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A number of studies have investigated whether cat-
egory learning is influenced by the order in which ex-
amples are presented. Elio and Anderson (1981) found 
that categories are learned faster when training is blocked 
into groups of mutually similar examples (see also Elio 
& Anderson, 1984). More recently, Medin and Bettger 
(1994) demonstrated a strong learning advantage when 
training objects were presented in an order that tended to 
maximize similarity between successive examples. Other 
studies, such as those of Clapper and Bower (1994) and 
Goldstone (1996), have focused on the effect of alterna-
tion of contrasting categories. Presentation order effects 
are especially interesting in the light of categorization 
models that emphasize incremental learning from trial 
to trial. For example, Sakamoto, Jones, and Love (2008) 
showed that order can affect the incremental update 
of both category means and variances (see also Love, 
Medin, & Gureckis, 2004). Incremental-learning models 
are naturally susceptible to order effects, whereas other 
models may be less so, so the manipulation of presen-
tation order is a potentially useful tool for studying the 
mechanisms of learning.

However, previous studies of presentation order 
were limited in that they used orders based on simple 
similarity— for example, maximizing or minimizing the 
similarity between adjacent training examples. Here, we 
explore a type of presentation order that depends in a more 
structured way on the nature of the category to be learned. 
We introduce the notion of a rule-based presentation order, 
which is one that derives from the internal structure of the 
training examples. In our rule-based order, objects that 
are within a rule—that is, that obey the same structured 

subclass within the category—are presented adjacently in 
the presentation sequence. Training then moves on to an-
other subclass, and so forth until all the objects have been 
presented. (Negative instances are randomly interspersed 
among the positives; only the order of the positives is ma-
nipulated.) Below, we will compare subjects’ performance 
with such an order with the similarity-based order found 
to be advantageous in earlier studies. For comparison, we 
will also include a dissimilarity-based order, previously 
found to be disadvantageous. We hypothesize that the rule-
based order will facilitate learning, particularly in highly 
structured concepts (i.e., those containing more clusters), 
by aiding the subject in mentally organizing what would 
otherwise appear heterogeneous or chaotic.

Method

Subjects
The subjects were 96 Rutgers University students who received 

course credit in exchange for their participation.

Procedure
Tasks were computer-driven. The subjects learned to sort stimu-

lus objects using two keys, with successful learning encouraged by 
means of a progress bar. Stimulus objects were presented one at a 
time in the upper part of the computer screen. After each response, 
feedback indicating a correct or incorrect classification was pro-
vided at the bottom of the screen for 2 sec. The subjects learned a 
simple concept in two dimensions as a short warm-up session. Then 
each subject was asked to learn the two chosen concepts (details 
below). The order of the two concepts was counterbalanced between 
subjects. For each subject, a single presentation order was randomly 
chosen and applied to the two concepts. The three different presenta-
tion orders will be described in more detail below.

A rule-based presentation order  
facilitates category learning

Fabien Mathy
Université de Franche-Comté, Besançon, France

and

Jacob FeldMan
Rutgers University, New Brunswick, New Jersey

We investigated the mechanisms by which concepts are learned from examples by manipulating the presenta-
tion order in which the examples were presented to subjects. We introduce the idea of a rule-based presentation 
order, which is a sequence that respects the internal organization of the examples within a category. We find that 
such an order substantially facilitates learning, as compared with previously known beneficial orders, such as a 
similarity-based order. We discuss this result in light of the central distinction between rule-based and similarity-
based learning models.

Psychonomic Bulletin & Review
2009, 16 (6), 1050-1057
doi:10.3758/PBR.16.6.1050

F. Mathy, fabien.mathy@univ-fcomte.fr 



Presentation order and structure    1051

dimensions, and the 1 and 12 are arbitrary labels that identify these 
concepts from among the 72 other concepts available.2

The two concepts are defined up to isomorphism, respectively, 
by the formulae

 14[8]  d ′ 
and

 124[8]  a′(bc)′ 1 ad ′(bc′ 1 b′c). 

Here, we use a standard notation in which a′ refers to negation of 
feature or clause a, ab refers to the conjunction of a and b, and a 1 b 
refers to their disjunction (equivalent to but more concise and read-
able than the ¬, ∧, ∨ notation often used). In Figure 1, the concepts 
are shown in an arbitrary rotation and permutation of features; as will 
be explained below, this mapping was randomized in the experiment. 
The concepts are also encoded and represented linearly in Table 1.

The symbol  in the equations above indicates congruence or 
structural isomorphism up to this arbitrary mapping. For example 
the concepts a, a′, b, . . . , or d ′ are all congruent because they are 
equivalent after relabeling of the features; in each case, exactly one 
value of one feature defines the concept. Concept 14[8], because it can 
be expressed by a single literal, has a complexity of 1 and is thus the 
simplest concept in the 4[8] family, equivalent to affirmation (asser-
tion of the presence of a single feature) in the classical literature (the 
four-dimensional analogue of Type I from Shepard et al., 1961).

Each correct response scored them 1 point in a progress bar. The 
point was represented by an empty box that was filled in when the 
subjects gave a correct response. To regulate the learning process, 
each response had to be given in less than 8 sec (making a maxi-
mum of 10 sec between two stimuli when the subjects got a “Too 
late” message feedback, itself lasting 2 sec). If the response was 
given too late, the subjects would lose 3 points on the progress 
bar. The number of points in the progress bar dedicated to learning 
was 4 3 2D (D 5 number of dimensions, four in our study). This 
criterion was identical to the one used by Shepard, Hovland, and 
Jenkins (1961) in their first experiment. Consequently, the subjects 
had to correctly classify stimuli on four consecutive blocks of 2D 

stimuli.1

Choice of Concepts Studied
Each of the subjects was given two concepts to learn, each de-

fined over four dimensions (shown schematically in Figure 1). We 
used four-dimensional concepts so that the number of objects to be 
classified (24 5 16) would be large enough to bring out any effects 
of our manipulations of presentation order, but small enough to be 
manageable in a single experimental session. We chose to focus on 
Types 14[8] and 124[8] (Figure 1) of the typology of Feldman (2003; 
an extension of those in Shepard et al., 1961, and Feldman, 2000). 
In this notation, the [8] extension means that there are eight positive 
examples in the concept, 4 means that the concept is based on four 

Figure 1. Concepts 14[8] and 124[8] of the 4[8] family (see Feldman, 2000, for a further explana-
tion of the concept of family taxonomy). Positive examples are indicated by black circles; negative 
examples are represented by empty vertices. there is one cluster in Concept 14[8] and three clusters 
in Concept 124[8]. the stimulus coding order is abcd. the code 0000 stands for a′b′c′d ′; 1111 stands 
for abcd. the number preceding the code is a simpler identification number.
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nation of eight positive and eight negative objects), assignment of 
abstract conceptual structures to physical features was randomized; 
that is, the abstract features a, b, c, d were randomly permuted be-
fore being realized as physical features. Also, for each concept, the 
choice of two values for each feature was chosen randomly from a 
sometimes longer list (shape 5 triangle, square, or circle; color 5 
blue, pink, red, or green; filling 5 hatched or grilled; size 5 small or 
big). Each of the 16 combinations of values formed a single unified 
object (e.g., a small hatched red square or a big grilled blue circle) to 
avoid numerical or spatial biases when displaying stimuli.

ordering of Stimuli
The main manipulation in the experiment was the choice of pre-

sentation order of objects within each concept. Presentation order 
was a between-subjects manipulation. Again, one presentation order 
was randomly chosen for a given subject and then applied to the two 
concepts. We used three orders: a rule-based order, a similarity order, 
and a dissimilarity order. As was discussed above, Concept 124[8] 
consists of a single relatively coherent cluster of six objects and two 
“clusters” of one object each. By contrast, Concept 14[8] consists of 
a single homogeneous cluster.

In each of the three order types, objects were drawn without re-
placement in each block of 16; that is, each block of 16 consisted 
of a complete permutation of all the objects. The negative exam-
ples were randomly interspersed among the positives (in random 
order) in order to avoid long uninterrupted sequences of positives 
or negatives, even though this presumably made it more difficult 
for the subjects to benefit from the presentation orders. Again, only 
the order of the positive examples was manipulated, taking one of 
the orders detailed below, whereas the order of the negatives was 
always random (and thus different from block to block and subject 
to subject).

In the rule-based order, objects were drawn randomly from within 
the largest cluster (in 14[8], the entire concept; in 124[8], Cluster 1) until 
all eight (14[8]) or six (124[8]) had been presented. In Concept 14[8], 
this would exhaust the entire concept, whereas in Concept 124[8], 
this would be followed by the objects in Cluster 2 and Cluster 3 (in 
random order). Thus, in the rule-based order, all members obeying a 
common rule were presented together, in random order but separated 
from exceptional members.3

In the similarity order, the first object was chosen at random, 
subsequent objects were chosen randomly from those maximally 
similar to the previous object, and so forth, until the concept was 
exhausted.4 Ties were resolved randomly. Dissimilarity between two 
stimuli i and j is given by the Minkowski metric

   

dij = | xia − xja |r

a =1

n

∑










1 / r

,
 

where xia is the value of stimulus i along dimension a. We used a 
city-block metric appropriate for separable dimensions used in this 
study (r 5 1). In general, this similarity ordering does not respect the 
cluster boundaries in force in the rule-based order, since similarity 
steps routinely cross in and out of clusters in 124[8]. The similarity 
order also differs from the rule-based order in that (aside from ties) 
the steps are not random.

In the dissimilarity order, objects were drawn exactly as in the 
similarity order, except with similarities minimized instead of maxi-
mized. That is, each object would be followed by another object as 
distant as possible from it in the space.

In all three orders, each new block of 16 was newly randomized 
(the positive instances were randomly drawn but constrained to obey 
the desired order, and the negative instances were randomly inter-
spersed), so the subjects rarely saw consistent specific sequences of 
objects between blocks.

Comparison With Procedures Used in other Studies
In Elio and Anderson’s (1981) similarity-based order, the presen-

tation order increased interitem similarity, relative to a random se-

The second concept, 124[8], has a complexity of 9 literals and is 
thus of moderate complexity, relative to others in the 4[8] family. 
(Complexity of concepts in this family ranges from 1 to 22 literals.) 
We chose this concept for several reasons. First, we wanted a mod-
erately complex concept, so that the entire learning procedure could 
be completed by most subjects in about an hour. Among concepts of 
moderate complexity, we chose 124[8] because its positive examples 
can be grouped fairly naturally into subcategories or clusters (la-
beled Clusters 1, 2, and 3 in Figure 1), allowing us to investigate 
the interaction between presentation order and such internal sub-
structure. As can be seen in the figure, Cluster 1 comprises six of 
the concept’s eight members, corresponding to the first disjunctive 
clause [a′(bc)′] in the concept’s compressed formula. Thus, these 
six objects collectively receive an extremely compact expression—
a clause of only 3 literals (which can be translated into a verbal 
expression, such as “all a′ except bc”). By contrast, Clusters 2 and 3 
consist of only one object each, each requiring 4 literals to specify 
just by themselves (abc′d ′ and ab′cd ′, respectively, corresponding to 
the expansion of the second clause in the formula). Thus, Cluster 1 
plays the role of a salient rule, whereas Clusters 2 and 3 play the 
role of exceptions.

Our presentation order was based on the presupposition that the 
subjects would cluster the members of Concept 124[8] in the man-
ner given above. This a reasonable assumption—in part, because 
this clustering corresponds to a highly compressed Boolean form, 
consistent with the minimization of Boolean complexity (Feldman, 
2000). Naturally, though, this concept (like any other) admits other 
interpretations or subclusterings, and we have no way of confirm-
ing that our subjects mentally organized it in the way that we ex-
pected (other than the fact that the presentation order based on this 
decomposition did, in fact, benefit learning, as will be seen below). 
However, any alternative subclustering that the subjects might have 
drawn would simply have added noise to our analysis, working 
against our hypothesis, so our assumption was conservative.

Stimuli
Stimulus objects varied along four binary, separable dimensions 

(shape, color, size, and filling texture). For each concept (desig-

table 1 
encoded Study Items Presented in Figure 1 and  

Presentation order Samples in Concept 14[8]

14[8] 124[8] Presentation Order Samples in 14[8]

#  Cat 1  #  Cat 1  SBO  DBO  RBO

1 0000 1 0000 1 0000 – Cat 0 3 0100
2 1000 3 0100 2 1000 8 1110 5 0010
3 0100 4 1100 – Cat 0 – Cat 0 7 0110
4 1100 5 0010 4 1100 1 0000 – Cat 0
5 0010 6 1010 – Cat 0 – Cat 0 – Cat 0
6 1010 9 0001 3 0100 4 1100 8 1110
7 0110 11 0101 7 0110 5 0010 4 1100
8 1110 13 0011 8 1110 – Cat 0 – Cat 0

– Cat 0 3 0100 1 0000
#  Cat 0 #  Cat 0 –

6
5
–
–
–
–

Cat 0
1010
0010
Cat 0
Cat 0
Cat 0
Cat 0

6
–
–
7
–
2
–

1010
Cat 0
Cat 0
0110
Cat 0
1000
Cat 0

–
–
2
6
–
–
–

Cat 0
Cat 0
1000
1010
Cat 0
Cat 0
Cat 0

9 0001 2 1000
10 1001 7 0110
11 0101 8 1110
12 1101 10 1001
13 0011 12 1101
14 1011 14 1011
15 0111 15 0111
16 1111 16 1111

Note—In the “Presentation Order Samples in 14[8]” columns, Cat 0 cells 
can be replaced by any negative examples of the Cat 0 category, because 
negative examples were drawn in random order. SBO, similarity-based 
order; DBO, dissimilarity-based order; RBO, rule-based order; Stimu-
lus # is also indicated in Figure 1.
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cept 14[8] is (7 3 3 1 1 3 2.5) /8  2.9, agreeing with 
the empirical measure. These measures will be used for 
comparison purposes in the following analysis.

We will first consider the influence of presentation order 
on learning and then will provide more detailed analyses 
of the progression of learning over time and, finally, of 
classification response times.

Influence of Presentation order on Learning
Among the 96 subjects (32 by presentation order), only 

69 subjects could finish the experiment within the time 
slot allocated to the experiment. The analysis of results 
takes into account only these 69 subjects (25 for the rule-
based procedure, 21 for the dissimilarity order, and 23 
for the similarity order). The loss of subjects apparently 
tracked the difficulties associated with the presentation 
orders presented below, although the chi-square test of 
independence between presentation order and loss was not 
significant [χ2(2) 5 1.2, n.s.].6

Figure 2 shows the number of blocks that were required 
for the subjects to reach the learning criterion in the three 
conditions (rule based, similarity based, and dissimilarity 
based) for both concepts (14[8] and 124[8]): respectively, 5.2, 
6.1, and 6.9 blocks for Concept 14[8] and 22.1, 28.1, and 
42.6 blocks for Concept 124[8]. The results indicate that 
there was an effect of the presentation order on learning: 
The number of blocks required to reach the learning crite-
rion depended on the presentation order that was chosen 
[F(2,66) 5 15.3, p , .001, η2

p
 5 .32]. Learning was fast-

est in the rule-based order (M 5 13.7 blocks until crite-
rion, SD 5 10.4), second fastest in the similarity-based 
condition (M 5 17.1 blocks, SD 5 12.6), and slowest in 
the dissimilarity-based condition (M 5 24.7 blocks, SD 5 
22.5). The superiority of the similarity over dissimilarity 
order replicates earlier findings. But the main result, that 
the rule-based ordering is superior to either, is novel.

quence, but did not maximize it. Our similarity-based order is based 
on the Minkowski metric, with no distinction of any sort between 
examples except their similarity. Items are simply chosen so that 
they maximize (or in the dissimilarity order, minimize) the similar-
ity to the previous item. In this sense, our similarity-based order is 
more extreme than Elio and Anderson’s (1981) but also more varied 
than the one used by Medin and Bettger (1994), who used a single 
fixed similarity-based order and dissimilarity-based order in each of 
their experiments. Our procedure produces a locally maximal inter-
item similarity in the similarity-based order and a minimal interitem 
similarity in the dissimilarity-based order. (Numbers will be given 
in the Results section.) In comparison, the interitem similarity in 
the rule-based order is moderate. Some presentation order samples 
are given in Table 1. Finally, note also that because subjects are not 
aware of where the blocks begin, they might be more sensitive to the 
isolation of the stimuli belonging to different clusters in the rule-
based ordering than to the strict position of the clusters in the blocks 
(related to the von Restorff isolation effect, transposed to categoriza-
tion in Sakamoto & Love, 2004).

ReSULtS

The average interitem similarity within the similarity-
based order, the dissimilarity-based order, and the rule-
based order was, respectively, 2.9, 1.5, and 2.3 for Con-
cept 14[8] and 2.7, 1.3, and 2.1 for Concept 124[8].5 These 
empirical measures correspond to what would be expected 
in principle. For example, in Concept 14[8], the similar-
ity between two positive stimuli is most of the time equal 
to 3 in the similarity-based order (once in a while, it can 
be equal to 2 or 1 at the end of certain blocks, when the 
path does not allow any other choice), except between the 
last stimulus of a given block and the first stimulus of 
the next block (the first stimulus of a block being drawn 
randomly). The average interitem similarity between the 
last stimulus of the nth block and the first of the (n 1 1)st  
block is 2.5 (i.e., the average of 4, 3, 3, 3, 2, 2, 2, 1). There-
fore, the theoretical average interitem similarity in Con-

Concept 14[8] Concept 124[8]
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Figure 2. Number of blocks taken to reach the learning criterion of 100% 
correct classification for two consecutive blocks. error bars show 61 SE.
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two curves differ significantly in fitted form [FRS(42,44) 5 
13.17, p , .001]. Thus, even in Concept 14[8], although the 
difference is relatively subtle, the rule-based order produces 
significantly more rapid learning than does the similarity 
order. In contrast, the dissimilarity order seems to have in-
duced ineffective learning, as compared with the similarity-
based order [FDS(42,44) 5 19.25, p , .001] and the rule-
based order [FDR(42,44) 5 18.46, p , .01].

Concept 124[8]. Using a similar fit comparison proce-
dure, the same ranking of effectiveness of the three pre-
sentation orders (rule based . similarity . dissimilarity) 
was visible in the learning curves in Concept 124[8] [again, 
much larger in magnitude than in the simpler concept; we 
obtained F(144,147) . 40, p , .001, for the three paired 
comparisons of the learning curves].

dISCUSSIoN

Like several previous studies, this study demonstrated 
that the sequence in which examples are encountered can 
profoundly influence the success of learning. Our results 
showed that a rule-based order yields learning superior to 
that of the similarity order previously found most advanta-
geous (Medin & Bettger, 1994). Although our interest was 
primarily theoretical, this result has obvious implications 
for the presentation of material in educational settings 
(Avrahami, 1987).

Our results demonstrated that the benefit of the rule-
based order does not derive entirely from the interitem 

As can be seen in Figure 2, Concept 124[8] was learned 
much more slowly overall [F(1,66) 5 320, p , .001, 
η2

p
 5 .83]. The effect of presentation order was far larger 

in magnitude in this complex concept, which is reflected 
in the interaction between concepts and presentation or-
ders [F(2,66) 5 15.8, p , .001, η2

p
 5 .32]. When simple 

effects of presentation orders were analyzed for each con-
cept, the effect of presentation order was significant only 
in Concept 124[8] [F(2,66) 5 16.34, p , .001, η2

p
 5 .33]. 

The between-subjects t tests indicated that only the three 
paired comparisons between presentation orders for Con-
cept 124[8] were significant. However, a subsequent analy-
sis of learning curves will reveal that presentation order 
also influences learning of Concept 14[8].

detailed Analysis of the Progression of Learning
We next will turn to the question of how learning pro-

gresses over time in the three presentation orders. Figure 3 
(Concept 14[8]) and Figure 4 (Concept 124[8]) show both the 
percentage and the number of correct responses for each 
block as a function of block number over the course of the 
experiment. Note that the absolute number is sometimes 
more revealing than the percentage; for example, 14 cor-
rect responses (87.5%) can be immediately understood to 
mean “all but 2 in the concept.”

Concept 14[8]. As can be seen in Figure 3, learning of the 
simpler Concept 14[8] was slightly more efficient in the rule-
based than in the similarity order. The fit comparison pro-
cedure, described in the notes of Figure 3, indicated that the 
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Figure 3. Performance as a function of block number for the three presentation 
orders, Concept 14[8]. to compare any pair of learning curves, we fitted the data sets to 
a common nonlinear model y 5 b0 1 b1/x, which fit all three data sets well (R2 . .89 
in all cases). We tested the null hypothesis of equal slopes between pairs of regression 
curves by comparing the mean squared error when the two data sets were pooled with 
when they were fit separately (the technique is similar to verifying that there is no 
interaction between the covariate and treatments before running an ANCoVA). the 
results showed that the three learning curves are statistically distinct.
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These results suggest that human learning does involve 
a process of rule-based abstraction, consistent with many 
recent hybrid models (Anderson & Betz, 2001; Erickson 
& Kruschke, 1998; Goodman, Tenenbaum, Feldman, & 
Griffiths, 2008; Nosofsky, Palmeri, & McKinley, 1994; 
Rosseel, 2002; Smith & Sloman, 1994) or clustering mod-
els such as SUSTAIN (Love et al., 2004), which overtly 
involve a rule-like component. (SUSTAIN also involves 
an incremental functioning, which can be responsible 
for overspecific solutions when the items are presented 
in an unfavorable order.) It also might be consistent with 
pure exemplar-storage schemes (Estes, 1994; Kruschke, 
1992; Medin & Schaffer, 1978; Nosofsky, Gluck, 
Palmeri, McKinley, & Glauthier, 1994), since these are 
also  sensitive to the homogeneity of categories (Hintz-
man, 1986), although the connection would be less direct. 
In any case, exemplar models are generally batch models 
(i.e., in batch algorithms, categorization probabilities are 
not computed trial by trial but, for the whole set of ex-
amples, block after block), meaning that they consider the 
set of examples as an unordered group and, hence, cannot 
model our results without some sort of extension. One ex-
ception is ALCOVE (Kruschke, 1992), because it includes 
trial-by-trial updating. AMBRY (Kruschke, 1996), derived 
from ALCOVE, might also be adequate for fitting our re-
sults, because it allows changes of category-to-response 
association weights and exemplar-to-category association 
weights after every trial in order to model rapid shifting in 
categorization. We feel that the superiority of rule-based 
presentation orders is a key test for models of categoriza-
tion learning—a finding that any competitive model needs 
to be able to account for in principle. The comparative 

similarity it entails. Interitem similarity was maximal 
in the similarity-based order and only intermediate in 
the rule-based order, but the rule-based order elicited 
the best performance. We conclude that the nature of the 
rule-based order (i.e., randomness and clustering) pro-
vides an independent learning benefit above and beyond 
that provided by interitem similarity. Nevertheless, in 
order to affirm that the nature of rule-based orders was 
critical in the performance we observed, subsequent ex-
periments will be needed to show more precisely that, 
with an equivalent interitem similarity, subjects would 
perform worse in a non-rule-based order than in a rule-
based order. Note that a reduction in between-blocks 
order variability (as a consequence of presenting the six 
positive items of the largest cluster before the two re-
maining exceptions on every block) in Concept 124[8] 
for the rule-based order is very unlikely to be a source 
of facilitation for subjects. There are 6! 5 720 possible 
orders for the six examples of the largest cluster. The 
subjects could not rely on a reduced number of possible 
orders to come up with a strategy.

This superiority of the rule-based order over the simi-
larity order might be attributed to the illusory structure 
that the similarity order might tend to induce in the minds 
of learners. The similarity condition entails a relatively 
orderly trajectory through the space that is, in fact, not 
genuinely informative about the category and, thus, might 
temporarily mislead the learner about the structure to be 
learned. By contrast, the rule-based order, by definition, 
randomizes that which is not informative (steps within a 
cluster) while segregating the clusters, yielding superior 
learning.
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Figure 4. Performance over time (blocks) for the three presentation orders, Con-
cept 124[8]. the three learning curves are statistically distinct. the fit comparison pro-
cedure is described in the caption of Figure 3. this time, we fitted the data sets to a 
quadratic model y 5 b0 1 b1x 1 b2x2, which fit all three data sets well (R2 . .92 in all 
cases).
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Exemplar models might be extended to take the temporal 
dimension into account by including sequential order as a 
feature in similarity comparisons. The similarity between 
two stimuli would then be influenced by their relative se-
rial position, inducing a neighborhood structure in terms 
of both features and time. The model could then capital-
ize on the temporal dimension to assess local distinctive-
ness, in the same way serial position effects are modeled 
as discrimination problems in serial or free recall (Brown, 
Neath, & Chater, 2007). Another solution proposed by 
Stewart et al. (2002) is to adapt an exemplar model to 
predict sequence effects by weighting the stimulus on the 
previous trial more heavily than others in the summed 
similarity calculations, on the grounds that recent stimuli 
are more available in memory, or simply that they ought 
to be weighed more heavily in decisions.
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benefits of different orders may be helpful in deciding 
among competing rule-based models, which differ in the 
nature of the rules extracted (Bradmetz & Mathy, 2008; 
Feldman, 2000; Lafond, Lacouture, & Mineau, 2007; 
Vigo, 2006; see also Love et al., 2004; Nosofsky, Palmeri, 
& McKinley, 1994). That is, alternative rule-based orders 
could be devised to match the abstraction or compression 
techniques entailed by the various theories. Following our 
argument, the most effective presentation order for sub-
jects would be that which accords with the subjects’ own 
internal hypotheses or representations.

Of course, there is no guarantee that any given presen-
tation order induces in subjects anything like the mecha-
nisms involved in its construction. A rule-based order does 
not necessarily induce the formation of rules, nor does a 
similarity-based order necessarily induce the computation 
of similarity; nor, for that matter, does a random presen-
tation necessarily induce anything like random guessing 
or rote memorization. Both the learning mechanisms hy-
pothesized in rule-based models and those hypothesized 
in exemplar models capitalize on the structure present in 
the observations, although in different ways.

The differences among presentation orders depend in 
an interesting way on the nature of the concepts learned. 
Most obviously, the rule-based presentation order pro-
vides a substantial benefit only if the category is highly 
structured—that is, when it contains salient subcategories 
around which the presentation order can be organized. 
For concepts like 14[8] that lack internal subdivisions, a 
rule-based presentation is, in effect, a random presenta-
tion. But a similarity order might induce a sequence of 
temporary overspecific hypotheses (blind alleys) based on 
accidentally contiguous examples, which would impede 
learning.

We noted a particular negative effect of the dissimilarity-
 based order, in which subsequent positive examples were 
chosen so as to be as distant as possible from each other. 
Research on the effect of the relative magnitude infor-
mation may account for this result (Stewart, Brown, & 
Chater, 2002). Stewart et al. showed that categorization 
of a stimulus on trial n is influenced by the stimulus and 
response on trial n 2 1, when information about presenta-
tion orders is not discarded. Their memory and contrast 
model predicts that subjects tend to respond with a differ-
ent category when the difference between two consecutive 
examples is large.

CoNCLUSIoN

We believe that the present investigation is an important 
step in understanding the effect of presentation order, but 
several new conditions need to be explored to gain addi-
tional insight. A first extension would be to separate the 
training phase (in which the presentation order is manipu-
lated) from the categorization phase. This would allow the 
positive examples to be presented alone, rather than being 
interspersed with negative examples, which muddies the 
desired order.

We also plan to model our results, both with existing in-
cremental models and with extensions of existing models. 
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NoteS

1. Many studies require only 75% or 80%, but such a low criterion 
would defeat the goals of our study, because it would make it pos-
sible to learn only the “rule-like” examples and completely avoid the 
“exceptions.”

2. In four Boolean dimensions, there are 74 qualitatively different 
types of concepts with 8 positive examples, giving a classification analo-
gous to (although more complex than) that in Shepard et al. (1961).

3. The term rule-based refers to the fact that this order respects a rule 
plus exception organization (Nosofsky, Palmeri, & McKinley, 1994). 
The organization more generally relates to disjunctive normal form, in 
which each term indicates a conjunction of features. Some disjunctive 
terms cover many cases (major rules); others cover fewer (minor rules, 
or major classes of exceptions); and still others cover only one case each 
(exceptions). An example is a rule like “birds 5 (animals that fly) or 
(ostrich-like animals—which possess feathers but do not fly) or (kiwi—
also a flightless bird but not like an ostrich).”

4. Note that similarity is computed on a trial-by-trial basis, so although 
interitem similarity is always maximal between successive examples, 
it is not necessarily maximized over an entire block (i.e., similarity is 
maximized locally but not globally).

5. The average interitem similarity was computed for positive exam-
ples only because negative examples were presented in random order in 
all presentation orders.

6. The loss of subjects probably stems from our subject-scheduling 
system, which unfortunately did not leave many subjects sufficient time 
to complete the experiment, given the strict 100% criterion. In their 
second study, Elio and Anderson (1984) also excluded 14 cases among 
80 subjects with an 85% correct criterion.
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