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Inferring the mental states of other agents, including their goals and intentions, is a central
problem in cognition. A critical aspect of this problem is that one cannot observe mental
states directly, but must infer them from observable actions. To study the computational
mechanisms underlying this inference, we created a two-dimensional virtual environment
populated by autonomous agents with independent cognitive architectures. These agents
navigate the environment, collecting ‘‘food’’ and interacting with one another. The agents’
behavior is modulated by a small number of distinct goal states: attacking, exploring, fleeing,
and gathering food. We studied subjects’ ability to detect and classify the agents’ continu-
ally changing goal states on the basis of their motions and interactions. Although the pro-
grammed ground truth goal state is not directly observable, subjects’ responses showed
both high validity (correlation with this ground truth) and high reliability (correlation with
one another). We present a Bayesian model of the inference of goal states, and find that it
accounts for subjects’ responses better than alternative models. Although the model is fit to
the actual programmed states of the agents, and not to subjects’ responses, its output actu-
ally conforms better to subjects’ responses than to the ground truth goal state of the agents.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Comprehension of the goals and intentions of others is
an essential aspect of cognition. Motion can be an espe-
cially important cue to intention, as vividly illustrated by
a famous short film by Heider and Simmel (1944). The
‘‘cast’’ of this film consists only of two triangles and a
circle, but the motions of these simple geometrical figures
are almost universally interpreted in terms of dramatic
narrative. Indeed, it is practically impossible to understand
many naturally occurring motions without comprehending
the intentions that contribute to them: a person running is
interpreted as trying to get somewhere; a hand lifting a
Coke can is automatically understood as a person
intending to raise the can, not simply as two objects mov-
ing upwards together (Mann, Jepson, & Siskind, 1997).
Much of the most behaviorally important motion in a nat-
ural environment is produced by other agents and reflects
unseen mental processes. But the computational mecha-
nisms underlying the inference of mental states, including
goals and intentions, are still poorly understood.

Human subjects readily attribute mentality and goal-
directedness to moving objects as a function of properties
of their motion (Tremoulet & Feldman, 2000), and are par-
ticularly influenced by how that motion seems to relate to
the motion of other agents and objects in the environment
(Blythe, Todd, Miller, & The ABC Research Group, 1999;
Barrett, Todd, Miller, & Blythe, 2005; Tremoulet & Feldman,
2006; Zacks, Kumar, Abrams, & Mehta, 2009; Gao, McCar-
thy, & Scholl, 2010; Pantelis & Feldman, 2012). The broad
problem of attributing mentality to others has received a
great deal of attention in the philosophical literature (often
under the term mindreading), and has been most widely
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1 For more on the semantics subjects attach to IMP behavior without
being first supplied with our labels, see Pantelis et al. (2011).
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studied in infants and children (Gelman, Durgin, & Kauf-
man, 1995; Gergely, Nádasdy, Csibra, & Bíró, 1995; John-
son, 2000; Kuhlmeier, Wynn, & Bloom, 2003). But the
adult capacity to understand animate motion in terms of
intelligent behavior has been less studied. Computational
approaches to the problem of intention estimation have
been scarce historically (for perhaps the earliest example,
see Thibadeau, 1986), in part because of the difficulty in
specifying the problem in computational terms. But new
modeling approaches are emerging from various perspec-
tives and disciplines in this rapidly-developing area of
research (Feldman & Tremoulet, 2008; Baker, Saxe, &
Tenenbaum, 2009; Crick & Scassellati, 2010; Kerr & Cohen,
2010; Pautler, Koenig, Quek, & Ortony, 2011; Burgos-
Artizzu, Dollár, Lin, Anderson, & Perona, 2012).

Experimental stimuli in studies of the interpretation of
intentionality from motion have, like the original Heider
and Simmel movie, consisted almost exclusively of anima-
tions featuring motions crafted by the experimenters or
their subjects to convey specific psychological impressions.
Traditional psychophysics is then applied to relate attri-
butes of the observed motion to the subjective impression
produced (Blythe et al., 1999; McAleer & Pollick, 2008).
While this method has yielded important insights, it suf-
fers from certain critical limitations. Apart from the ineffi-
ciency of continual reliance on subjective intuition (e.g. via
a subject pool) to generate new and varied stimuli scenes,
handcrafted stimuli are opaque in that it is unclear exactly
why the constituent motions convey the particular impres-
sions they do, since they have been designed purely on the
basis of the designers’ intuitions—intuitions that are, in
effect, the object of study. This makes it impossible to ex-
plore, for example, the relationship between observers’
judgments of the agents’ mental states and the true nature
of the ‘‘mental’’ processes generating agent behavior. In
this case, the independent and dependent variables are
both direct reflections of subjective notions of what partic-
ular classes of behavior ‘‘should’’ look like.

Other studies have examined the perception of animate
motion more systematically, either by varying the velocity
and orientation of agents parametrically, or by manipulat-
ing parameters of simple programs generating agent
behavior (Stewart, 1982; Dittrich & Lea, 1994; Williams,
2000; Tremoulet & Feldman, 2000, 2006; Gao, Newman,
& Scholl, 2009; Gao & Scholl, 2011; Pantelis & Feldman,
2012). While this method avoids some of the aforemen-
tioned pitfalls of using handcrafted stimuli, our present
study represents a substantial departure even from this ap-
proach. In the spirit of Dennett (1978)’s suggestion to
‘‘build the whole iguana,’’ our goal was to create cogni-
tively autonomous agents whose motions actually were,
at least in a limited sense, driven by their own beliefs,
intentions, and goals. To this end, we developed a 2D
virtual environment populated with autonomous agents—
virtual robots—who locomote about the environment un-
der their own autonomous control, interacting with and
competing with other agents in the environment. We refer
to the agents as IMPs, for Independent Mobile Personali-
ties. Like agents in artificial life environments (e.g. Yaeger,
1994; Shao & Terzopoulos, 2007), IMPs have a complete,
albeit severely restricted, cognitive architecture.
The IMPs can be understood to have one overall goal: to
obtain ‘‘food’’ and bring it back to a home location. But at
each time step, an IMP’s behavior is modulated by its con-
tinually-updating ‘‘goal’’ state, which determines how it
will respond to stimuli in the environment. An IMP can
be in one of four discrete goal states: it can explore the
environment, gather food, attack another agent, or flee
from another agent (Fig. 2. These four states were loosely
modeled on the ‘‘Four Fs’’ of animal ethology, action cate-
gories that are said to drive most animal behavior; see
Pribram, 1960).

The agents obtain information about their environment
via on-board perception, consisting of a simple visual mod-
ule with a 1D retina (a perceptual ability reminiscent of
that of the 2D characters in Abbott’s (1884) novella Flat-
land). The agents progressively learn a map of their envi-
ronment as they move about the environment. Lastly, the
agents have a limited capacity to reason about how to
accomplish their goals (for example, they can calculate
the shortest path through the environment between their
current location and a goal location). Thus the IMPs are
complete, though crude, cognitive agents. Their observable
actions are based entirely on what they ‘‘want’’, ‘‘know’’,
and ‘‘think’’ about their environment.

The subjective appearance of IMP behaviors corre-
sponding to their respective goal states are necessarily
connected to the subjective intuitions of the programmers,
but this connection is far more indirect than in the case of
stimuli created via handcrafted animation. We can hardly
predict how stimulus scenes will appear with any preci-
sion, given that the IMP subroutines connected with
respective goal states execute within the complicated con-
text of other modules in the IMP programming, and that
these scenes are dynamically generated within multi-
agent environments which are explicitly probabilistic.
Manipulation of the parameters of particular IMP modules
may have inherently unpredictable effects; for example,
we have no strong and precise intuition about what it
would ‘‘look like’’ if the resolution of an agent’s vision were
changed. Finally, whereas the semantics we attach to the
various IMP goal states may be arbitrary and subjective
(why ‘‘attack’’ and not ‘‘chase’’?1), there is an objective
ground truth to the existence of behavioral states contained
in the IMP program, among which the IMP actually transi-
tions, and each of which predisposes the IMP toward partic-
ular actions. There is therefore a ground truth basis for
assessing subject’s accuracy when they attempt to infer
these underlying states.

In the studies below, we ask what human subjects can
infer about the IMPs’ goal states on the basis of observing
them move about and interact within a sparse environ-
ment, and model how they might go about performing this
inference. The appearance and behavioral repertoire of the
IMPs are quite simple; they are rigid triangles which may
only translate or rotate. This does not mean to imply that
the perceptual features of these IMP stimuli exhaust the
possibly important cues subjects may use to make
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Fig. 1. (a) The virtual environment with its native IMPs (depicted as moving triangles). (b) The IMPs have autonomous vision by virtue of simulated 1d
retinas, and by (c) exploring their environment they can (d) gradually develop a mental map of the objects and obstacles it contains.

Fig. 2. The IMP’s decision making module is programmed such that the
IMP will transition stochastically among the four possible goal states
(attack, explore, flee and gather) according to transition probability tables
contained in its program (see Tables 7 and 8 in the Appendix for these
transition tables). The IMP applies one of four distinct transition tables
depending on its current circumstance (nothing nearby, another IMP
nearby, food nearby, or another IMP and food nearby). This figure illustrates
the decision making of an IMP from Experiment 1, with no other IMPs or
food nearby, currently in the attack state. Given this situation, the IMP
would remain in the attack state with probability .94, and transition to
each of the other goal states with probability .02.
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inferences about other agents (Gelman et al., 1995). Rather,
we isolate these cues for experimental study.
Again, the IMPs’ goal states are not directly observable,
but are internal variables that determine how they respond
to what they themselves perceive in the environment
around them. Thus, our main question is really about the
capacity of our human subjects to represent that which,
in turn, represents: a mind. Traditional psychophysics
concerns itself with the relationship between physical
variables (e.g. luminance or sound amplitude) and their
mental correlates (e.g. perceived lightness and loudness).
Our paradigm can, similarly, shed light on the relationship
between hidden processes generating observable actions
(like the tendency of an agent to transition into an ‘‘attack’’
state) and their psychological correlates (the subjective
impression of intentions). In this sense, we see our para-
digm as a true ‘‘psychophysics of intention.’’

The idea of using autonomous virtual agents as psycho-
physical stimuli was previously explored in Pantelis and
Feldman (2012). In that study, stimulus scenes were popu-
lated with simple reflex agents which differed in their
behavioral tendencies (the way they reacted to other
agents) but lacked perception, memory, or decision-mak-
ing. The goal of that study was to use a parameterized
space of behavioral tendencies as a way of generating
agents with a wide range of ‘‘personalities,’’ in order to
map out subjects’ subjective personality space (via
multidimensional scaling). The current study has more
ambitious aims, and the agents have a far more complex
mental architecture. The IMPs environment is a setting
for interactive intentional behavior, and affords many pos-
sibilities for the empirical study of intention perception.
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For example, by modifying the IMPs’ programming we can
completely control the agents’ hidden cognitive and per-
ceptual capacities (e.g. their vision, memory, or behavioral
dispositions) or the influence of these capacities on obser-
vable agent behavior. This allows us to study how modify-
ing any of these capacities, or even deleting them entirely,
might influence the way observers understand their men-
tal properties.

In the current study we focus on one particularly cen-
tral aspect of the computation of intention: human observ-
ers’ ability to infer the ‘‘mental state’’ of agents on the basis
of their actions—that is, in our paradigm, to correctly ascer-
tain which of the four predefined goal states an agent is in
at each point in time. We recognize the need for caution in
referring to the four IMPs goal states as ‘‘mental states,’’ as
the IMPs’ perceptual and cognitive capabilities are obvi-
ously very limited (see fuller description in A). The IMPs’
various modules are relatively simplistic models of vision,
memory, decision making, and path planning, and do not
precisely correlate with the manner by which humans or
other animals perform these tasks. The four IMP goal states
are simply decision structures that determine how the
agent’s responses are conditioned on what it perceives
and knows about its environment, and we do not mean
to imply that these states and the simple decision matrices
governing transitions among them are in any real sense
equivalent to real human mental states and decision mak-
ing, any more than we wish to imply that actual human
vision works via the casting of rays from the eye.2 Never-
theless, we adopt this phrasing deliberately, because in the
context of our study, the IMPs’ states play an analogous role
to intentional mental states: they control the selection of ac-
tion given the knowledge and perception accessible to the
agent. They are ‘‘behavioral dispositions’’ in the very literal
sense that they are internal characteristics that modulate
the probability of behavior, and in this very concrete sense
are loose analogs of the more complex intentional disposi-
tions that govern human behavior.

These studies represent a departure from traditional
psychophysics methods, in which physical attributes of a
stimuli agent’s trajectory are manipulated and the result-
ing subjective percept is studied. We instead manipulate
hidden internal states of agents and parameters of the gen-
erative model with which the agents are programmed,
which influences agent behavior indirectly. Inferences
made about this hidden information define a computa-
tional process which, we argue, is in closer analogy to the
actual inferential processes comprising a ‘‘theory of mind.’’
This formalization of intention inference has also been ex-
plored with a virtual environment and classification algo-
rithm developed by Kerr and Cohen (2010).

In the two studies below, we ask subjects to observe
four IMPs interacting, one of which is designated as the tar-
get, and continually indicate using the computer keyboard
what state they think the agent is in at each point in time.
In effect, we asked in as direct a manner as possible
whether the subjects could correctly divine the agent’s
2 This was an early and incorrect theory of vision held by Plato, Euclid,
and others. It is also how we model the IMPs’ vision.
internal state on the basis of its actions. Because this state
is in fact simply a variable inside the agent’s autonomous
program (the ‘‘ground truth’’ goal state) we were then able
to analyze how often, and under what circumstances, the
subject’s response was in fact correct (validity, in tradi-
tional statistical terminology), as well as how often
subjects agreed with one another (reliability). We then
introduce a computational model of the inference process,
ask how often and under what circumstances it is able to
estimate the true state, and evaluate how effectively it
models subjects’ responses. Most of these analyses (with
the exception of reliability) are impossible using handcraf-
ted displays, because the agents in such displays have no
ground truth mental states.
2. Computational model

If one wishes to attribute goals to an agent effectively, it
is useful to have a good model of that agent. From an ‘‘ideal
observer’’ (Knill & Richards, 1996; Geisler, 2004) or
‘‘rational analysis’’ (Anderson, 1989) perspective, the opti-
mal solution to the goal attribution problem indeed relies
crucially upon an accurate model of the agent’s goal- and
environment-dependent behavior. In the IMPs domain,
such a model would express how an IMP’s action A
depends probabilistically on its goal G and the state of
the environment S:

pðAjG; SÞ: ð1Þ

Given the observed action, and this model of how the agent
generates its behavior, the ideal observer works backwards
to reason about the agent’s underlying goal. The inference
performed by the observer can be expressed as a problem
of computing the posterior probability of the goal G by
inverting the generative model using Bayes’ rule:

pðGjA; SÞ / pðAjG; SÞpðGjSÞ: ð2Þ

This ideal observer approach to goal attribution has
found past success when applied to scenarios involving
simple, two-dimensional ‘‘grid-world’’ environments and
restricted sets of possible goals and behaviors (Baker
et al., 2009; Ullman et al., 2009). In these limited contexts,
a wide range of natural and intuitive behaviors can be
modeled as the result of rational ‘‘planning’’ in a Markov
decision process (MDP), and the process of inverting this
model using Bayesian inference can be called ‘‘inverse
planning.’’

As is true with any model of a complicated reality, a
useful model of the agent function will be compressive in
nature. And because rationality is a powerful form of
compression, the assumption of a rational agent can be
(and has been) an exceedingly useful starting point when
inferring beliefs, goals, and intentions. However, a rational
model of our IMPs’ behavior is not particularly well-
defined, and even if it were, the computations required
for optimal planning would be intractable given the con-
tinuous state, multi-agent, partially observable MDPs re-
quired to express the IMPs’ domain (Kaelbling, Littman, &
Cassandra, 1998).
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On the other hand, the actual model generating IMP
behavior exists (it was used to generate the stimuli) and
makes sense (it accurately and precisely describes how
IMP behavior depends on the underlying goal state and
the state of the environment). If granted access to this
complete generative model, one could therefore use Bayes-
ian inference to optimally estimate the IMP’s goal state,
given the observed action. These considerations make the
complete generative model of the IMPs’ mental architec-
ture an attractive basis for modeling the ‘‘true’’ Bayesian
ideal observer.

Nevertheless, we do not adhere to this ideal observer ap-
proach. A complete generative model of the IMPs’ mental
architecture would necessarily include all perception,
memory, and decision making processes undertaken by
the IMP. It is doubtful that human observers actually harbor
a full generative model of the observed agent—an analog of
the computer program for generating the IMPs’ behavior—
in their heads, or that they observe sufficient data through-
out the course of the experiment to induce this program.
And even if subjects did have access to the true IMP gener-
ative model, the computations required for full Bayesian
inference over this model are themselves intractable, due
to the complexity of the space of the IMPs’ potential mental
states, actions, and physical configurations.

Still, it is possible to apply Bayesian reasoning over a
model of agents’ goal- and context-dependent behavior,
using an approximate model of IMP behavior rather than
the true underlying generative model. This model need
not represent with perfect fidelity all aspects of the agent’s
actions, the scene, or the mapping from scenes and goals to
actions. It need only capture the key features of the IMPs’
situations, goals, actions, and the structure of the dynamic
relationships between them that are necessary to support
inferences that are accurate and precise enough for every-
day social functioning. This approach also has the potential
to yield tractable computations that can be performed effi-
ciently and dynamically as the stream of perceptual input
arrives.

We formalize this idea by constructing a dynamic
Bayesian network (DBN), shown in Fig. 3, which represents
observers’ knowledge about the probabilistic, temporal
dependencies between the IMPs’ states (configuration of
St Gt

At

Fig. 3. Graphical model of the Dynamic Bayesian Network with which we
environmental configuration, or scene, G represents the goal state of the IMP, an
Gtþ1 is conditional on both St and Gt ; At depends on St and Gt . These probabilisti
action taken by the IMP at time t (At) will also causally influence the subsequ
influences Atþ1, but these relationships are not learned or represented explicitly b
known to the inferential algorithm) at time t þ 1.
agents, food, and obstacles in the environment), goals
and actions. To compress the IMPs’ continuous, multidi-
mensional state and action spaces, this DBN represents
the IMPs’ activities at a more abstract level by chunking
similar states and actions into semantically coherent cate-
gories. The probabilistic relationships represented in the
DBN are learned from prior experience; specifically, we
use the actual generative model of our IMPs to produce re-
peated observations of IMPs’ activities. These simulations
serve as data for supervised learning.

The DBN employed by our model is only meant to be an
approximation of the internal model of IMP behavior that
may be harbored by subjects, and we must note that ro-
bustly modeling other sorts of agents—like humans—may
very likely require a richer representation to be effective.
Also, when compared to the true generative model govern-
ing IMP behavior, our approximate model is coarser in res-
olution with respect to states and actions, and therefore
will appear noisier. This is not an uncommon outcome
for Bayesian models: the gap between the true generative
process (which can, in principle, be deterministic if all the
relevant variables are known) and the modeled generative
process becomes absorbed into the model’s noise or
stochasticity.

Next, we provide technical details about our represen-
tation, learning, and inference procedures, or in other
words, how the DBN is first constructed and then used to
reason about the IMPs’ goal-directed behaviors.

2.1. Approximate representation of states and actions for the
Bayesian model

We first simplify the set of possible IMP actions.
Although the actual IMPs can take on various speeds and
angular velocities (but never pause), the model classifies
all IMP actions as either turn left, turn right, or move straight
ahead.

Second, we simplify the set of possible environmental
configurations. We coarsely discretize the agent-centric
physical space into 9 sections (Fig. 4). The nearest other
IMP and nearest food to the target agent can each lie in
one of these 9 sections; thus, our discretization scheme
allows for 9� 9 ¼ 81 possible configurations of the
St+1 Gt+1

At+1

approximate the actual generative model of the IMP. S represents the
d A represents the IMP action. The probability of the IMP transitioning to
c relationships are learned via extensive simulation of IMP behavior. The
ent configuration of the environment at time t þ 1, (Stþ1), which in turn
y the computational model because Stþ1 and Atþ1 are both given (i.e. inputs



Fig. 4. The discretization of the agent-centric space, used for the Bayesian model.
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environment (with respect only to the relative locations of
the nearest other IMP and nearest food).

It should be noted that our subjects may very well rely
on a qualitatively different discretization scheme, or may
not rely on any such discretization at all. We also do not
mean to imply that this representational scheme is some-
how globally optimal (though subsequent model fitting
demonstrates that this representational scheme is ade-
quate for the task of modeling a large portion of subject re-
sponses). As is often the case, the particulars of the model
are both the product of a priori considerations and subse-
quent tinkering. For example, we presumed that a coordi-
nate frame centered at the IMP would be consistently more
relevant for this class of inference than one centered at the
origin of the 2D simulation environment. Further, the small
section carved into the agent-centric space directly in front
of the agent was included as a possible location of food or
another IMP (Fig. 4) due to a priori intuitions that subjects
would find this section to be particularly salient perceptu-
ally, and knowledge that an agent ‘‘carrying’’ food would
typically be positioned with this food at a consistent dis-
tance from the tip of its ‘‘nose.’’ After implementing these
decisions, we could have carved the remaining agent-cen-
tric space into sections of any arbitrary number, size,
shape, and location. The coarsest possible discretization
of the continuous environment (and the objects it con-
tains) would have been achieved by allowing it to take
on only one of two values—for instance, ‘‘something near
the IMP’’ or ‘‘nothing near the IMP’’. We added some min-
imal expressive power to the representation of the envi-
ronment by allowing a distinction of whether that
‘‘something’’ is an IMP or food, and dividing the agent-cen-
tric space, very simply, into far and near sections (with a
circle) and sections to the left, right, front, and back of
the IMP (with two lines intersecting at the centroid of
the IMP).
2.2. Learning phase

In order to empirically determine this conditional prob-
ability of an action at time t; PðAt jGt ; StÞ, we sample the
generative model by running a large number of simulated
IMPs environments. When an IMP is in a particular goal
state, in the context of a particular environmental configu-
ration, the selected action is tabulated. Eventually, this
learning process yields a table that approximates the IMP’s
‘‘policy’’ (conditional probability of an action) given any
goal state/environment combination.

The conditional probabilities of an IMP transitioning
among the four goal states, PðGtþ1jGt ; StÞ, also must be
learned through this sampling process. The stochasticity
in the actual generative model governing agent behavior
reflects the programmed probabilities of an IMP transition-
ing among the various goal states. But the DBN is non-
deterministic because the person observing the behavior
(the subject) has uncertainty about the beliefs of the
agent—i.e. what the agent perceives or remembers about
its environment at any given time point.

2.3. Inference phase

Once the parameters of the DBN have been learned,
inference of the IMPs’ goal states, given their observed ac-
tions, can be performed. We model the observer’s infer-
ence by computing the marginal posterior probability of
a goal at time t, given the state and action sequence up
to that point:

PðGt jS1:t ;A1:tÞ / PðAt jGt ; StÞ
X

Gt�1

PðGtjGt�1; St�1Þ: ð3Þ

At t ¼ 1, each goal state is believed to be equally likely. At
each subsequent time step, this computation yields a prob-
ability distribution across the four possible goal states
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which integrates the probability of changing goals with the
likelihood that each goal produced the observed actions.

2.4. Free parameters of the Bayesian model

Only three free parameters are fit with respect to exper-
imental subjects’ responses: two for discretizing the repre-
sentation of the agent-centric environment, and one
response ‘‘lag’’ parameter (rather than using the model
output for the point in time aligning precisely with the
subject’s response, a trailing average of the model’s out-
puts is taken which goes back an amount of time deter-
mined by this parameter). For comparison, a very simple
statistical model, only learning the base rates of subjects’
responses across the four response types (attack, explore,
flee, and gather) and attempting to predict subjects’ re-
sponses on this basis, would fit the very same number of
free parameters.

2.5. Alternative models

Our Bayesian model explicitly represents the IMP states
and the possible transitions among them. Because this
model parses the dynamic scene, integrating perceptual
cues associated with respective states at a given time with
prior estimates of the relative plausibility of transitions
among states, it is able to integrate information across time
in a more powerful manner than would be enabled by a
simpler feature- or cue-based account (such as multino-
mial logistic regression).

To provide a quantitative comparison between our
dynamic, model-based account and a cue-based alterna-
tive, we construct a large family of logistic regression mod-
els and compare their performance to that of our Bayesian
model, in both experiments. We expect both modeling
approaches to fit subjects’ classification judgments reason-
ably well, but if the Bayesian model is superior it should be
able to fit these data with greater model parsimony (fewer
free parameters) and, relatedly, should generalize better
across settings.
3. Experiment 1

The first experiment tested subjects ability to success-
fully categorize the IMPs’ behaviors and detect transitions
among the IMPs’ goal states. The four possible underlying
states were explained transparently to the subjects during
an initial training phase.

3.1. Methods

3.1.1. Subjects
Twelve undergraduate students in introductory psy-

chology classes at Rutgers University participated in the
experiment, and received course credit for their participa-
tion. Two additional subjects’ data were excluded due to
failure to follow experimental instructions (the subject
did not respond during entire experimental trials, or
pressed inappropriate keys). Each experimental session
lasted approximately 30 min.
3.1.2. Stimuli
Each subject viewed the same set of 20 scenes, gener-

ated in advance. Each pre-recorded scene was 60 s in dura-
tion, and was presented within a 400 � 400 pixel window,
horizontally subtending approximately 13.5� of visual an-
gle. Each scene was populated with 4 identically parame-
terized IMPs at randomized starting positions, 15 gray
food objects (divided evenly into 3 clusters, with each clus-
ter initially placed at a random starting position), and two
square red obstacles (placed at the same locations in each
scene). A fuller description of the virtual environment and
the programming of the IMPs can be found in A, and exam-
ple scenes can be viewed at http://www.indiana.edu/
~brainlab/pantelis.
3.1.3. Procedure
Five initial training scenes were shown. Subjects were

instructed to simply observe the action and try to deter-
mine what was happening within the scenes. During train-
ing, each IMP’s true goal state was reflected in its color (see
Fig. 5). After subjects watched these 5 scenes, they were
asked what they thought the IMPs were doing, and what
the colors might mean. It was then explained to them that
the colors actually corresponded to the underlying mental
or behavioral state of the IMP, and that an IMP could be in
one of four of these states at a given time: ‘‘attacking’’ an-
other agent, ‘‘exploring’’ its environment, ‘‘fleeing’’ from
another agent, or attempting to ‘‘gather’’ food.

Each subject then viewed 15 additional scenes, the first
of which was treated as practice and excluded from analy-
sis. In these scenes, IMPs did not change color; that is, the
subjects’ task was to infer the underlying state of an IMP
solely from its behavior and context. The target IMP was
colored black, and the other 3 were colored blue. Subjects
were instructed to pay attention to the black agent in each
scene, and indicate on the keyboard which state they
thought this target agent was in at any given time. Four
keys represented the 4 respective possible states; subjects
were instructed to press a key as soon after a scene began
as possible, and thereafter to press a key only when they
thought the target IMP had transitioned into a new state.
Subjects each viewed the same 20 total scenes, and in
the same order.
3.2. Behavioral results

Fig. 6 illustrates how subjects responded at they ob-
served the 14 test scenes. The ‘‘ground truth,’’ programmed
goal state of the target IMP is shown in the top horizontal
bar for each scene. The proportion of subjects’ responses
across the four response types is shown in the middle row.

We first examined subjects’ performance by measuring
the proportion of time that their classifications matched
the ground truth state of the target IMP (validity; see
Table 1). Mean accuracy was 48%, approximately twice
chance performance.

Another critical aspect of subject performance is inter-
subject agreement (reliability). Excluding portions of trials
for which the most common response was ‘‘none yet
given’’ (a response category represented by black in

http://www.ruccs.rutgers.edu/jacob/demos/imps/
http://www.ruccs.rutgers.edu/jacob/demos/imps/


Fig. 5. A frame from a sample scene viewed by subjects. The red IMP is in an ‘‘attack’’ state, the purple IMP is ‘‘exploring,’’ the yellow IMP is ‘‘fleeing,’’ and
the green IMP is ‘‘gathering.’’ Note that colors were only shown during training scenes. During the remainder of the experiment, the target IMP was colored
black, and the other IMPs were colored blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

P.C. Pantelis et al. / Cognition 130 (2014) 360–379 367
Fig. 6), an average of 8.7 out of 12 subjects (73%) agreed
upon the mode response at any given time.

A comparison of estimated goal states to actual ones
shows a number of interesting patterns, as illustrated by
the inter-state confusion matrix (Table 2). The analysis re-
veals one dominant source of subject ‘‘errors.’’ Subjects
generally did not initiate responding immediately at the
start of each trial; 13% of overall trial time was prior to
the initial response. As IMPs were most likely to be in
the explore state at the beginnings of trials, these errors
of omission account for a large proportion of subjects’ mis-
classifications for this action type. Otherwise, subjects’
detection of the explore state was 79%. Accuracy was lower
for the other states. For example, when an IMP was in the
flee state, subjects were actually most likely to respond at-
tack or explore, and the hit rate for flee was only 10%.

Subjects’ response rates across the four types were
well-calibrated to the actual time the IMPs spent in each
state: Subjects’ responded explore most frequently, fol-
lowed by gather, attack, and flee. Overall, subjects tended
to slightly overestimate explore at the expense of gather,
which was slightly underestimated.

3.3. Bayesian model performance

3.3.1. KL divergence
The Bayesian model outputs a posterior distribution

across the four possible response types. We consider a
model to be a good fit if this distribution matches well with
the distribution of the (12) subjects’ responses across these
four types. For this reason, we use Kullback–Leibler (KL)
divergence as our model performance metric.
KL divergence is a non-symmetric measure relating two
probability distributions. If M is the model’s output distri-
bution, and S is the subjects’ response distribution, then
the KL divergence is the number of extra bits required to
encode S using M instead of S. Thus, a lower KL divergence
represents a better fit, with a minimum possible KL of 0
indicating that the two distributions are exact matches,
and a maximum possible KL being arbitrarily large,
depending on the smoothing parameter (�) inserted into
the model distribution in lieu of zero values.

As a baseline, a ‘‘null’’ model—believing the agent to al-
ways be equally likely to be in any of the four goal states
(attack, explore, flee, gather)—would fit subjects’ responses
(on average) at KL = .863. A slightly less naïve model,
which knows the distribution of subject responses (see
Table 2) and believes the probability of agent being in
the four respective goal states to always be in proportion
to these empirically determined response rates, fits sub-
jects’ responses at KL = .630.

3.3.2. Fitting and evaluating the model
As illustrated in Fig. 6, the posterior distribution (out-

put) of our Bayesian model across the four response types
matches quite well with the distribution of subjects’ re-
sponses. We fit the model’s three free parameters using
KL divergence as our performance metric. Because assess-
ment of one particular configuration of parameters (while
recruiting, in this case, � 1200 simulated scenes) is com-
putationally inefficient, and a precisely optimal setting of
these parameters—fitting the data marginally better—is
unnecessary for demonstrating the efficacy of the model
with respect to general claims we make about it, we
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Fig. 6. Experiment 1. This figure shows, over time, the underlying ‘‘ground truth’’ state of the agent (top row for each scene), the distribution of subject
responses (middle row), and the output distribution of the Bayesian model (bottom row). Red represents the ‘‘attack’’ state, blue = ‘‘explore,’’ yellow = ‘‘flee,’’
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(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Accuracy of subjects and model, with respect to ground truth goal state.

Scene All

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Subjects .32 .63 .45 .46 .17 .14 .32 .68 .68 .36 .44 .55 .73 .76 .48
Model .34 .56 .51 .47 .25 .31 .27 .56 .67 .45 .50 .47 .57 .67 .47

Table 2
Confusion matrix for subjects’ responses in Exp. 1 (averaged across
subjects). Mean proportion of IMP time spent in each state is in parenthe-
ses, and mean proportion of time subjects spent in each response category
is at the bottom of each column.

Actual state Subject response

None Attack Explore Flee Gather

Attack (.16) .05 .42 .38 .11 .04
Explore (.39) .25 .04 .60 .03 .08
Flee (.08) .07 .28 .38 .10 .17
Gather (.37) .07 .07 .32 .08 .46

.13 .13 .44 .07 .22
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coarsely discretize the parameter space. Radius was
allowed to take on values of 50, 70, 100, 130, 160, or 190
pixels. Angle was allowed to take on values of
p=6;p=3;p=2;2p=3, or 5p=6 radians.3

We found that the model fit best when discretizing the
space with a 100 pixel radius and an angle of 5p=6 radians.
The model also fit subjects’ responses best if, rather than
using the model output at the particular point in time
aligning with the subject’s response, a trailing average of
the model’s outputs—going back up to 12 s—was used.
Using a trailing average (rather than taking the model’s
prediction at a given quarter second timeslice4) helps to
accommodate inertia and reaction time lag in subjects’
responses, and tends to naturally smooth out artificial dis-
continuities resulting from the harsh discretization of the
agent-centric space. Using this model, with its best fitting
free parameters (100 pixels, 5p=6 radians, 12 s), resulted
in an average KL divergence (with respect to subjects’ distri-
bution of responses) of .334.5

We additionally fit a multinomial logistic regression
model, predicting subjects’ responses from several under-
lying variables at any given time. This is a discriminative,
statistical approach that lacks the temporal component of
our dynamical Bayesian model, and is reminiscent of the
3 p would be the maximum setting for this parameter, and would divide
the agent-centric space into two semicircular sections of equal size instead
of four sections.

4 The model was assessed at each quarter second because each second of
animation contained at least four frames before linear interpolation (see A),
and the analysis was performed on this raw frames.

5 Because parameter fitting selected an extreme value of 5p=6 radians,
we tested several values further in this direction, between 5p=6 and p.
Increasing this angle parameter slightly beyond this setting resulted in very
marginal improvement of fit (KL = .333). Increasing this parameter still
further made the fit marginally worse, with KL = .335 at the maximum
parameter setting of p. We therefore conclude that 5p=6 is an approxi-
mately optimal parameter setting.
various cue-based categorization approaches tested in
Blythe et al. (1999).6

The following variables enter into the regression model
as continuous input variables: relative angle of nearest
other agent, distance to nearest other agent, relative angle
of nearest food, distance to nearest food, agent turning
velocity, and agent speed. This is the same information
with which we endow the our Bayesian model, although
in finer resolution—for input to our model, all of these vari-
ables are highly discretized. For example, whereas the
Bayesian model only knows whether the target IMP is
turning left, right, or moving straight ahead, the regression
model has access to its precise turning velocity.

In order to prevent overfitting this model to the data
set, we applied a cross-validation procedure. Because there
were 6 potential input variables to be included in the
regression, there were 63 possible combinations of vari-
ables, and therefore 63 candidate regression models to
test. For the cross-validation procedure, for each candidate
model, the data set was first split randomly into a training
set and a testing set (we used 25%/75%, 50%/50%, and 75%/
25% splits). The candidate model was then fit to the train-
ing set and assessed with the testing set, using percent of
subject responses correctly predicted as the performance
measure. This procedure was repeated 10 times for each
model, and the results were averaged to provide an assess-
ment of the generalizability of the candidate model.

Individual models performed similarly across the three
training/testing split conditions. Several regression models
performed about equally well; we selected the model that
generalized to test sets best, on average, across all three.
This model employed four input variables: relative angle
of nearest other agent, distance to nearest other agent, dis-
tance to nearest food, and agent turning velocity.

This regression model is thus not a straw man, but a fair
and robust treatment of this approach. However, the
regression model includes 15 free parameters, compared
to the 3 free parameters employed by our model. To com-
pensate for this difference in model parsimony, we calcu-
lated the Akaike information criterion (AIC) for both
models. We then computed the difference in adjusted log
likelihood (see Burnham & Anderson, 2002), which ex-
presses the relative fit of the Bayesian and logistic models
after adjusting for the number of fitted parameters. Fig. 9
shows this difference over time for each of the 14 scenes
(adjusted log likelihood values over zero favor the Bayesian
6 The nature of the modeled categorization task, in this case, also differs
from that of Blythe et al. (1999) in that subjects categorized entire agent
trajectories in that study, whereas in our study subjects infer the internal
state of an agent which may change several times over the course of a
scene.



Table 5
Perceptual variables as predictors of subjects’ responses, when entered into
a logistic regression. Average KL divergence is shown, with respect to the
distribution of subjects’ responses (lower is better).

Variable KL divergence

Distance to nearest food .436
Distance to nearest agent .479
Speed of agent .598
Relative angle of nearest agent .622
Relative angle of nearest food .628
Turning velocity of agent .628
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model). As can be seen in the figure, the Bayesian model is
nearly always preferred.

A benefit of the regression approach was that we could
assess the diagnostic value of these input variables when
taken in isolation (Barrett et al., 2005). Table 5 shows
how well the various parameters predicted subjects’ re-
sponses; this is a class of simple models, each employing
6 free parameters fit to subjects’ data. Using KL divergence
again as the performance metric, a regression model that
only knows the distance to the nearest food to the agent
fits subjects’ responses best. However, such a model’s
effectiveness lies only on its ability to discriminate be-
tween the two most frequent response types: explore and
gather, and this model will never select attack or flee as
the most likely IMP state. Similarly, a model that instead
only uses the distance to the nearest other agent performs
well by distinguishing between explore and attack, but will
never select flee or gather. The regression approach needs
to integrate information across several input variables,
employing a great number more free parameters, to better
capture features shared by the patterns of subjects’ re-
sponses and our Bayesian model.

The Bayesian model, despite being fit primarily to the
IMP’s programmed states (via simulated data), actually fits
subjects’ mode responses much better than it fits this
ground truth (Tables 1 and 4). Consistent with this result,
the model indeed makes similar errors to subjects, with re-
spect to ground truth (Tables 2 and 3, Fig. 7) and finds indi-
vidual scenes to be similarly difficult (or easy) to classify
accurately (Fig. 8). That is, when the Bayesian model did
not predict ground truth accurately, it tended to make er-
rors that were similar to those made by human subjects.
3.3.3. Estimating the parameters of the DBN through sampling
The policy and transition probabilities of the IMPs are

approximated through sampling of the actual generative
model—i.e. by running the simulation a large number of
times. The larger the sample, the closer the model will
Table 3
Confusion matrix for model’s responses in Exp. 1. Mean proportion of IMP
time spent in each state is in parentheses, and mean proportion of time
model spent in each response category is at the bottom of each column.

Actual state Model belief

Attack Explore Flee Gather

Attack (.16) .36 .38 .14 .12
Explore (.39) .13 .55 .13 .19
Flee (.08) .29 .36 .11 .24
Gather (.37) .12 .28 .09 .51

.18 .41 .11 .30

Table 4
Model performance with respect to mode subject responses in Exp. 1. This table
maximum likelihood response of the model. Because subjects’ mode response w
respond for the first 13.4% of trials), chance performance for a model is 21.7% and

Scene

1 2 3 4 5 6 7 8

.68 .58 .73 .80 62 .44 .62 .83
actually approximate the policy of the IMPs. This accumu-
lation of data can be considered the learning mechanism of
the model.

For the analysis summarized in Fig. 10, we first collect-
ing a large set (� 2500) of simulations from which to
sample. Then, we took 10 random samples from this larger
set, of size 25, 100, 250, or 1000 (for the 2500 scene sample
size, we used our entire set). Using KL divergence, we
evaluated Bayesian models using IMP policies and goal
state transition probabilities approximated from these
samples of varying sizes. As shown in Fig. 10, the model’s
performance improves with greater sample size, with
diminishing returns once one draws from samples of
1000 simulations or more.

3.4. Discussion

In Experiment 1, subjects were asked to continually cat-
egorize the behavior of a target IMP as reflecting one of
four possible underlying goal states. Because these goal
states existed in the program of the IMPs, there was a
‘‘ground truth’’ basis for assessing subjects’ accuracy, and
subjects’ responses indeed showed moderate agreement
with this ground truth. More impressive was the very high
level of agreement among subjects, which suggested that
subjects approached this categorization task in a similar
fashion.

By what method might subjects perform this task? We
assessed a dynamic Bayesian model as a candidate solution
to the problem of goal inference our subjects faced. The
Bayesian model must first learn from a large amount of
(simulated) training data, and then can approximate
subject performance very well. And the more closely the
model approximates the actual generative model of the
IMP, the better the model fits subjects’ responses. This
result is consistent with our claim that subjects success-
fully invert an accurate model of IMP behavior to perform
inference about their goal states.
shows the proportion of time that the mode subject response matched the
as ‘‘no response’’, on average, for the first 8 s of each scene (they failed to

maximum overall performance is 86.6%.

Overall

9 10 11 12 13 14

.89 .66 .57 .84 .93 .92 .72
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4. Experiment 2

In Experiment 2, we manipulated the transition matri-
ces of the IMPs such that their probability of transitioning
to the attack or flee states would be greater (see Tables 6
and 8). In doing so, we intended to create IMPs whose
behavioral dispositions would be different from those
utilized in Experiment 1, thus allowing us test the general-
izability of our computational model to a new set of sub-
jects viewing a new set of IMPs. Additionally, we
randomized the order of scene presentation so that we
could make valid comparisons between the patterns of
subject performance earlier versus later in the experiment.
The ability of the experimenter to systematically
manipulate a stimulus agent’s behavioral program, as we
do in this experiment, is a main advantage of our advo-
cated approach of creating psychophysics experiments
using simulated autonomous agents. In this case, the agent
manipulation is somewhat subtle: we adjust the parame-
ters of the IMPs’ decision making module. But one could
manipulate any of the other modules (vision, memory,
and path planning) in any number of ways, or remove
them entirely, or add additional modules, or swap them
with qualitatively different—and perhaps more intelligent
and realistic—modules. Which manipulations one wishes
to make will, of course, depend on the scientific question
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Fig. 9. Experiment 1. Both our Bayesian model and the multinomial logistic regression output a normalized posterior distribution across the four possible
goal states. At every quarter-second time slice, we calculate this distribution for either model and plot the AIC adjusted log relative likelihood of the
subjects’ data. Positive values favor the Bayesian model.
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Fig. 10. Model performance as a function of how many simulations are run to approximate the IMP policy and transition matrix. As there are four IMPs
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Table 6
Confusion matrix for subjects’ responses in Exp. 2 (averaged across
subjects). Mean proportion of IMP time spent in each state is in parenthe-
ses, and mean proportion of time subjects spent in each response category
is at the bottom of each column.

Actual state Subject response

None Attack Explore Flee Gather

Attack (.18) .01 .39 .41 .12 .07
Explore (.45) .13 .08 .59 .06 .14
Flee (.13) .02 .19 .43 .25 .10
Gather (.25) .08 .06 .38 .03 .46

.08 .14 .49 .09 .20
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at hand, and may be as subtle, drastic, or nuanced as the
space of possible IMPs will allow.

4.1. Methods

4.1.1. Subjects
Eleven undergraduate students in introductory psy-

chology classes at Rutgers University participated in the
experiment, and received course credit for their participa-
tion. One additional subject’s data were excluded due to
failure to follow experimental instructions. Each experi-
mental session lasted approximately 30 min.

4.1.2. Stimuli and procedure
The stimuli and procedure were identical to that of

Experiment 1, with the following exceptions:

(1) The scenes were generated using IMPs with modi-
fied goal state transition matrices.

(2) The five training scenes were presented to each sub-
ject in random order. The first test scene, which was
also regarded as practice and thrown out for each
subject, was the same for each subject. The following
14 test scenes, included in analysis, were presented
to each subject in random order.
4.2. Behavioral results

Subjects’ overall accuracy with respect to ground truth
was 48%, which matched performance in Exp. 1. Excluding
portions of trials for which the most common response
was ‘‘none yet given’’ (represented by black in Fig. 11),
an average of 7.9 out of 11 subjects (72%) agreed upon
the mode response at any given time—an intersubject reli-
ability also very similar to that of Exp. 1.
4.3. Model performance

Reusing the free parameters originally fit to Exp. 1’s
data (100 pixel radius, 5p=6 radian angle, 12 s trailing
average) but approximating the policy and transition prob-
abilities of the IMPs with a new set of � 1000 simulated
scenes, the average KL divergence of the Bayesian model’s
output distribution and the subjects’ response distribution
was .382. Fig. 11 illustrates the ‘‘ground truth’’ mental state
of the IMP, the distribution of subjects’ responses, and the
model’s output (using this parameterization) for each of
the 14 scenes.

As in Exp. 1, this discretization of the agent-centric
space results in our best fit for Exp. 2. Fig. 13 illustrates
how the model’s performance changes as the length of
the trailing average (lag) parameter increases. Holding
the other two parameters constant (at 100 pixels and
5p=6 radians), model performance asymptotes at around
14 s. As in Exp. 1, setting this parameter to 12 s is at or near
optimal.

The best cross-validated multinomial logistic regres-
sion, using its 15 free parameters originally fit to Exp. 1,
did not generalize as well to the new subjects’ data
(KL = .424). Fig. 12 shows that the adjusted log likelihood
(compensating for the number of parameters in both
models via AIC) strongly favors the Bayesian model over
the logistic one, as in Exp. 1.



Fig. 11. Experiment 2. This figure shows, over time, the underlying ‘‘ground truth’’ state of the agent (top row for each scene), the distribution of subject
responses (middle row), and the output distribution of the Bayesian model (bottom row). Red represents the ‘‘attack’’ state, blue = ‘‘explore,’’ yellow = ‘‘flee,’’
and green = ‘‘gather.’’ For the subjects’ responses, black indicates the proportion of subjects who had not yet responded on the keyboard during a given trial.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Experiment 2. Both our Bayesian model and the multinomial logistic regression output a normalized posterior distribution across the four possible
goal states. At every quarter-second time slice, we calculate this distribution for either model and plot the AIC adjusted log relative likelihood of the
subjects’ data. Positive values favor the Bayesian model.

0 5 10 15 20 25 30
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Trailing Average Lag (s)

K
L 

D
iv

er
ge

nc
e

Fig. 13. Model performance as a function of how far back the trailing average (lag) parameter reaches.
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To provide some additional context for the performance
of these two models, a null model performed better than it
did in the previous experiment (KL = .783), as did a model
that only learns and applies the base rates of subject re-
sponses in Exp. 2 (KL = .569, see Table 6 for these base
rates).

4.3.1. Model fit, early versus late in the experiment
One might hypothesize that as subjects become more

attuned to the nature of the agents over the course of the
experimental session, their performance will come to more
closely conform to our model, because this model relies on
accurately approximating the underlying generative model
governing agent behavior. However, the model did not fit
subjects’ responses better for later trials versus earlier tri-
als. We performed a repeated measures ANOVA with trial
number (1–14) as the independent variable and model
accuracy with respect to subject response over the course
of the trial (i.e. scene) as the dependent variable. There
was no main effect of trial number on conformity to our
model (F½13;130� ¼ 1:16; p ¼ 0:32). This is perhaps not
surprising; because the subject received no feedback over
the course of these 14 trials as to whether or not his or
her responses were correct (with respect to ground truth
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or to our model), there is no basis for learning. Whatever
subjects learned about the nature of the IMPs apparently
was confined to the initial training period.
4.4. Discussion

The pattern of behavioral results we observed in Exp. 1
largely replicated with a new group of subjects viewing
IMPs whose program was slightly altered. Both subject
accuracy (with respect to ground truth) and reliability
(with respect to one another) were consistent with figures
obtained in Exp. 1. But, more critically, we demonstrated
that our modeling approach—and indeed the specific free
parameters fit to the previous data—generalized robustly
to this new set of data. Lastly, the data from Exp. 2 revealed
that subjects’ learning over the course of the experiment
did not influence our computational model’s proficiency
as a model for the inference process used by subjects.
5. General discussion and conclusion

Our data show that subjects are proficient at estimating
the IMPs’ ground truth goal states, both in terms of reliabil-
ity (intersubjective agreement) and in terms of validity
(accuracy in estimating the true IMP state). Although this
internal goal state is only implicit in the IMPs’ behavior,
subjects can divine it; they can ‘‘tell what the agents are
thinking,’’ and tend to concur with one another.

Naturally, subjects’ performance does not align per-
fectly with the underlying programming of the IMPs. We
found that under-segmentation of the state trajectory
was far more common than over-segmentation (cf. Zacks
& Tversky, 2001). That is, subjects often missed brief excur-
sions into other states, but rarely indicated a transition be-
tween states when one had not occurred. This finding
reinforces the idea that detecting a change in intentional
state is a concrete computational process that requires suf-
ficient data or evidence in order to yield useful, robust
results. That subjects’ responses tend to have inertia—their
data indicate a tendency to consider not just the IMP’s
momentary behavior, but observations made during
preceding timepoints—is a feature captured by our dy-
namic Bayesian model’s representation of an a priori distri-
bution over goal states—PðGt jGt�1; St�1Þ—which is partially
conditional on the cumulative estimate of the IMP’s state
through the previous time step. This cumulative esti-
mate—Gt�1—is itself a distribution over the four possible
states which implicitly reflects observations and inferences
made over all preceding timepoints.

Subjects’ intuitions were fairly consistent across exper-
iments. The optimal discretization of the environment sur-
rounding the IMP (with respect to our model’s fit) was the
same for each independent sample of subjects. And the
expectations and intuitions influencing how a subject
would respond in the experiment remained stable across
test trials; any learning that occurred did so during the ini-
tial practice trials. In other words, the internal model sub-
jects held for our IMPs and their behavior did not appear to
change much over the course of the experimental session.
Perhaps this should not be surprising, given that subjects
did not receive feedback validating or invalidating their re-
sponses. Nonetheless, this argues against the role of exten-
sive learning in our subjects.

The development of a useful and robust model of an-
other agent’s behavior is indeed central to our treatment
of the problem of mental state estimation. However, one
important question remains unanswered: How does one
access a good generative model of agent behavior? In the
case of our computational treatment, an approximate
model of the IMPs is ‘‘learned’’ and tabulated via observa-
tions made during simulations. But building a model of the
observed agent need not require any learning at all: In
some cases, one can derive a model of the agent from a
simplifying assumption (e.g., the agent is rational) and
the prescribed behavior given this assumption (e.g., the
agent will behave rationally with respect to its goals, be-
liefs, preferences, and possible actions), as in previous
Bayesian treatments of action understanding (Baker et al.,
2009; Ullman et al., 2009). Dennett (1987) suggests that
agents who have been subjected to natural selection—such
as humans—have evolved to behave approximately ratio-
nally most of the time, and this is what allows an observer
of these evolved agents to use an abstract, normative stan-
dard of rationality to model them.

Yet, querying one’s own decision making apparatus
does seem to be an attractive approach compared to con-
sidering another’s complex mental machinery in the ab-
stract. This argument perhaps favors the simulationist
account, which posits that determination of other’s inten-
tions is based on tacit simulation of one’s own behavior
(e.g. Heal, 1996; Goldman, 2006, contra theory theory or
model theory, which argues instead that reasoning about
another agent’s mind relies on a rich representation of
goals, beliefs, or intentions and how they relate to behav-
ior, e.g. Stich & Nichols, 2003). However, the system must
also be quite flexible. Even if one uses intuitions about
one’s own decision making process as a starting point,
one must be able to tweak this model in light of circum-
stantial knowledge about the agent’s situation and the nat-
ure of the agent itself. And the more one is allowed to
tweak the self-simulation—the more a question of ‘‘What
would I do in this situation?’’ becomes ‘‘What would I do
in this situation. . .if I were not me?’’—the blurrier distinc-
tions between simulation theory and theory theory
become.

The debate between theory theory and simulation the-
ory has been hampered, we would argue, by a dearth of
concrete computational models of intention estimation in
the literature, which has left somewhat unclear exactly
what each position entails or predicts. We hope that the
concrete framing of the intention estimation problem pro-
vided by the IMPs virtual environment paradigm, along
with the computational model for intention estimation
that we have proposed, will help focus future debate over
underlying principles.

Our methods pave the way towards a true ‘‘psycho-
physics of intention,’’ in which the subjects’ perception of
psychological characteristics of motion in the environment
can be studied in the same way that perception of physical
properties has been studied for decades. They also enable
new experimental directions in the study of intentionality,
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only a few of which have been exploited in this study. For
example, if agent behavior can be generated by an under-
lying program in real time, this allows for immersive
experimental paradigms (as in Gao et al., 2010; Pantelis
& Feldman, 2012) in which subjects’ interaction with
agents within the virtual environment—in addition to their
explicit judgments—may shed light on underlying cogni-
tive mechanisms. But perhaps most importantly, we argue
that using autonomous agents like IMPs as experimental
stimuli, and tasking subjects with inferring aspects of their
generative program, brings the psychophysics of theory of
mind into closer analogy with the modeled process. The
inference of mental states is indeed an instance of a more
general class of problems faced by the human brain, in
which the goal is to estimate the parameters of underlying
generative processes of the world.

In future work, we hope to expand the range of behav-
iors and degree of intelligence exhibited by the IMPs,
which, after all, are still extremely limited compared to hu-
man agents. Eventually, our hope is to use an improved
version of our environment to study comprehension of
more cognitively complex phenomena—that is, to move
beyond the ‘‘Four F’s’’ and closer to the range of behavior
exhibited by real human agents.
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Appendix A. IMP programming

The experiment was programmed in MATLAB using the
Psychtoolbox libraries (Brainard, 1997; Pelli, 1997; Kleiner,
Brainard, & Pelli, 2007). Scenes were rendered offline at a
rate of approximately 0.33 frames per second. By recording
these frames offline, and saving the timing and essential
visual information (location and orientation of all objects)
for each frame, we could display scenes to subjects at a la-
ter time as animations, bypassing the intensive computa-
tions necessary for generating the displays in real time.

To achieve a suitable smoothness and speed during re-
play to subjects, we linearly interpolated the locations and
orientations of objects in the scene between frames, and
each scene was sped up 15�. Thus, an originally rendered
simulation consisting of� 300 frames over 900 s was trans-
formed into a displayed scene of� 1500 frames over 60 s (a
change from approximately 0.33–25 frames per second).
During the experiments, subjects’ keyboard responses were
recorded after the presentation of each frame: �25 Hz.

A.1. Environment

Obstacles in the environment are stationary and cannot
be moved or traversed by the IMPs. Thus, IMPs must go
around them to gain access a blocked location. In addition,
like a tall wall, obstacles in an IMP’s line of sight occlude its
view of other IMPs or food. Because the obstacles cannot
move, they create a stable environment that the IMPs can
use for path planning.

Food objects and other IMPs are distinct in shape and
color, allowing IMPs to identify them against the back-
ground. Food is located in clusters, which allows agents
to reasonably expect more food to be available at the same
location upon later return. When food is ‘‘consumed’’ by
the agent—which can only be done when the IMP delivers
food to its personal predetermined ‘‘cache’’ location—it
shrinks and disappears, over the course of 1 s. Food re-
mains perceptible to other IMPs once an IMP has grabbed
it, and may indeed be stolen from its grasp.

A.2. Perception

The IMP agents are endowed with two perceptual mod-
ules: touch and vision.

The IMPs’ ‘‘touch’’ module is programmed as a simple
contact identifier. When an IMP comes into contact with
an object, it is made known to its program whether this
contacted object is food or another agent.

Modeled as a 1-dimensional retina, an IMP’s ‘‘vision’’
module allows it to identify color in its field of vision as
it navigates the 2-dimensional environment (see Fig. 1b).
The algorithm for simulating vision casts a series of rays
radially at equal angular intervals from the center of the
IMP’s heading (i.e. the IMP’s ‘‘eye’’). Because of the intrinsic
geometry of this ray casting, visual resolution is reduced
for more distant stimuli.

Three parameters constrain IMP vision: the number of
rays cast by the IMP, the distance to which these rays are
cast, and the angular field of vision. These parameters were
fixed for all IMPs in Experiments 1 and 2: an IMP casts 20
rays, each extending 100 pixels, at equal angular intervals
across a 135� field of vision.

Because no depth information is directly available to
the vision module, the IMPs need to observe an object from
multiple angles to estimate its location with precision. This
situation is also known as the inverse projection problem,
and useful estimates are made possible in this case by the
assumption that food objects are of constant color and size.
When rays ½rm . . . rn� cast by the IMP detect color corre-
sponding to food, the IMP ascertains that food is located
somewhere within the triangular region bounded by the
edges of rays rm and rn and it uses the centroid of this tri-
angular region as an initial estimate of the food object’s
location. By successively viewing the food object, the IMP
builds up a running average of these centroid-based esti-
mates, increasing the accuracy of its estimated location.
The IMP arrives at these successive views without any
planning, however, and if other agents or obstacles occlude
part of the food-colored region, this can limit the accuracy
and precision of the IMP’s visual estimates.

A.3. Memory

Using its vision module, an IMP is able to develop a
‘‘mental map’’ of the environment. The mental map allows

http://www.perceptualscience.rutgers.edu/
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Table 7
Transition probability matrices for the IMPs used in Experiment 1.

Transition to:

Attack Explore Flee Gather

No nearby objects (default)
Attack .94 .02 .02 .02

Transition from: Explore .05 .80 .05 .10
Flee .02 .02 .94 .02
Gather .04 .04 .04 .88

Food nearby
Attack .90 .04 .02 .04

Transition from: Explore .02 .84 .02 .12
Flee .02 .02 .84 .12
Gather .02 .02 .02 .94

Another IMP nearby
Attack .97 .01 .01 .01

Transition from: Explore .08 .83 .08 .01
Flee .10 .04 .85 .01
Gather .03 .03 .03 .91

Food and other IMP nearby
Attack .97 .01 .01 .01

Transition from: Explore .20 .40 .20 .20
Flee .06 .02 .90 .02
Gather .04 .04 .04 .88

Table 8
Transition probability matrices for the IMPs used in Experiment 2.

Transition to:

Attack Explore Flee Gather

No nearby objects (default)
Attack .94 .02 .02 .02

Transition from: Explore .05 .80 .05 .10
Flee .02 .02 .94 .02
Gather .05 .10 .05 .80

Food nearby
Attack .92 .03 .02 .03

Transition from: Explore .04 .80 .04 .12
Flee .01 .01 .92 .06
Gather .04 .04 .04 .88

Another IMP nearby
Attack .93 .02 .03 .02

Transition from: Explore .10 .79 .10 .01
Flee .03 .02 .93 .02
Gather .06 .03 .06 .85

Food and other IMP nearby
Attack .95 .01 .03 .01

Transition from: Explore .25 .30 .25 .20
Flee .03 .01 .95 .01
Gather .13 .04 .13 .70
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the agents to keep a record of its estimates of the locations
of obstacles, food, and other agents, and to plan paths that
either intersect or avoid these objects.

The initial map is a tabula rasa, with all regions’ con-
tents unknown, but it is quickly enriched by experience.
The mental map is dynamically updated based upon the
input from the vision module; areas where an object may
exist are filled in, and areas where nothing is observed
are recorded as empty (see Fig. 1d). This dynamic updating
is primarily used for food objects and other agents because
obstacles are represented as static elements in a binary
map. When an object (or nothing) is observed by the vision
module, the memory records with a high degree of confi-
dence that this object type is there, or that this area is
empty. This confidence about the contents (or lack thereof)
of a previously visited area then decreases over time until
this region of the map is again considered unknown.

A.4. Goals and actions

An IMP will be in one of four goal states at any given
time: attack, explore, flee, or gather. The IMP program
converts these goal states into actions by deciding upon a
particular target location in the environment, and then
instructing the IMP to move toward this location according
to its path planning algorithm (described below).

If the IMP is in the attack state, it finds the nearest loca-
tion in its mental map where another IMP may be located,
and sets this as its target location.

If the IMP is in the explore state, it finds the nearest loca-
tion in the mental map that is unknown—that is, as yet un-
seen by the IMP—and sets this as its target location.

If the IMP is in the flee state, it finds the nearest location
in its mental map where another IMP may be located, ori-
ents itself in the opposite direction, and moves in this
direction.

If the IMP is in the gather state, and is touching food, it
‘‘grabs’’ this food and then sets its target location to a
predetermined random ½x; y� location in the environment
designated as the IMP’s ‘‘cache.’’ If the IMP is not touching
food, it finds the nearest location in its mental map where
a food object may be located (regardless of the size of the
‘‘food’’ region in its mental map located there), and sets
this as its target location.

If the IMP is in the attack, flee, or gather state and has a
mental map that contains no information about the loca-
tions of food or other IMPs, it will default to the explore
state. Because the IMP’s mental map initializes as a tabula
rasa, the IMP always begins the simulation in the explore
state.

The IMP transitions stochastically among these four
states, conditional on whether there is food or another
IMP located nearby (according to its mental map). In
Experiments 1 and 2, food was considered ‘‘nearby’’ if it
was fewer than 250 pixels away, and another IMP was con-
sidered ‘‘nearby’’ if it was fewer than 100 pixels away.
Thus, there are 4 possible situations on which the IMP con-
ditionalizes its behavior—nothing nearby, food nearby, IMP
nearby, or food and IMP nearby. Each of these situations
corresponds to a 4� 4 transition table contained in its
program.
The conditional state transition tables for the IMPs used
in Experiments 1 and 2 are shown in Tables 7 and 8,
respectively.
A.5. Path planning

The action state of the IMP determines a particular tar-
get location toward which the IMP must move. The final
module of the IMP’s cognitive architecture allows it to find
the shortest path from its location to this target location,
given its present knowledge of the environment (repre-
sented by its mental map).



P.C. Pantelis et al. / Cognition 130 (2014) 360–379 379
The IMPs used an iterative implementation of the
Floyd–Warshall path finding algorithm to find solutions
for the all-pairs shortest path problem. If an area of the
IMP’s mental map is believed to unoccupied by an object
(food, agent, or obstacle)—excluding unknown regions of
the map—then the IMP assumes it may traverse this area
while planning its path. This algorithm always acts on
the current locations of objects in the mental map, and
does not take into account whether the extrapolated tra-
jectories of other IMPs in the environment may ultimately
block a path at some predictable time point.
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