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Abstract

How does an observer decide that a particular object viewed at one time is actually the same object

as one viewed at a different time? We explored this question using an experimental task in which an

observer views two objects as they simultaneously approach an occluder, disappear behind the

occluder, and re-emerge from behind the occluder, having switched paths. In this situation the

observer either sees both objects continue straight behind the occluder (called “streaming”) or sees

them collide with each other and switch directions (“bouncing”). This task has been studied in the

literature on motion perception, where interest has centered on manipulating spatiotemporal aspects

of the motion paths (e.g. velocity, acceleration). Here we instead focus on featural properties (size,

luminance, and shape) of the objects. We studied the way degrees and types of featural dissimilarity

between the two objects influence the percept of bouncing vs. streaming. When there is no featural

difference, the preference for straight motion paths dominates, and streaming is usually seen. But

when featural differences increase, the preponderance of bounce responses increases. That is,

subjects prefer the motion trajectory in which each continuously existing individual object trajectory

contains minimal featural change. Under this model, the data reveal in detail exactly what

magnitudes of each type of featural change subjects implicitly regard as reasonably consistent with a

continuously existing object. This suggests a simple mathematical definition of “individual object:”

an object is a path through feature-trajectory space that minimizes feature change, or, more

succinctly, an object is a geodesic in Mahalanobis feature space.
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1. Objects

An important component of our perception of a stable and unified world is the

subjective impression of coherent objects having continuous existence over time. Yet the

full psychological meaning of the term “object” in this context remains elusive. What

causes an object at one time to be regarded as the “same object” as another at a previous

time, and what does “same” mean in this connection? This problem has sometimes been

referred to as temporal grouping (e.g. by Gepshtein & Kubovy, 2000), to emphasize that

elements are grouped across time, by analogy with spatial grouping, in which elements

within a given visual image grouped across space. In this paper we will use the term object

individuation, to refer to the mental construction of individual phenomenal objects having

continuous existence over time.1

Pioneering research in the study of the object concept has come from the developmental

literature (Baillargeon, 1994; Spelke, 1990). Infants understand objects to be bounded and

coherent three-dimensional entities (Spelke, Breinlinger, Macomber & Jacobson, 1992),

and as young as four months of age believe that objects continue to exist when they

disappear behind occluders (Baillargeon, 1987). Thus over time infants develop something

like the adult’s conception of objects, including expectations of boundedness and

coherence, continuity of existence over time, and stability of featural attributes. Yet the

exact meaning of many of these terms in the adult’s conception is still somewhat unclear;

the relevant questions in adults have scarcely been studied. Adults presumably have

“object constancy” in the sense in which the term is usually used; but exactly what does

this mean? What is held subjectively constant over the course of an object’s existence? In

this paper we study the problem of object identification in adult observers, and attempt to

shed light on true psychological meaning of the term “object” and the computations

underlying it.

We focus on the notion of featural stability, and on how expectations about the stability

of objects’ features over time influences observers’ object interpretations in ambiguous

situations. Clearly, one expects objects generally to retain their properties over the course

of time. Yet it is obvious that an object can change its properties to some degree and yet

remain, phenomenally, the “same” object (Fig. 1). No change in features may be the most

likely case (a); but clearly some featural changes, such as the change in retinal shape

associated with rotation in depth, are quite plausible (b); while other changes, such as non-

rigid changes in shape, are less plausible (c); and still other changes highly implausible (d).

Later in this paper, we will seek to capture this nexus of vague expectations about the

evolution of an object’s properties as a concrete probability distribution defined over a

feature space, which we call the object evolution function. In the theory we develop below,

this probability distribution will then serve as the centerpiece of the observer’s decisions

about object individuation in an ambiguous situation, such as our experimental paradigm.
1 The term “temporal grouping” is admittedly elegant, but we feel that the analogy with spatial grouping is not

perfectly apt. In spatial grouping elements are aggregated together while continuing to maintain separate

existence, whereas in the problem at hand distinct elements are interpreted as being distinct incarnations of the

same individual, and thus not simply grouped but actually identified (in the sense of “regarded as identical”). See

also Footnote 2.
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Fig. 1. As an object evolves over time, zero feature change (a) is the most likely case, but certain featural changes

are highly plausible (b), while others are less plausible (c), and others are highly implausible (d).
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Our main conclusion will be that observers perceive as continuously existing objects those

paths that entail the minimum of feature change over time—or, more precisely, the least

unlikely feature change given the observer’s subjective probabilistic expectations as

captured in the evolution function.

The developmental literature has at times explicitly counterposed spatiotemporal

properties, such as continuity of location over time, with featural properties, usually visual

features such as shape and color. Infants as young as four months of age can individuate

objects based on spatiotemporal properties such as continuity (Spelke, Kestenbaum,

Simons, & Wein, 1995). At the age of nine months, infants can individuate objects based

on featural properties (Káldy & Leslie, 2003; see also Tremoulet, Leslie, & Hall, 2000; Xu

& Carey, 1996); though this issue remains controversial.2

Experiments with adults have suggested that, in a general sense, location is primary

while non-spatial properties are secondary (e.g. see Johnston & Pashler, 1990; Nissen,

1985). Our experimental paradigm is designed so that all candidate object paths are

continuous and hence spatiotemporally possible. This allows us to manipulate featural

differences and investigate their influence on object interpretations. Despite a great deal of

informal speculation in the literature, the actual influence of featural variation on

subjective object continuity (in adults) remains surprisingly unstudied.
2 This issue is further obscured by terminology in use in the infant literature, where individuation (the formation

of object representations) is sometimes distinguished from identification (the formation of correspondences over

time) (Tremoulet et al., 2000). In this sense our study pertains more closey to identification than individuation, but

we prefer the latter term because (a) outside the context of infants’ peculiar division of capacities, it seems a more

apt description of the phenomenon; and (b) the term identification has its own distinctive association in the vision

literature, where it refers to the recognition of items from memory. The two senses of the term “identification” are

discussed in Kahneman et al. (1992).
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2. The bouncing/streaming paradigm

The paradigm we will use in the experiments below is a variant of one introduced by

Michotte (1946/1963, exp. 24), and later, independently, by Julesz (in about 1959; see

Julesz, 1995, p. 50) as well as Kanizsa (1969). More recently it was reintroduced

(apparently without knowledge of these earlier uses) by Bertenthal, Banton, and Bradbury

(1993) and Sekuler and Sekuler (1999) as a tool to study motion perception.

In a typical display, two objects approach each other from the left and right edges of the

screen, “collide” in the middle, and then two objects emerge from the collision moving in

opposite directions. The question for the subject is: after the collision, which object is

which? In the simplest case of two identical objects moving at constant velocity, the most

common percept is that the objects appear to pass through one another (“streaming”), but

under certain circumstances the objects appear to strike each other and abruptly reverse

motion direction (“bouncing”). The preference for streaming is thought to reflect a

preference for straight, constant-velocity motion paths, an important bias of the motion

interpretation system (Ramachandran & Anstis, 1983), and hence this task has most often

been used to investigate basic motion mechanisms. Such studies usually use featurally

identical objects while manipulating spatiotemporal aspects such as speed and

acceleration (Sekuler & Sekuler, 1999), attentional demands (Watanabe & Shimojo,

1998), or exogenous cues such as sound (Sekuler, Sekuler, & Lau, 1997; Watanabe &

Shimojo, 2001a,b), and have also been carried out with infants (Scheier, Lewkowicz, &

Shimojo, 2003).

In our slightly modified version of this task (Fig. 2), the two objects appear from the

upper left and right corners of the screen, moving down and towards a central occluder;

simultaneously disappear behind the occluder; and then re-emerge on the two original

paths, but having switched properties. Crucially, one can regard the two objects as having

constant properties, but exchanging paths (in which case one sees bouncing); or as having

constant (straight) paths, but swapping properties (streaming).
a

a b

b

?

Fig. 2. The bouncing/streaming task.
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Subjectively, the percept of “bouncing” or “streaming” in this task is very vivid: one

either has an immediate percept of two objects crossing without touching or, alternatively,

of an abrupt collision, with a concomitant sense of which object is which after they emerge

from behind the occluder.

Our displays differ from those of Bertenthal et al. (1993) and Sekuler and Sekuler

(1999) and others in two respects. First, our two paths cross transversally at the occluder,

while others’ are strictly horizontal. We felt that the “accidental” collinear alignment

between perfectly horizontal paths might bias observers to see the two paths as causally

related in some way. Moreover Michotte (1946/1963), using a horizontal display, had

observed in a small number of subjects an anomalous depth-rotation interpretation which

we wished to avoid. Second, in our displays, an occluder covers the point of intersection,

while in others’ displays there is no occluder. The occluder was necessary to ensure that

displays with certain featural differences (especially in shape and size) were completely

ambiguous between bouncing and streaming (i.e. that both interpretations were consistent

with the display).
3. Related phenomena and literature

Before presenting our experiments we briefly review some relevant phenomena already

studied in the literature.
3.1. Apparent motion

An analogous and related area of research is apparent or beta motion3 (see Anstis, 1980). In

an apparent motion display (Fig. 3a), one visual item is briefly flashed at one time, and then

another item is flashed at a different location at a slightly later time; the usual result is a

perception of motion between the two locations. Some authors (Burt & Sperling, 1981; Kolers

& Pomerantz, 1971; Navon, 1976) have found that apparent motion is influenced primarily by

spatiotemporal properties (e.g. the magnitudes of the spatial and temporal gaps between the

two items), and that featural properties of the items play little role. However others (Prazdny,

1986; Shechter, Hochstein, & Hillman, 1988) have found a measurable benefit of featural

similarity between the items. Many authors have suggested a distinction between short-range

and long-range apparent motion (Lu & Sperling, 2001 for a recent review), with only the latter

being influenced by later visual processing involving overt featural properties (see also our

discussion below of motion energy models).

A particularly interesting variant is the Ternus illusion (see Fig. 3c), which

features an ambiguity of object identity over motion (see Yantis, 1995). In the Ternus

illusion, two distinct types of motion can be seen depending on how visual elements are

grouped, so that the motion percept and the object identity percept are intertwined.
3 Apparent motion is often referred to as phi in the literature, but this usage apparently stems from a confusion

of the original Gestalt classification in which beta referred to simple apparent motion, and phi to a different

phenomenon; see Steinman, Pizlo, and Pizlo (2000) for discussion.
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Fig. 3. (a) Apparent motion paradigm. (b) Multiple-object tracking paradigm. (c) Ternus illusion. One either sees

two objects rigidly translating (group motion), or the left-hand object “leap-frogging” over the static center object

(element motion).
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Gepshtein and Kubovy (2000) have studied the factors influencing these two percepts by

manipulating spatial and temporal factors in dot lattices. Their displays were regular

patterns of dots, suitably arranged over successive frames so that either element-motion or

group-motion could be seen, i.e. that either individual dots would be seen moving in one

direction, or groups of dots moving in a different direction. They concluded that grouping

over time and space were critically intertwined, meaning that one cannot regard the spatial

grouping within each frame as proceeding prior to grouping between frames; rather both

types of grouping interact. However, this study, like all extant studies involving the Ternus

illusion, used featurally identical elements, so the effect of featural differences is, again,

unknown.
3.2. Multiple-object tracking

Another relevant literature is that on multiple-object tracking (MOT) (Pylyshyn &

Storm, 1988; see Fig. 3b). In this task, subjects are asked to track a small set of moving

objects amid a field of (visually identical) distractor objects. Most subjects can track about

four such objects among a field of eight. Normally in this task all the items are featurally

identical, so tracking is based on continuous monitoring of spatial trajectories rather than
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featural information. Featural properties of the objects have played a role in some recent

MOT studies, e.g. in studies of whether subjects encode features of tracked objects

(Bahrami, 2003; Scholl, Pylyshyn, & Franconeri, 1999). But to our knowledge the

influence of featural information on tracking in MOT, i.e. on the determination of

correspondence over time, has not been studied.

Subjects in an MOT task can track objects behind occluders (Scholl & Pylyshyn,

1999), and in a similar task can track using continuity in abstract feature-space

(Blaser, Pylyshyn, & Holcombe, 2000), a notion closely related to the abstract

feature-change space we will develop below. Hence the notion of “individual object”

tapped by our bouncing/streaming task is probably the same as that tapped by MOT.

The emphasis in MOT studies though is on the division of attention among the

various items to be tracked, and how this attentional load is affected by the number of

items. Our displays do not vary the number of items; rather the emphasis is on how

observers solve the ambiguous correspondence between the items before the occluder

and those after the occluder, an ambiguity not normally present in the MOT task.

Several authors have suggested that objects in this paradigm are tracked via object

files or indexes (Kahneman, Treisman, & Gibbs, 1992) or FINSTs (Pylyshyn, 1989),

mental markers that demarcate individuals in the visual field over the passage of time.

The main goal of MOT research has been to study the machinery of the indexing

system—its underlying capacity, the role of attention in allocating indexes, and so

forth. Our goal is complementary: to understand the paths that objects indexes

follow—that is, to model the decision problem subjects tacitly make when they decide

that an index ought to go this way and not that way. We will revisit the relationship

between these ideas below.
4. Experiments

When describing our displays, for clarity of exposition we will refer to the left-

hand item as a and the right-hand item as b (see Fig. 2); hence the symbols a and b

each refer consistently to an entity with constant properties. (This terminology is for

convenience; in the actual displays left and right sides were counterbalanced.) We

parameterize the displays with respect to the featural difference DF between a and b;

e.g. DFZ0 means aZb. Later we will present a theoretical model in which we

predict the probability of a bounce response as a function of the featural difference

DF.

Summing up, when confronted with any of our displays, the observer has a choice

between a percept of streaming—but with an attendant abrupt feature change of magnitude

DF as each object passes behind the occluder; or a percept of bouncing, with no attendant

featural change. Hence this task directly measures the observer’s judgment of the

likelihood of a featural change of DF within the lifeline of a single, coherent object. The

subjective likelihood of a given feature change, in turn, reflects the nexus of subjective

expectations about plausible feature change, which we hope will illuminate the subjects’

underlying mental model of “objects.”
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As noted above, when DFZ0, subjects usually report streaming, consistent with (or

analogous to) the general preference for straight motion paths and “inertia” in apparent

motion (Bertenthal et al., 1993; Ramachandran & Anstis, 1983). Hence clearly featural

differences are not the only factor influencing interpretation of our displays. However this

bias is a constant throughout all our conditions, while featural differences DF are

manipulated. In the formalism presented below, we will assume the bias for streaming is a

single scalar weight (in effect, the subjective prior probability attached to the streaming

hypothesis) that does not interact with any of the manipulated effects.

In the following experiments, we manipulated the featural difference DF between items

a and b (see Fig. 2), and measured its influence on “bouncing” vs. “streaming” responses.

As features, we focused on luminance (Exp. 1), size (Exp. 2), and shape (Exp. 3). We were

also especially interested in the manner in which multiple cues are combined (a topic of

substantial recent interest among perceptual theorists; see discussion below), so we

also separately ran conditions manipulating all three pairs of features:; luminance!size

(Exp. 4), luminance!shape (Exp. 5), and size!shape (Exp. 6).
4.1. Notation

Each of our objects can be thought of as a point in luminance-size-shape space (Fig. 4),

which we denote by F:

F Z hfLUM; fSIZE; fSHAPEi: (1)

We denote by Fa and Fb the feature vectors for objects a and b, respectively. We are

interested in the difference DF between them, given by

DF ZFa KFb; (2)

which is a vector of three individual feature differences,

DF ¼ ðDfLUM; DfSIZE; DfSHAPEÞ: (3)

The main manipulation in the experiments is always DF, with each experiment

focusing on a single component or pair of components.

By Fechner’s law, we actually expect psychological differences to reflect ratios rather

than differences of the raw values. So in order to make F a simple vector space, we use

logarithmic features, e.g.

fLUM Z log ðraw luminanceÞ; (4)

and similarly for fSIZE and fSHAPE. This means that vector differences in this space reflect

ratios in the original raw values, e.g.

DfLUM Z log
raw luminance of a

raw luminance of b

� �
; (5)

and similarly for size difference DfSIZE and shape difference DfSHAPE. This means that “no

difference” is always signified by DfZ0 (because 0Zlog(1)). In the experiments, we

attempt to choose values of each DF giving a wide range of differences, and always
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including a same-feature case (fLUMZfSIZEZfSHAPEZ0, i.e. FaZFb). Then we choose

pairs of values of f that center their difference Df symmetrically around an intermediate

value of the parameter.

4.2. Parameters

4.2.1. Luminance

Each object was a uniform gray region (on a white background) with reflectance drawn

from the range between 0 (black) and 1 (brightest white). As explained, DfLUM thus

represents the log ratio of the raw luminances (percent white) of a and b.

4.2.2. Size

Objects were uniformly scaled to create size differences. DfSIZE thus represents the log

ratio of the linear span of a to that of b.

4.2.3. Shape

As a shape parameter, we created a one-parameter continuum of shapes running from

square to triangle (see shape axis in Fig. 4), with intermediate values producing a spectrum

of trapezoids. As with the other parameters, we then take the log ratio, so DfSHAPE

represents the log of the ratio of a’s position along this spectrum (i.e. percent triangle) to

that of b.

In each experiment, the feature(s) not manipulated were fixed at an intermediate value

(50% white, medium size [about 18 of visual angle at 45 cm of viewing distance], or 50%

triangle). Hence all shapes in the luminance condition (Exp. 1), size condition (Exp. 2),

and luminance!size condition (Exp. 4) were trapezoids with an intermediate value of the

shape parameter.

In the two-parameter experiments (Exps. 4–6), we used the same values of each of the

parameters as had been tested in the single-parameter experiments, so subjects’ treatment

of parameters in combination could be compared as directly as possible to the same

parameters taken singly.

4.3. Method

Methods for all six experiments were identical except for the choices of feature change

vectors DF. For clarity of presentation we give the general method first, then details of

each of the experiments’ parameters in sequence, before giving results.

4.3.1. Subjects

Exps. 1–6 used 16, 16, 14, 16, 15, and 17 subjects, respectively. Subjects were

undergraduate students participating for course credit and were naive to the purposes of

the experiment.

4.3.2. General method

The subject was seated in front of the computer screen at a viewing distance of

approximately 45 cm. The subject would then fixate on the central occluder, a textured
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Fig. 4. Feature space F, showing variations in luminance, size, and shape.
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circular patch subtending about 28 of visual angle (the exact size is calculated to be

sufficient to fully occlude the largest object in any trial). After the subject pressed the

spacebar, the two objects would appear from the offscreen at the upper left and right,

traveling towards the occluder at fixation. The objects would then both simultaneously

disappear behind the occluder, becoming progressively occluded until they were both

completely invisible. Then two objects would progressively emerge from behind the

occluder traveling along the original motion paths, as explained above, except with object

a now continuing b’s motion path and vice-versa. The objects continued on their final

paths until they disappeared offscreen. The subject was then asked to indicate whether he

or she had perceived a “bounce” or “stream” via response keys on the computer keyboard.

Responses could be made any time after the objects had passed the occluder; subjects were

not asked to respond quickly but simply to indicate what they had seen.

Several other variables in addition to DF were also manipulated, fully crossed with the

main manipulation of DF. In all experiments, the speed of the moving objects was either 6,

12, or 18 degrees of visual angle per second. The incidence angle (Fig. 5) was either 25 or



Fig. 5. Illustration of the incidence angle a in the displays. The figure also illustrates the texture pattern on the

occluder.

J. Feldman, P.D. Tremoulet / Cognition 99 (2006) 131–165 141
45 degrees. In the single-feature experiments, there were thus 5 levels of the main

variable!3 levels of speed!2 levels of incidence angle for a total of 30 trials per

complete counterbalanced block, with 6 blocks (180 trials) per complete subject session.

In the two-feature experiments, there were 5 levels of one main variable!5 levels of the

other main variable!3 levels of speed!2 levels of incidence angle for a total of 150 trials

per complete counterbalanced block, with 2 blocks (300 trials) per complete subject

session.

On each trial, subjects were asked to respond “bounce” or “cross” (stream) (forced

choice). The main dependent variable was the proportion of “bounce” responses (one

minus the proportion of “cross” responses), which later we model as function of the

featural difference DF.

4.3.2.1. Exp. 1 (luminance). Exp. 1 used the following raw luminance pairs (a:b, raw

percent white): 50:50, 52.5:47.5, 55:45, 60:40, and 70:30 (i.e. spreads of 0, 5, 10, 20, and

40 percentage points centered around 50). These values correspond to ratios of 1.00, 1.1,

1.22, 1.5 and 2.33, or log ratios DfLUM of 0, 0.1, 0.2, 0.41 and 0.85. The actual appearance

of these values is illustrated along the abscissa in Fig. 6.

4.3.2.2. Exp. 2 (size). We used size ratios (a:b, linear span) of 1:1, 1.05:1, 1.1:1, 1.15:1 and

1.21:1 (actually equal intervals in log units before rounding; the real values are 1.1 raised

to the power of 0, 0.5, 1, 1.5, and 2, respectively). These values correspond to log ratios of

about fSIZE of 0, 0.05, 0.1, 0.14 and 0.19. These ratios are illustrated along the abscissa in

Fig. 7.

4.3.2.3. Exp. 3 (shape). We used shape ratios (a:b, percent triangle) of 50:50, 55:45, 60:40,

70:30, and 90:10. These values correspond to ratios of 1.00, 1.22, 1.5, 2.33 and 9, or log

ratios DfSHAPE of 0, 0.2, 0.41, 0.85 and 2.2. The corresponding shapes are illustrated along

the abscissa in Fig. 8.

4.3.2.4. Exp. 4 (luminance!size). Exp. 4 used the same five levels of luminance change

fLUM as in Exp. 1, and the same five levels of size change fSIZE as in Exp. 2, fully crossed,

for a total of 25 feature-change combinations (i.e. values of DF).
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Fig. 6. Results from Exp. 1 (luminance), showing the proportion “bounce” responses as a function of luminance

difference fLUM. The dotted line shows the Bayesian model (see text). Error bars show standard error.
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4.3.2.5. Exp. 5 (luminance!shape). Exp. 5 used the same five levels of luminance change

fLUM as in Exp. 1, and the same five levels of shape change fSHAPE as in Exp. 3, fully

crossed, for a total of 25 feature-change combinations (i.e. values of DF).

4.3.2.6. Exp. 6 (size!shape). Exp. 6 used the same five levels of size change fSIZE as in

Exp. 2, and the same five levels of shape change fSHAPE as in Exp. 3, fully crossed, for a

total of 25 feature-change combinations (i.e. values of DF).
5. Results

Figs. 6–11 show results for Exps. 1–6, respectively. Each plot shows the proportion

bounce responses as a function of featural change DF. Each plot also shows a theoretical

model, which is explained in detail below.

We followed a two-tiered analysis strategy. First, we entered the data from each

experiment into an analysis of variance (ANOVA), in order to establish the significance of

each of the manipulations. Generally, these analyses show significant effects of all of the

featural manipulations, as well as their interactions in the two-feature experiments (and,

with a few exceptions, no effects of the nuisance variables speed and incidence angle). The

plots suggest complex but highly systematic nonlinear interactions between the featural
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variables. Hence in the second phase of our analysis, we attempt to model these

nonlinearities with a detailed quantitative model. The model is a simple Bayesian

observer, which predicts the bounce/stream classification as a function of the featural

variables. This model gives a good account of the exact nonlinear shape of the decision

surfaces shown in the plots.

5.1. Analyses of variance

5.1.1. Exp. 1 (luminance)

The effect of luminance change was highly significant (F(4,60)Z12.521, P!.0001).

The effect of speed was also significant (F(2,30)Z5.697, PZ.008), with bounce responses

generally increasing with faster speeds. No other effects or interactions were significant

(PO.1 in all cases).

5.1.2. Exp. 2 (size)

The effect of size change was highly significant (F(4,60)Z35.995, P!.0001). The

interaction between size and speed was also significant (F(8,120)Z3.353, PZ.002), with

bounce responses rising more quickly with size change at low speeds than at high speeds.

The effect of block was marginally significant (F(5,75)Z2.458, PZ.041), but there
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was no block by size interaction (F!1). No other effects or interactions were significant

(PO.05 in all cases).

5.1.3. Exp. 3 (shape)

The effect of shape change was highly significant (F(4,52)Z24.434, P!.0001). The

interaction of speed and incidence angle was also significant (F(2,26)Z3.637, PZ.044),
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Fig. 9. Results from Exp. 4 (luminance!size). The dotted surface shows the fitted Bayesian model (see text).
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with more of a (non-monotonic) influence of speed at 458 incidence angle than at 258. The

effect of block was significant (F(5,65)Z2.603, PZ.033), involving a slight increase in

block responses over the course of the experiment, but there was no block by shape

interaction (PO.3). No other effects or interactions were significant (PO.05 in all cases).
5.1.4. Exp. 4 (luminance!size)

The main effects of luminance change and size change were again significant

(luminance, F(4,60)Z11.796, P!.0001; size, F(4,60)Z4.367, PZ.004). The lumi-

nance by size interaction was also significant F(16,240)Z1.887, PZ.022). The effect

of block was significant (F(1,15)Z6.516, PZ0.022), involving a higher proportion of

bounce responses in block 2 than in 1, but the luminance by size by block interaction
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Fig. 11. Results from Exp. 6 (size!shape). The dotted surface shows the fitted Bayesian model.
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was not significant (PO.25). No other effects or interactions were significant (PO.05 in

all cases).

5.1.5. Exp. 5 (luminance!shape)

The main effects of luminance change and shape change were again significant

(luminance, F(4,52)Z15.916, P!.0001; shape F(4,52)Z11.121, P!.0001). The

effect of speed was also significant (F(2,26)Z6.611, PZ.005), with more bounce

responses at higher speeds. The luminance by shape interaction was also significant

(F(16,208)Z3.054, PZ.0001). The effect of block was non-significant (PO.5), but the

luminance by shape by block interaction was marginal (F(16,208)Z1.729, PZ.043). No

other effects or interactions were significant (PO.05 in all cases).

5.1.6. Exp. 6 (size!shape)

The main effect of size and shape were again significant (size, F(4,64)Z11.010,

P!.0001; shape, (F(4,64)Z13.669, P!.0001). The interaction of size and shape was also

significant (F(16,256)Z1.942, PZ.017). The three-way interaction of shape, speed, and

incidence angle was also significant (F(8,128)Z2.179, PZ.033), with bounce responses

rising rapidly at low speeds and 258 incidence angle but more slowly at high speeds and

458 incidence angle. The effect of block was significant (F(1,16)Z9.275, PZ.008), but the

size by shape by block interaction was not (PO.2). No other effects or interactions were

significant (PO.05 in all cases).

5.1.7. Summary

The main conclusion from the ANOVAs is that, as expected, bounce responses

generally increased with greater featural change. The more a differed from b, the

more often subjects report seeing the bouncing percept; that is, the less likely they

were to see the given featural change as consistent with a single, coherent object.

This result is not in itself surprising, but it confirms the basic idea that the

subjectively continuous existence of an object is mentally associated with small

changes in its features.

This conclusion requires one caveat. We have assumed so far that the visual system first

reduces each visual item to a featural representation, and then determines correspondence

over time based on the features. Gepshtein and Kubovy (2000) have shown however that

the process of perceptually interpreting each individual time-slice can be influenced by the

inferred correspondence with subsequent frames, suggesting in their terms an interactive

rather than sequential model. They drew this conclusion based on displays (using their

spatiotemporal dot lattice paradigm) in which the relative grouping strengths of within-

frame and between-frame correspondences were deliberately manipulated. In our displays,

the interpretation of each individual frame is not ambiguous in this way. Hence we assume

that the spatiotemporal interactivity discovered by Gepshtein and Kubovy (2000) will play

only a minimal role.

The challenge next is to model the bounce/stream classification data more precisely, in

order to understand exactly what mental assumptions and mechanisms they reflect. We

take up this challenge in Section 6 by postulating a Bayesian observer endowed with a

simple subjective model of “objects.”
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6. A Bayesian observer model

When confronted with one of our displays, or indeed with any real stream of images, an

observer is faced with an uncertain decision. If an object in the current image perfectly

matches the features of exactly one in the previous image, then the individuation might be

unambiguous. But far more often no match is perfect, because of noise in the image, and

also more substantively because objects’ features really can change, due to pose change,

non-rigidity, and other varieties of common transformations.

Such a decision can be modeled effectively in a Bayesian framework, often applied

recently to perceptual inference (see Bülthoff & Yuille, 1991; Feldman, 2001; Knill &

Richards, 1996; Landy, Maloney, Johnston, & Young, 1995 for examples). In this section

we formulate a Bayesian model of observers in our task. As with any observer model, the

critical issue is what to assume about the observer’s state of knowledge and beliefs. In our

model, we assume only that the observer has certain subjective expectations about the

probability of feature changes, which are encoded in a probability distribution function.

The observer can then “turn the Bayesian crank,” interpreting a particular display by, in

essence, plugging this distribution into Bayes’ rule. This yields a decision function that,

we then show, serves very well as a model of the data from our six experiments. The

significance of the optimality of the model, i.e. of its status as an ideal observer, will be

discussed below.
6.1. Assumptions

In Bayesian theory, the observer’s subjective belief in a particular hypothesis H given

data D is associated with the posterior probability p(HjD), which can be computed via

Bayes’ rule,

pðHjDÞZ
pðDjHÞpHP
i pðDjHiÞpiÞ

: (6)

Here the numerator is the product of the likelihood of hypothesis H, p(DjH) (which

gives the probability of observing D if H were in fact true) and its prior probability pH
(which says how likely H was before this particular trial was observed). The denominator

sums this product over all possible hypotheses, including both H and all other alternative

hypotheses Hi. Hence the whole expression says how plausible H is relative to the set of

competing hypotheses.

In our situation, we are interested in the posterior probability of the bounce

interpretation given the display as parameterized by the observed featural difference

DF, denoted p(BOUNCEjDF). Via Bayes’ rule, this is given by

pðBOUNCEjDFÞZ
pðDFjBOUNCEÞpBOUNCE

pðDFjBOUNCEÞpBOUNCE CpðDFjSTREAMÞpSTREAM

(7)

where pBOUNCE and pSTREAM are the priors on bouncing and streaming, respectively, and

p(DFjBOUNCE) and p(DFjSTREAM) are respectively the likelihoods of a given feature

change under the bouncing and streaming interpretations. We make the following simple
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assumptions concerning these parameters. First, we assume that all displays are

either bouncing or streaming, so pBOUNCEZ1KpSTREAM and p(BOUNCEjDF)Z
1Kp(STREAMjDF). More substantively, we assume that objects may take on any

feature value F with equal probability,4 or, more precisely, that all values of DF are

equally likely when it represents the featural difference between two distinct objects

(as opposed to two different incarnations of the same object, as under the streaming

interpretation). In mathematical terms, this means that p(DFjBOUNCE)Z1 always: any

feature change is perfectly consistent with a bounce interpretation.

With these assumptions, we can now rewrite the posterior on the bounce

interpretation as

pðBOUNCEjDFÞZ 1K
pðDFjSTREAMÞpSTREAM

pðDFjSTREAMÞpSTREAM C1KpSTREAM

: (8)

This equation has only two variables on the right-hand side: the prior pSTREAM,

which is a simple scalar, and the likelihood term p(DFjSTREAM), which is a function

mapping feature change vectors to probabilities. In our analysis, we treat the prior

pSTREAM as a free parameter to be estimated from the data. The main focus then is on

the likelihood term p(DFjSTREAM), which represents the likelihood of a particular

feature change DF under the streaming interpretation. Section 6.2 asks what this crucial

function might be expected to look like.
6.2. The object evolution function

The function p(DFjSTREAM) expresses the subject’s probabilistic expectations about

how features may change from before an object disappears behind the occluder until after

it reappears, given that it is actually the same individual entity. More generally, we

assume, this function expresses how likely it is for a given featural change to occur within

the lifeline of a single individual object from time t to time tCDt: that is, the probability

that an object will “evolve” by DF during an interval Dt (Fig. 12). Hence we will refer to

this function as the object evolution probability density function, or more briefly, as the

evolution function, and denote it as J(DF),

JðDFÞZ pðDFjSTREAMÞ: (9)

This function J(DF) lies at the heart of the subject’s beliefs about how objects tend to

behave. What can we say about its form?

We begin by asking what mean value the evolution function ought to have, formally

expressed by the mathematical expectation E[J(DF)]. That is, given that we observe an

object F at time t, by how much do we typically expect it to change after an interval Dt?
Our basic assumption is that, all else being equal, object properties tend to be stable.

That is, at each time slice, an object is most likely to have the same features as at
4 If the space F is unbounded this creates the possibility of what are called improper priors in the Bayesian

literature. However standard methods for dealing with this situation have been developed (see Box & Tiao, 1973

for an introduction).
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Fig. 12. Illustration of the evolution function J(DF). The function gives the expected distribution of change DF

in the object’s over the time interval Dt.
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the previous time slice. This is a very basic and non-trivial assumption about feature

change, which we refer to as the feature stability assumption:

[Feature Stability assumption]

E½JðDFÞ�Z 0: (10)

This means that J(DF) will be centered at DFZ0.

Another way of thinking of the same idea is to think of the object in terms of its feature

vector over time F(t), that is, over the “evolution” of the object. If an object has feature

vector F(t0) at a certain time t0, then at time t0CDt we expect it to have feature vector:

E½Fðt0 CDtÞ�ZFðt0ÞCE½JðDFÞ�: (11)

Plugging in the feature stability assumption E[J(DF)]Z0, this immediately yields

E½Fðt0 CDtÞ�ZFðt0Þ: (12)

In words, at each time slice, all else being equal, an object is most likely to have the

same features as at the previous time slice.

Having established the mean of the evolution function, we next have to worry about its

functional form. In what follows, we assume that it is normal (Gaussian) in form—a very

common assumption in the Bayesian literature, for a variety of good and bad reasons.5 In

our case this means that in general we assume J(DF) is Gaussian over DF, centered
5 Good reasons include that the Gaussian is the maximum entropy density with a given fixed mean and variance

(see Bernardo & Smith, 1994), and that the Gaussian is the limiting sum of a large number of independent

distributions (the Central Limit theorem). Bad reasons include that it is mathematically simple and convenient to

work with.
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at DFZ0 and with covariance matrix S, notated

JðDFÞZNðDF; 0;SÞ: (13)

More specifically, in our experiments DF is always a vector of either one featural

dimension (Exps. 1–3) or two (Exps. 4–6). Hence in Exps. 1–3 the evolution function is a

simple univariate normal,

JðDfiÞZNðDfi; 0; siÞ; (14)

where Dfi is either DfLUM, DfSIZE, or DfSHAPE, and si is an associated standard deviation.

Similarly in Exps. 4–6 J is a bivariate normal

JðDfi;DfjÞZNðDfi;Dfj; h0; 0i;si;sj; rÞ; (15)

where Dfi and Dfi are the two relevant feature-change parameters, si and sj are their

associated standard deviations, and r is the correlation between them.

To produce our final Bayesian model, we plug these assumptions about J back into

Eq. (8), and place a scaling coefficient h in front of the entire expression:

pðBOUNCEjDFÞZ h 1K
pSTREAMJðDFÞ

pSTREAMJðDFÞC1KpSTREAM

� �

Z h 1K
pSTREAMNðDF;SÞ

pSTREAMNðDF;SÞC1KpSTREAM

� �
(16)

This will now serve as a model of the data from Exps. 1–6, with the free parameters

fitted to the data. In the single-feature experiments (Exps. 1–3), the model has three free

parameters: the leading scaling term h, the streaming prior pSTREAM, and the single feature

standard deviation s. In the two-feature experiments (Exps. 4–6), the model has five free

parameters: the leading scaling term h, the streaming prior pSTREAM, the two featural

standard deviations si and sj, and the correlation coefficient r between them. Fitting the

data in the single-parameter experiments, which have only five data points (i.e. mean

bounce responses for each of five levels of feature change) is relatively easy; the main

question is whether the model gives qualitatively the right behavior. The more serious

challenge to the Bayesian model is in the two-parameter experiments, where we will use

the five-parameter model to fit 25 data points (a 5!5 grid of feature change levels); here

the question is whether the same basic Bayesian model will fit the more complex dataset.
6.3. Fits of the Bayesian model

We fitted the data (probability of a bounce response as a function of featural difference

DF) to the Bayesian model (Eq. (16)) using Levenburg–Marquardt (a common nonlinear

model estimation technique). Estimated parameters and goodness-of-fit (R2) for each

experiment are given in Tables 1 (Exps. 1–3) and 2 (Exps. 4–6). The fitted models are

plotted alongside the data in Figs. 6–11.

The Bayesian model fits the data very closely in all six experiments, as demonstrated by

the high R2 values, and even more vividly by the extremely close matches visible in



Table 1

Summary of fits of data from Exps. 1–3 to the Bayesian model, for each experiment showing goodness of fit (R2)

and estimated values of parameters h, pSTREAM and s (with asymptotic standard errors)

Exp. Manipulation Fit of model Estimated parameters

R2 h pSTREAM s

1 fLUM .9948 .722 (.011) .205 (.013) .115 (.007)

2 fSIZE .9600 .690 (.025) .016 (.018) .007 (.007)

3 fSHAPE .9900 .824 (.026) .589 (.029) .503 (.042)
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the figures. In the single-parameter experiments, as mentioned above, because the dataset

has few degrees of freedom compared to the model, the very good fit (R2O.95 in all cases)

is not in itself very probative; it shows only that the model has qualitatively the correct

form. But in the two-parameter experiments, where the number of data-points (25 per

experiment) greatly exceeds the number of degrees of freedom in the model (5), the good

fit (R2O0.79 in all cases) is far more demonstrative (and is significant in each case: for

Exps. 4, 5, and 6, F(5,19)Z14.50,94.65 and 14.96, respectively, P!.00001 in each case).

The qualitative fit is good in all three cases; the superior F-value in Exp. 5 compared to

Exps. 4 and 6 presumably reflects a greater degree of Gaussianity in subjects’ evolution

function in that case than the others. Informally, the fact that all the fitted parameters take

on reasonable and meaningful values (e.g. prior probabilities between 0 and 1, correlation

coefficient between K1 and 1, etc.—none of which conditions are forced by the fitting

procedure) suggests very strongly that the model is qualitatively correct in form. In

practice, when the model is qualitatively defective in even a small way, some parameters

will tend to diverge (go to infinity or minus infinity), which never happened here.

In summary, the Bayesian model gives a very accurate prediction of the subject’s

responses. Subjects weigh the evidence they observe from each of the feature changes they

observe—and combine these cues to form an impression of which object is which in the

display—in a manner very close to that prescribed by Bayes.
6.4. Comparison with motion energy models

A natural competitor for the Bayesian model in explaining our subjects’ responses are

spatiotemporal energy models of motion perception, such as that of Adelson and Bergen

(1985). Such models, which have been very successful tools in understanding early motion
Table 2

Summary of fits of data from Exps. 4–6 to the Bayesian model, for each experiment showing goodness of fit (R2)

and estimated values of parameters h, pSTREAM, r, si and sj (with asymptotic standard errors)

Exp. Features (i!j) Fit of

model

Estimated parameters

R2 h pSTREAM r si sj

4 luminance!size .7923 .811 (.020) .275 (.028) .055 (.388) .235 (.043) .154 (.033)

5 luminance!shape .9614 .806 (.008) .364 (.014) .459 (.123) .189 (.014) .705 (.065)

6 size!shape .7974 .869 (.015) .231 (.024) K.617 (.652) .125 (.094) 784 (.636)
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Fig. 13. Two ways of applying a motion energy model to our displays. (a) Standard arrangement, with a pair of

mutually inhibitory receptive fields (one positive and one negative), each oriented in space-time x and t (or x, y

and t in the full model). In the full model, such fields would normally be coupled in quadrature pairs of opposite

contrast polarity. (b) An alternative arrangement of receptive fields with both positive and negative lobes,

yielding the difference of motion energy as the item crosses behind the occluder. This arrangement too yields

qualitatively incorrect predictions, such as that feature changes with opposite effects on luminance (such as an

increase in area coupled with a decrease in brightness) can “cancel each other out” and yield streaming, whereas

in fact such feature changes increase bounce responses.
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perception, are based on the idea of receptive fields that are oriented in space-time (rather

than just in space; see Fig. 13). In order to apply such a model to our displays, we need to

make a few assumptions: (i) that the positive lobe of one such receptive field exactly

covers the straight (“streaming”) path of our moving shapes, symmetrically around the

occluder (and presumably no single receptive field exactly covers the bent “bouncing”

path); (ii) that we can ignore the presence of the occluder (which in reality would diminish

the motion energy but not change the direction of any of the model’s predictions); and

(iii) that a filter is available at each of the velocities (space-time orientations) used in the

experiment. With these assumptions, such a model would indeed explain the general

preference for streaming percepts, because there would always be more motion energy

along the streaming path than along the bouncing path.

However, the motion energy model cannot explain the way responses varied with

featural difference DF. The total energy is computed as the total stimulation within the

excitatory lobe (minus that in the inhibitory lobe, which we are assuming is empty and thus

zero). In our displays this means that the energy is proportional to the luminance of each

item (which depends on fLUM), integrated over the total area of the item (which depends on

fSIZE and fSHAPE), integrated over all of the items that fall within the receptive field. The

area of a trapezoid with shape parameter fSHAPE is (1KfSHAPE/2)s2, where s is the width at

the bottom edge (a constant). Hence the total motion energy due to each item is

proportional to

Eitem Z fLUMfSIZE 1K
fSHAPE

2

� �
s2: (17)

This is linear in all three parameters, increasing with fLUM and fSIZE and decreasing with

fSHAPE. The total motion energy from a given display sums this energy over all the items

within the positive lobe of the receptive field (Fig. 13a), which by assumption includes an

equal number of a items and b items. By the design of the experiment, whatever

parameters a has, b has values that are equally extreme but in the opposite direction.
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Hence every manipulation of any feature change parameter induces a linear change in the

motion energy due to a and an equal and opposite linear change in the motion energy due

to b, with zero net effect on total motion energy. Hence the motion energy from any one

filter is approximately6 constant over our entire experiment.

It is worth noting that motion energy models are, by their very nature, insensitive to

featural shape information, and thus unable to account easily for the very prominent effects

of feature similarity that we found. Such models are blind to any pure shape change that

does not change area or luminance (unlike our shape parameter, which does change area).

This is inherent in the fact that motion energy does not encode shape features directly, but

only insofar as they affect the luminance integral within the receptive field. (Indeed, this is

the entire point of motion energy models—to get away from overt featural representations,

and this seems to fit early motion computations well.) So for example any motion energy

model would predict equal bounce responses when a and b were both circles as when

when a was a rabbit and b an (equal-size, equal-luminance) hat. This prediction is

apparently incorrect for our displays, though admittedly this extreme condition was not

tested.
6.5. The role of spatiotemporal information

So far we have explicitly ignored spatiotemporal information such as the position and

velocity of candidate objects. As mentioned, such information is definitely important to

perceived object identity, and in fact probably dominates over featural information when

the two are counterposed (again see Johnston & Pashler, 1990; Nissen, 1985, admittedly in

very different methodological settings from here). How might this type of information be

integrated into our framework?

In our view, spatiotemporal information can be integrated into the framework we have

developed above in a very seamless way by observing that spatiotemporal factors do not

influence observers’ object assignments, as it were, directly, but rather only via observers’

expectations about them. That is, a spatiotemporal feature such as the object’s position can

be regarded as just another type of feature, in no way qualitatively distinct from other types

of properties, except that the observer has particularly strong subjective expectations about

its value. As in the theory so far, such subjective expectations express themselves via the

evolution function J. For example a strong expectation that objects ought to be stationary

would be represented by a very tight (low-variance) distribution J(Dx) (with x

representing spatial position). Similarly, a strong expectation that objects move in straight

paths would be expressed as a very tight distribution J(Dv) (with v representing velocity).

These expectations can be integrated into the evolution function J simply by considering
6 In the case of size change, the net effect is only approximately zero because size changes are equal and

opposite in log space, while energy depends on actual linear area rather than log area. However in the case of

luminance change, where luminance themselves are proportions, changes yield zero net motion energy change,

incorrectly predicting constant mean bounce responses. For example a luminance pair of aZ55%, bZ45% sums

to 100% (standard) luminance over the entire receptive field, exactly the same as aZbZ50%. The same applies to

change in the shape parameter. Hence the simple motion energy model predicts no effect of luminance or shape

changes by themselves, which is obviously at odds with the results of Exps. 1 and 3, respectively.
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its domain to be the full feature-change space DF viewed as including spatiotemporal

feature change as well as featural factors.

The tendency for spatiotemporal information to dominate over featural information

then simply corresponds to the tendency for spatiotemporal changes to have relatively

tight subjective distributions. In standard Bayesian theory, the influence of a cue turns out

to depend inversely on its variance (see Box & Tiao, 1973) Thus the Bayesian observer in

our model, having tight distributions around its expected spatiotemporal predictions,

would consequently tend to weigh spatiotemporal factors correspondingly heavily in its

object individuations. No special mechanisms or dominance rules are required.

A similar situation exists in the literature on haptic vs. visual cues, where classical

studies had suggested that visual cues dominated over haptic cues in cases of conflict. A

recent study (Ernst & Banks, 2002) has shown instead that subjects’ behavior is consistent

with a uniform Bayesian model integrating both visual and haptic cues, while the

superiority of visual cues is accounted for by the relative tightness of their noise

distributions (i.e. their greater reliability).

6.6. Sources of the evolution function

The evolution function J(DF) represents the observer’s expectations about how an

object is prone to change over time. We have so far assumed that its mean will be at zero

(no change the most likely) and that its form will be generally Gaussian. However this

leaves open several questions about the nature and sources of these distributions. Where do

the observers’ subjective expectations about object evolution come from? Our data do not

speak directly to this question, so our discussion is necessarily speculative.

Some changes to observed object properties are intrinsic, in the sense that the properties

are tied to the object themselves, and other extrinsic, in that they depend on viewing

conditions. For example despite perceptual invariances, objects may appear different

colors or luminances at different moments despite constant material properties. Such

extrinsic changes add uncertainty to the data our observer is using to track identity. Thus

from a formal point of view they would be folded into the evolution function. Another

important kind of extrinsic property change is change in shape due to viewpoint change.

However as pointed out by Ullman (1977), such changes are potentially almost

unbounded; one can construct objects whose appearances from orthogonal viewing

directions are arbitrarily dissimilar. Of course the potentially large changes in shape

introduced by viewpoint changes are one of the central problems studied in the object

recognition literature (e.g. Tarr & Pinker, 1989).

As for intrinsic property changes, many objects in the natural world can alter their

intrinsic shape, color, or size, though generally not on the sub-second time-scale of our

experiments. It is intriguing in this regard to consider the chameleon, blowfish, and

hognose snake, three animals that alter respectively their color, size, and shape in response

to threat. Such adapations seem designed to conceal the animal’s identity precisely by

fooling predators’ perceptual systems via their assumption that such changes are generally

unlikely. More mundanely, shape changes in articulated and non-rigid objects such as

animal bodies are commonplace. You would not want to think that your cat had been

replaced by a different cat simply because it moved its tail.
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More generally, one might imagine that observers’ expectations about how intrinsic

properties might change over time would relate to their beliefs about the material

properties of the surfaces in question. Many computational models of surface perception,

in which smooth surfaces are reconstructed from isolated depth values (e.g. see Blake &

Zisserman, 1987), rely on assumptions about the physical flexibility of the underlying

surfaces, which would naturally relate to their likelihood of changing shape over time.

Thus a surface judged to be made of wood would be expected to have a tighter shape

evolution function than one judged to be made of rubber. Of course in our impoverished

displays, the subjects had little data on which to base estimates of material properties, so

they might have been led to employ some kind of neutral default distribution.

Finally we note that the observer’s subjective expectations may not themselves be

firmly fixed, but may vary depending on context and mental set. For example it is possible

that our subjects’ distributions were “tuned” by their experiences viewing our stimuli; over

the course of trials they may have gradually developed a sense of the range of feature

changes at play in the experiments. Note however that there is very little statistical

evidence for this in our data. The effect of block was significant in several experiments,

meaning that the proportion of bounce responses changed over the course of the

experiment (generally increasing). But a true change in the pattern of subjects’ responses

to the featural manipulations, as would be indicated by a feature-by-block or feature-by-

feature-by-block interaction, was present in only one case (Exp. 5, luminance!shape),

and then was only marginal. Hence subjects’ tacit assumptions about the evolution

function were generally (though not perfectly) stable over the course of our experiments.

Nevertheless we refrain from drawing any very firm conclusion about the meaning of the

specific values of s (standard deviation) observed in our data, as they may well have in

some other way depended on the context of the experiment. Rather it is the general form of

the decision procedure that is of interest.

6.7. Ramifications of Bayes-optimality

With this in mind, we cannot attach great importance to precise form of the evolution

function that subjects have apparently adopted—neither its Gaussianity nor the precise

choice of parameters are dictated by any fundamental considerations. What then is the

significance of the fact that the data is consistent with a Bayesian model? As mentioned,

this fact is quantitatively highly-nontrivial; the Bayesian model makes a very specific

numeric prediction that the data fit very closely.

Bayesian decision models have a special status in the literature because they represent

optimal or “rational” decisions given the uncertainty in the observations (e.g. see Jaynes,

1957/1988). Still, several disclaimers are necessary before one concludes that human

observers individuate objects rationally. First, above we have modeled average judgments

aggregated over subjects. Individual subjects show qualitatively similar data patterns, but

(necessarily) do not exhibit as close adherence to the Bayesian model as does the group

on average. Hence the strongest claim one could make is that the Bayesian model

represents an ideal characterization of performance, approximated on average by an

ensemble of observers. Second, notwithstanding their reasonableness, there is nothing

inherently rational or optimal about the assumptions we have attributed to the observer
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(e.g. the feature stability assumption, the nature of the evolution function). It is only the

way these assumptions are used to draw inferences, not the assumptions themselves, that is

Bayes-optimal.

With these disclaimers in mind, though, subjects’ solutions to the object correspon-

dence problem in the presence of feature change appear to be close to optimal. What is the

significance of this? First, as in many areas of perception, it is often useful to consider ideal

performance, partly to test whether humans realize it, but more generally as a standard

against which human performance can be compared and thus better understood; this is the

idea of the “ideal observer.” More specifically, since the observer is optimal only given

certain assumptions—in this case about objects and how their features can change—the

optimality of the model allows us to understand exactly what assumptions about objects

our observers apparently were making.

A closely related point is that the Bayes optimality helps clarify exactly what problem

subjects were, in fact, solving. The fact that subjects’ data fits a rational Bayesian model—

that subjects are near-ideal classifiers given particular assumptions—is direct evidence

that the object individuation correspondence problem, in the form in which we have cast it,

is in fact the problem subjects were trying to solve. If an agent’s behavior can be shown to

be consistent with a Bayes-optimal solution to a particular non-trivial optimization or

decision problem, then this is plainly evidence that this was the problem that the agent was

in fact solving—because its behavior would be rational on that theory but inexplicable

otherwise. Here, the Bayesianity of our subjects’ judgments is itself prima facie evidence

that the mental construction of objects involves solutions to the object correspondence

over time, which subjects solve in an approximately optimal way given their subjective

expectations about natural featural change.
7. Towards a competence theory of object individuation

Hence our Bayesian model represents a kind of rational idealization of how subjects

individuate objects; under certain assumptions about the probability of feature change,

which we have formalized, subjects are “ideal object observers.” These considerations

suggest that the Bayesian model represents a competence rather than performance theory

of object individuation (Chomsky, 1965; Marr, 1982), in part because it represents an ideal

of performance (Chomsky’s emphasis), and in part because its formal structure reveals

what the observer exhibiting such performance is tacitly assuming about the world (Marr’s

emphasis). But as such it is severely limited, in that our development so far has been

restricted to the narrow experimental situation faced by our subjects, in which object

correspondence was limited to two artificially forced choices (bounce or stream). Thus in

the spirit of developing a more thoroughgoing “competence theory of objects,” we now

attempt to extend the Bayesian model to a more complete and naturalistic setting.

Towards this end, in this section we extend and slightly recast the mathematics of

the Bayesian decision procedure established in Section 6. We assume that the bounce/

stream decision in our experimental task is a proxy for the more ubiquitous decision that

must be made at each point in a real image stream, where a correspondence must be

subjectively established between objects in one “frame” of the stream and the next
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(we consider the case of a continuous image stream below). That is, we assume that

subject’s expectations about feature change as an object passes behind the occluder in our

displays correspond closely to their expectations about feature change whenever an object

in one image evolves into a subjectively co-individual object in the next image. Thus the

evolution function J(DF) refers not only to subjective expectations in the experimental

displays but also, more generally, to the evolution of objects over time in a natural setting.

We emphasize that our proposals in this section, perhaps despite appearances, actually

represent only a rather modest extension of the Bayesian model discussed above. The

“objects as geodesics” hypothesis presented below is a direct mathematical consequence

of the properties of the Bayesian observer, except generalized to continuous time (instead

of a single discrete decision as the object encounters the occluder) and to an arbitrary

continuous feature space. The relevance of Mahalanobis distance (discussed below),

similarly, is a mathematical entailment of the subjective dependence on the likelihood of

feature change as evidenced in the experimental data. Hence unless the success of the

Bayesian model in some way critically depended on the details of the experimental

situation and the featural variables used, then the theory below is only a modest

extrapolation of the data at hand.

7.1. Extending the Bayesian model

We begin by postulating an arbitrary feature space F, no longer limited to the three

features in our experiments, but now encompassing all potential observable properties of

objects in the visual field. Assume that at time t the observer sees a single object with

feature vector F0. At time tCDt the observer is confronted with some set F1,F2,. of

possible candidate objects, each of which might be the same object as F0 but with

somewhat altered features. Of course, these objects may all be different locations and

distances from the original location of F0; we take up this issue below. For the moment

assume that they are all equally plausible spatiotemporally (e.g. all equidistant from the

location of F0) so we can restrict our discussion to the effects of featural cues.

The Bayesian model discussed above says that in this situation, the observer will

perceive as the continuation of F0 that object whose featural difference DFiZFiKF0 has

the highest likelihood p(DFijSTREAM) (i.e. what in the experiments we would have

called the “likelihood under the streaming interpretation”). Note that this does not exactly

mean the smallest featural change per se, but rather the least unlikely featural change given

the expected distribution of feature change. This distribution is none other than what in

Section 7 we called the object evolution function J(DF). Thus the observer faced with the

choice of F1,F2,. simply ought to—and by our data, will—choose the one that maximizes

J(FiKF0).

Fig. 14 illustrates the situation by placing all the objects under discussion in the context of

the evolution function J(DF), illustrated schematically as a Gaussian via a contour plot.

The original object F0 is at dead center (DFZ0). Candidates for the role of continuation of

F0 sit at various positions in feature-change space. In the example shown,F1 is closer toF0 in

Euclidean distance: it has the minimum feature change if a step any direction inDF space is

taken as equally important. But F2 is closer in a probabilistic sense, as can be checked by

examining the isoprobability contours closely:F2 is less than two bands fromF0, whileF1 is
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Fig. 14. An illustration of object F0 and its possible extensions F1,F2,. as situated in the evolution distribution

function J(DF) (schematically indicated as a contour plot). Given object F0 at time t, which of F1,F2,. is

perceived as the evolution of the same object? The Bayesian answer is: the one that has the highest likelihood

according to the evolution function—the one that has fallen the least “down the hill,” in this case F2. As illustrated

in the example, this is not necessarily the one with the smallest total feature change, but rather the one with the

least unlikely feature change. F1 is closer in Euclidean distance, but F2 is closer probabilistically, as can be

checked by examining the isoprobability contours in the figure. This sense of “probabilistic proximity” is called

Mahalanobis distance.
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two whole bands away. HenceF2 has fallen less far “down the hill” fromF0, and is thus more

likely under the evolution function; it represents a less-unexpected magnitude of feature

change from F0, and is thus the subjective winner as the evolution of F0.

This fairly intuitive notion of probabilistic distance is termed the Mahalanobis distance

in the mathematical literature (see Duda, Hart, & Stork, 2001 for an introduction).

Intuitively, Mahalanobis distance is Euclidean distance scaled by probability in the

underlying distribution.7 Thus rephrasing, we can say that the Bayesian observer in our
7 More technically, Mahalanobis distance simply replaces the Euclidean norm, which in our notation would be

expressed as

ðDFÞtðDFÞ (21)

with transformed norm

ðDFÞtSK1ðDFÞ (22)

in which S is the covariance matrix of the subjective probability distribution J(DF), and the superscript t

indicates the matrix transpose. Thus the Mahalanobis norm is simply the Euclidean norm scaled by the

(co-)variance of the underlying distribution in the given direction.
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set-up simply chooses the candidate object at time tCDt which is at minimum

Mahalanobis distance from the original object at time t. This expression of the rule

emphasizes that the observer is indeed finding a “minimally-distant” extension of the

original object, but doing so under a distance metric which is itself informed (and indeed

determined) by subject expectations about the probability of feature change.

Extending this to a sequence of discrete times is simple. Now instead of one step, whose

Mahalanobis distance we would like to minimize, we have a sequence of steps, each of

which the observer would like to make as small as possible in the Mahalanobis sense. The

resulting chain of steps (imagine a sequence of minimum-distance jumps from rock to rock

as one crosses a river) constitutes the observer’s judgment of the most likely continuous

existence of the object through the world under observation. More pointedly, one can think

of this chain of choices as in effect constituting the “object” itself: that is, a subjectively

continuous stream of existence over the sequence of frames.

Another natural generalization is to consider a continuous rather than discrete

progression of images over time, i.e. taking Dt/0. In this case the featural change DF
becomes infinitesimal, and as a result the likelihoods of the various candidate objects will

differ from each other only infinitesimally: all will have moved only infinitesimally “down

the hill” of J(DF) (see below for a more careful explanation). In this case, as in

the discrete case, the choice of where the given objects’ identity ought to go is still

perfectly well-defined; it depends on the directions in which the candidates lie and the

structure of J.
7.2. Objects as geodesics

Extrapolating this to a full-fledge continuous image stream yields a particularly

succinct way of stating the proposed “object concept”. In the discrete version of our

theory, an object is viewed as a sequence of Bayesian choices among candidate identities,

such that the winning chain minimizes Mahalanobis distance through the feature space at

each step. In the continuous version, an object is a continuous path through feature space

such that each infinitesimal step minimizes Mahalanobis distance. In mathematical

terminology, a minimum-length path on a curved surface is called a geodesic

(a generalization of the notion of “straight line” appropriate for curved spaces; see

below for a more technical explanation). Hence in our proposal, a subjective mental object

is a geodesic through Mahalanobis feature space (see Fig. 15 for a schematic illustration).

A physical analogy may be helpful. Just as in relativistic gravity, where physical

objects move along geodesics in a spacetime that is warped by massive objects, in our

framework psychological objects move along geodesics in feature-space-time that is

warped by subjective probability distributions. In the vivid phrase sometimes used, in

physics an object is a “space-time worm;” by our theory, a psychological object is a

minimal-length worm through a subjectively warped feature space.

A related proposal was made by Carlton and Shepard (1990), developing an earlier

suggestion of Shepard (1957). They suggested that the motion path mentally interpolated

between two viewed objects tends to be geodesic in psychological space (cf. Tenenbaum,

de Silva, & Langford, 2000). Their proposal was aimed at understanding apparent motion
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Fig. 15. Schematic illustration of a geodesic through Mahalanobis feature space. At each (possibly infinitesimal)

step, the observer chooses the path of minimum Mahalanobis distance from the features of the object at the

previous step.
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without feature change, but is obviously related to featural similarity spaces as developed

here.

This idea can be fleshed out formally a bit more, as follows. A continuous image stream

can be thought of as function of space and time, I(x, y, t). Running this stream through the

observer’s feature representation yields a featural representation F(x, y, t), in which each

point in space-time (x, y, t) maps to a feature vector F, which we understand to include any

object features that the observer cares to represent.

Now consider an individual object located at a particular point in space-time (x0, y0, t0),

with feature vector F(x0, y0, t0). To subjectively continue this object’s existence to point x1,

y1 at time t1Zt0CDt entails space-time motion of the object’s identity, which we denote

DxZhx1, y1, t1iKhx0, y0, t0i, and an associated feature change DF, which as before denotes

F(x1, y1, t1)KF(x0, y0, t0). As discussed, this feature change DF has an associated

subjective probability J(DF), which determines its plausibility, and thus under the

Bayesian model the probability with which the observer will subjectively continue the

object in the direction Dx.

In the case of continuous time, we simply take the limit as Dt/0. The space-time

motion Dx becomes a vector, denoted ðx, meaning the instantaneous direction in which the

object’s identity is moving at time t0. (In the experiments, this was forced to be either in

the streaming direction or in the bouncing direction; now we entertain all possible

directions.) In place of the discrete featural difference DF, we now take the limit as Dt/0

lim
Dt/0

DF

Dx
; (18)
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which is simply the partial derivative

vF

vðx
; (19)

meaning the instantaneous change in feature vector as one moves in the direction ðx.

The hypothesis, then, is that at each point in space-time subjective object identity

moves in the direction ðx that maximizes the subjective probability of feature change

J
vF

vðx

� �
: (20)

We can now state the objects-as-geodesics hypothesis more formally as follows. Each

point hx, y, ti in space-time maps to a feature vectorF(x, y, t). Each motion ðx through this space-

time entails a particular feature change, with associated subjective probability given by J.

Now, impose upon space-time the Mahalanobis metric under the probability distribution J.

Objects, as conceived by the Bayesian observer, are geodesics through this space:

[Objects as geodesics]
An individual object is a geodesic through space-time under the Mahalanobis metric

given the subjective probability function JðvF=vðxÞ.
Again, it should be understood that this proposal is really a direct consequence, or more

accurately a restatement, of the properties of the Bayesian object observer as proposed

above, simply extrapolated to a continuous stream of inferences each of which is

analogous to the single decision made by our subjects in the bouncing/streaming task. The

geodesic characterization of objects is simply a way of capturing the idea that

psychological individual objects represent subjectively maximally-probable paths through

the space of possible feature changes.

Above we mentioned the idea of object files (Kahneman et al., 1992) or FINSTs (Pylyshyn,

1989), and it is useful to restate our hypothesis in those terms. Kahneman et al. (1992) posit a

process of correspondence, by which an entity is associated with a particular entity at a

previous time, and a process of impletion, in which a continuous percept is constructed joining

the two entities. A natural interpretation of our results in these terms is that our observers solve

the correspondence problem in a Bayesian fashion, and impletion occurs along the geodesic

paths between feature vectors at successive instants—or, putting it in a more dynamic way,

that the object indexes or FINSTs “travel” along geodesic paths in subjective feature space.

The index or FINST mechanism itself is just a method of tracking objects; it does not in and of

itself dictate where the indexes will be assigned. Simply put, the Bayesian solution in our

model represents a prediction about where the indexes will go as the scene evolves.

Thus it seems reasonable to regard object indexes and geodesics as complementary

ideas: subjective objects follow geodesics, and indexes are the concrete mechanism by

which the system carries this out. In this sense the two theories describe respectively

competence and performance aspects of the same mechanism. However it should be borne

in mind that subjective percept reflected in the bouncing/streaming task and the underlying

index system may reflect different, and perhaps dissociable, stages of the system, as

suggested by recent results of Mitroff, Scholl, and Wynn (in press).



J. Feldman, P.D. Tremoulet / Cognition 99 (2006) 131–165162
7.3. The object hypothesis

We conclude this theoretical discussion with one additional remark. In any sequence of

images, no matter how structured or unstructured, some path will be of minimal length.

Our object definition so far simply says the observer chooses the shortest from available

alternatives. If the world is very random, the best available hypothesis may still involve a

large amount of feature change at each time step—truly a “blooming, buzzing confusion,”

in William James’s famous phrase. However, implicit in this entire scheme (and more

particularly, in the feature stability assumption, which led to the assumption that the

evolution function is centered at zero) is the presumption that some paths will in fact be

much shorter (i.e. entail much less featural change) than one would expect in a totally

random world. Indeed, if the world in fact did contain some objects with relatively stable

properties, then some of these geodesics will be extremely short. The hypothesis that such

paths do in fact exist is thus a version of what is sometimes called the “object hypothesis”

(see Feldman, 1999, 2003; Gregory, 1970; Reynolds, 1985), and is a particularization of

Richards’ (1988) “Principle of Natural Modes.” The underlying idea is that the world we

inhabit does in fact contain stable entities:

[Object hypothesis]
In the natural world, some geodesics in Mahalanobis feature space will be short.
This assumption is not necessary for our scheme to be well-defined: again, even if the

world were random (and thus did not obey the object hypothesis), some path would be

shortest. But something like this assumption is necessary in order for the Bayesian

decision scheme to be a sensible one. Without it, the Bayesian observer would be

choosing among hypotheses none of which actually corresponds to a stable object as

hoped. That the object hypothesis is implicitly believed by human observers is testified by

our data, which demonstrate that subjects do have evolution functions centered near zero,

meaning that they do expect evolving individual objects to have stable properties. Without

such a hypothesis in their mental arsenal, our subjects’ pattern of responses makes little

sense.
8. Summary and conclusions

Our experiments suggest that human observers form a correspondence between items in

successive time-slices—and thus create a representation of individual objects bearing

continuous existence—by determining the most plausible featural correspondence given

subjective expectations about how objects are likely to change over time. These

expectations, encoded as a subjective probability distribution (our “evolution function”),

are then combined in a simple way, via Bayes’ rule, to establish object individuation. Our

main findings are:
(i)
 object individuation is influenced by featural similarity;
(ii)
 all else being equal, correspondences between objects at distinct time-slices are

chosen so as to minimize featural change;
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(iii)
 this minimization can be modeled as a Bayesian observer making a few simple

assumptions, in particular a subjective distribution of feature change (evolution

function) that is centered on zero (the feature stability assumption).
Our model is expressed in terms of featural properties, because these were the only ones

that were informative in our displays; spatiotemporal properties would probably have

dominated were they useful to the observer, but in our studies they were completely

ambiguous. However, as discussed above, spatiotemporal properties could be incorporated

into the Bayesian observer model, and thus into our “object concept,” without

substantially altering it.

One of the main conceptual contributions of this work is to emphasize that object

individuation is at heart a decision problem—a choice from among inherently ambiguous

alternatives. In everyday conception, the individuation of physical objects is often

described as if there were an objective, physical fact of the matter: one object is at a certain

time is regarded as in fact the same as another at a previous time, in virtue of continuous

intervening existence. Considering the bouncing/streaming task, however, it becomes

apparent that the very notion of “continuous intervening existence” has a subjective

element, a concrete definition of which depends on a subjective apprehension of how

objects tend to change, embodied in our object evolution function. One must decide

whether existence has in fact intervened continuously; and in doing so, all one has to work

with are observable properties. Our proposal is that this situation extends to object

individuation generally, not just when the choices are made artificially ambiguous as in

our laboratory. All object individuation, in the end, is based on observables, and no further

ground truth is available. Putting this another way, the idea that objects don’t tend to

exhibit very much feature change is not so much an objective statement about objects as it

is a characterization of what we mean by the word “object.”
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