta, almost all have uncertainty
near maximal, where the nearness to maximality depends
on how small we choose to make the probability quanta. In
an arbitrary distribution, no region of the underlying
parameter x would have expected density higher than
any other.'° (If one did, it would be a “constraint” of the
type we are assuming do not apply.) To be more specific, as-
sume that the T probability quanta are each place in one of
the N slots in [0,1], with each slot having equal probability
1/N of being chosen. Thus the number actually falling in
the ith slot will have a multinomial density, with the ex-
pected number in the ith bin having expected mean T/N
and variance T(N — 1)/N?. We divide by T to normalize and

10 To be clear, individual distributions may certainly have higher density
in one region than another. It is the expected density, i.e. the distribution
from which the probability quanta are drawn, that is uniform. Thus though
individual distributions may be non-uniform, the entire ensemble of
distributions does not systematically favor one region of x over another.
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obtain expected mean p;=1/N, and variance T(N — 1)/N.
Thus the expected absolute deviation (positive square root
of the variance, normalized by T) of the p;'s from 1/N will be

[VTIN=T)/N]/T (29)

or about 1/vTN. The uncertainty is the expectation of
—plogp, and is thus about

1 1 1 1
H(p)=-N|-+—|lo {—Jr—} 30

(p) {N TN} SNt N (30)
As T — oo the 1/vTN terms vanish and the uncertainty ap-
proaches that of a uniform density,

1 1
HH—NNlogN:logN. (31)

The total number of quanta T modulates the precision with
which we are approximating the distribution. As T grows, a
larger and larger portion of the resulting densities are
nearly uniform. This can also be seen as a variant of the
asymptotic equipartition property (Cover & Thomas,
1991), which guarantees that as a sequence of Bernoulli
trials grows in length, a larger and larger fraction of out-
comes has nearly the same, typical, uncertainty.

In summary, “most” distributions are approximately
uniform and have uncertainty about logN. As noted in the
text, this is a counting argument, not a probabilistic one.
The argument shows simply that the total set of probabil-
ity distributions is made up primarily of ones with high
uncertainty; it says nothing about how often we will
encounter any subset of them. In fact, the main argument
in the text is that while modal worlds are but a small
minority of all possible worlds, they are “over-repre-
sented” in reality (Richards & Bobick, 1988), which is
why symbolic representations are so often useful.

When the value of X is known, the uncertainty about x is
reduced by the ratio of total measure (1) to the measure of
the ith bin, which has expectation 1/K. (Again we are tak-
ing the expectation over the underlying quantum-generat-
ing distribution, not over any one particular distribution.
Any one distribution might yield uneven weights w; larger
or smaller than 1/K; but over the entire ensemble of distri-
butions no one bin will generally be larger than any other.)
So for an arbitrary density the expected uncertainty condi-
tioned on knowing the value of the discretized variable
(the symbol uncertainty) is about

log N
K

For large M and small K, this quantity is much larger
than Eq. (27), the comparable value for mixtures. Arbitrary
PDFs have high uncertainty, regardless of discretization,
while modal densities have low uncertainty, because they
can be effectively discretized.

EH(x[%)] ~ (32)

A.5. Probability of degeneracy

We approximate the probability of degeneracy by quan-
tifying the probability of degeneracy for any two modes
along any single dimension, and then assuming all such
degeneracies are independent. Exactly how distant two

modes must be before they become separable depends
on the discretization method, but as a simple approxima-
tion we adopt McLachlan and Basford (1988)'s rule of
thumb for bimodality, whereby the mixture of two modes
becomes unimodal when their means p; and p, fall within
o of each other. As means themselves have standard devi-
ation S, so does the separation |p; — | between them (as
can be seen if one imagines the location of one fixed at 0, in
which case the location of the other has standard deviation
S.) The modes will be conflated if this distance is less than
20, or, putting this the other way, the configuration will be
generic if one mode falls in the tail of the other mode out
beyond this criterion. This criterion has z-score 2g/S. As
M = 2S/o (Eq. (4)), the critical z is just 4/M. By Chebyshev’s
inequality (cf. the very similar argument in Appendix A.2),
the probability of a non-degenerate configuration along
this dimension is less than

p(generic) < (M/4)?. (33)

Assuming K independently positioned modes in D dimen-
sions, such conflations will all be independent. There are

(I;) pairs of modes projected to each dimension (for

example 6 pairs of 4 modes), so there are D ( 12<> pairs total

in all dimensions. So the overall probability of degeneracy
will be bound by

k
%
. M 2
p(generic) < (== . (34)
16
For M >4, this bound is greater than unity, because the
Chebyshev bound is very weak. But for M <4, meaning
broad overlapping modes, the bound decreases rapidly
with D and K, as a completely generic case becomes
increasingly “special” and unlikely to occur by accident.
Degenerate cases then become the norm, and representa-
tions of them correspondingly essential, justifying the spe-
cial attention given to them in the text.

A.6. e-representation, multidimensional case

The multidimensional definition of e-representation is a
simple generalization of the one-dimensional case. The
maximum standard deviation g,,.x is now over dimensions
as well as over modes (i.e. it is now the largest univariate o
in any single dimension in any single mode), though a ri-
cher approach might be developed by taking covariances
into account. The other main difference is the presence of
the theory ¢ which picks out legal cells of XP. The expecta-
tion (e.g. Eq. (20)) is now taken over these cells only. Inside
these cells, uncertainty is low, because they primarily con-
tain probability mass due to the component centered there
(and only A due to other modes). As in the 1D case, uncer-
tainty within each cell shrinks as M increases and the PDF
becomes progressively spikier, with one spike in each legal
cell. Though there is less probability mass in other cells, the
uncertainty conditioned on them can be high, as what
mass there is may be uniformly spread throughout the
(modeless) cell.



82 J. Feldman / Cognition 123 (2012) 61-83

Distinct theories that each e-represent the same PDF
will generally define different grids, meaning that expecta-
tions will be taken over slightly different regions of X lead-
ing to different values of symbol uncertainty and €. But
these distinct representations will pick out the same K
modes, so the dependence on K and M will be qualitatively
similar. Different representations will represent p with dif-
ferent degrees of absolute fidelity, but any one that re-
solves the K modes will do so “effectively” in the sense
defined in the text, with qualitatively similar variation in
effectiveness as M and K vary.
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