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Abstract

Recent studies of emotion mindreading reveal that for three emotions, fear, disgust, and anger,

deficits in face-based recognition are paired with deficits in the production of the same emotion.

What type of mindreading process would explain this pattern of paired deficits? The simulation

approach and the theorizing approach are examined to determine their compatibility with the

existing evidence. We conclude that the simulation approach offers the best explanation of the data.

What computational steps might be used, however, in simulation-style emotion detection? Four

alternative models are explored: a generate-and-test model, a reverse simulation model, a variant of

the reverse simulation model that employs an “as if” loop, and an unmediated resonance model.
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1. Introduction

Mindreading is the capacity to identify the mental states of others, for example, their

beliefs, desires, intentions, goals, experiences, sensations and also emotion states. One

approach to mindreading holds that mental-state attributors deploy a naı̈ve psychological

theory to infer mental states in others from their behavior, the environment, and/or their

other mental states. According to different versions of this “theory-theory” (TT), the naı̈ve

psychological theory is either a component of an innate, dedicated module or is acquired
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by domain-general learning. A second approach holds that people typically execute

mindreading by a different sort of process, a simulation process. Roughly, according to

simulation theory (ST), an attributor arrives at a mental attribution by simulating,

replicating, or reproducing in his own mind the same state as the target’s, or by attempting

to do so. For example, the attributor would pretend to be in initial states thought to

correspond to those of the target, feed these states into parts of his own cognitive

equipment (e.g. a decision-making mechanism), which would operate on them to produce

an output state that is imputed to the target.

Mindreading has been studied in many disciplines, and both TT and ST have had

proponents in each of them. In developmental psychology TT has been endorsed by

Gopnik & Meltzoff (1997), Gopnik & Wellman (1992, 1994), Leslie (1994), Perner

(1991), Premack & Woodruff (1978), and Wellman (1990), whereas ST has been

defended by Harris (1991, 1992). In philosophy ST has been endorsed by Currie &

Ravenscroft (2002), Goldman (1989, 1992a, 1992b, 2000), Gordon (1986, 1992, 1996),

and Heal (1986, 1996, 1998), whereas TT has been defended as an explicit approach to the

execution of mindreading by Fodor (1992), Nichols, Stich, Leslie & Klein (1996), and

Stich & Nichols (1992), or as a theory of how the folk conceptualize mental states by

Armstrong (1968), Lewis (1972), Sellars (1956), and Shoemaker (1975). Studies of

mentalizing in neuroscience (e.g. Fletcher et al., 1995; Frith & Frith, 1999; McCabe,

Houser, Ryan, Smith, & Trouard, 2001) typically ignore the TT–ST controversy but work

with ‘theory of mind’ terminology, which is suggestive of TT, and cite the TT-leaning

literature. On the other hand, much recent neuroscientific work is quite receptive to

simulationist ideas (Blakemore & Decety, 2001; Carr, Iacoboni, Dubeau, Mazziotta, &

Lenzi, 2003; Chaminade, Meary, Orliaguet, & Decety, 2001; Gallese, 2001, 2003; Gallese

& Goldman, 1998; Iacoboni et al., 1999; Jeannerod, 2001), although the majority of this

research is addressed less to mindreading per se than to related topics such as simulation of

action, imitation, or empathy. In recent years a number of researchers have moved away

from pure forms of TT or ST in the direction of some sort of TT/ST hybrid (Adolphs, 2002;

Goldman, in preparation; Nichols & Stich, 2003; Perner, 1996), though the exact nature of

the hybrid is rather fluid. In light of this continuing controversy, any research that provides

substantial evidence for either ST or TT, even in a single subdomain of mindreading,

deserves close attention.

In this paper we review a body of neuropsychological research that, we shall argue,

supports ST for a certain circumscribed mindreading task. This is the task of attributing

emotion states to others based on their facial expressions. This task is different from those

usually studied in the mindreading literature, in part because the attributed mental states

differ from the usual ones. The vast majority of the literature is devoted to propositional

attitudes such as desires and beliefs, almost entirely ignoring emotion states like fear,

anger, disgust, or happiness. There is no good reason to exclude these mental states, which

are routinely attributed to others in daily life. So it is time to extend research and theory

into this subdomain of the mental. At the same time, it cannot be assumed that the style of

mindreading in this subdomain is the same as the style that characterizes other

subdomains. So we make no attempt to generalize from the type of mental state ascriptions

studied here to mindreading tout court.
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There are at least two reasons why the properties of face-based emotion recognition

(FaBER) might not be shared by methods of mindreading in other subdomains. First, the

recognition or classification of propositional attitude contents may introduce a level of

complexity that goes beyond the task of classifying emotion types. Second, the reading of

emotions, especially basic emotions, may have unique survival value, so it is conceivable

that specialized programs have evolved for the recognition of emotions, and these

specialized programs may not operate in other mindreading tasks. Because of these

differences between FaBER and other types of mindreading, it cannot be assumed that the

processes characteristic of FaBER can be extrapolated to other types of mindreading.

We begin by reviewing existing findings, some clinical and some experimental, that

display a striking pattern of paired deficits between emotion production and face-based

recognition (attribution). These findings have not previously been brought together with

the explicit intent of examining them in the context of the TT–ST controversy. Next we

argue that this pattern readily lends itself to a simulationist explanation, whereas existing

data do not fit with a theory-based explanation. Finally, the core project of the paper is to

formulate and evaluate four specific models of how normal mindreaders could use

simulation to arrive at emotion classifications.

2. Paired deficits in emotion production and face-based recognition

In early studies, Ralph Adolphs and colleagues investigated whether damage to the

amygdala affects face-based emotion recognition (Adolphs, 1995; Adolphs, Tranel,

Damasio, & Damasio, 1994). These studies were motivated by the well-known role of the

amygdala in mediating fear, including its prominent role in fear-conditioning and the

storage of fear-related emotion memories (LeDoux, 1993, 2000). One patient studied by

Adolphs et al. was SM, a 30-year-old woman with Urbach-Wiethe disease, which resulted

in bilateral destruction of her amygdalae with sparing of adjacent hippocampus and other

neocortical structures. Consistent with the important role of the amygdala in mediating

fear, SM was indeed abnormal in her experience of fear. Antonio Damasio notes that SM

“approaches people and situations with a predominantly, indeed excessively, positive

attitude”.

S[M] does not experience fear in the same way you or I would in a situation that

would normally induce it. At a purely intellectual level she knows what fear is

supposed to be, what should cause it, and even what one may do in situations of

fear, but little or none of that intellectual baggage, so to speak, is of any use to her

in the real world. The fearlessness of her nature, which is the result of the bilateral

damage to her amygdalae, has prevented her from learning, throughout her young

life, the significance of the unpleasant situations that all of us have lived through.

(Damasio, 1999, p. 66)

Other lines of evidence also suggest that SM is abnormal in her experience of fear. For

example, in one experiment, SM was presented with a conditioned stimulus repeatedly

paired with a startle-inducing unconditioned stimulus, a boat horn delivered at 100 dB.
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However, she failed to demonstrate a conditioned autonomic reaction to the conditioned

stimulus, indicating she had an abnormality in acquiring or expressing conditioned

emotion responses (Bechara et al., 1995).

Adolphs et al. (1994) tested SM against a number of brain-damaged controls in various

FaBER tasks. Subjects were presented with photographs or video slides depicting facial

expressions and asked to identify the emotion states to which the expressions correspond.

SM was abnormal in face-based recognition of the emotion fear; her ratings of fearful

faces correlated less with normal ratings than did those of any of 12 brain-damaged control

subjects, and fell 2–5 standard deviations below the mean of the controls when the data

were converted to a normal distribution. Subsequent studies have both confirmed and

qualified these findings regarding co-occurring deficits in the production of fear and the

ability to recognize expressions of fear in others. Sprengelmeyer et al. (1999) studied NM,

another patient with bilateral amygdala damage. Like SM, NM was abnormal in his

experience of fear. He was prone to dangerous activities (such as hunting jaguar in the

Amazon river basin and hunting deer in Siberia while dangling from a helicopter!) and

tested as abnormal on a self-assessment questionnaire measuring experience of the

emotion fear. NM also exhibited a severe and selective impairment in face-based

recognition for fear.

Adolphs et al. (1999) conducted an additional study of patients with bilateral amygdala

damage with a larger-sized sample (nine patients, including SM). They again found that

face-based fear recognition is abnormal among these patients. While deficits were most

severe for fear recognition, recognition of other emotions, anger in particular, was also

somewhat abnormal. Other neuropsychological studies are also broadly consistent with

these findings (see Adolphs, 2002; Lawrence & Calder, 2004 for reviews).

The pattern noted here, that is, a paired deficit in the production and face-based

recognition of an emotion, is not unique to fear. A similar pattern emerges with respect to

at least two other emotions, disgust and anger, to which we now turn.

Paul Rozin and colleagues (Rozin, Haidt, & McCauley, 2000) conceptualized the

emotion of disgust as an elaboration of a phylogenetically more primitive distaste

response. Many aspects of taste processing are known from animal studies to be localized

in the anterior insula region, known as the “gustatory cortex” (Rolls, 1995). Functional

neuroimaging studies confirm that the anterior insula plays a similar role in taste

processing in humans (Small et al., 2003, 1999).

What neural structures are implicated in the recognition of facial expressions of

disgust? Sprengelmeyer and colleagues (Sprengelmeyer et al., 1996, 1997), using standard

face-based emotion recognition tasks, found that patients with Huntington’s disease

display selective deficits in face-based recognition of disgust. In light of these findings,

Phillips and colleagues undertook an fMRI study to see which brain areas are activated

when subjects observe facial expressions of disgust (Phillips et al., 1998, 1997). The most

striking finding for perception of facial expressions of disgust was activation in the right

insula (adjacent regions such as the amygdala were not activated). They concluded that

“appreciation of visual stimuli depicting other’s disgust is closely linked to the perception

[i.e. experience] of unpleasant tastes and smells” (Phillips et al., 1997, p. 496).

Lesion studies have also found paired deficits in the experience and facial recognition

of disgust. Calder and colleagues found this pairing in NK, who suffered insula and basal
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ganglia damage (Calder, Keane, Manes, Antoun, & Young, 2000). On a questionnaire

NK’s overall score for disgust was significantly lower than the scores of controls, whereas

his scores for anger and fear did not significantly differ from the controls’ mean scores. In

tests of his ability to recognize emotions in faces, NK showed significant and selective

impairment in disgust recognition. Adolphs, Tranel, and Damasio (2003) similarly found

pronounced deficits in the experience and face-based recognition of disgust in a patient

with bilateral insular and temporal lobe damage.

Wicker et al. (2003) did an fMRI study of disgust to determine whether the same neural

regions are activated in normal subjects both during the experience of disgust and during

the observation of the facial expression of disgust. In two “visual” runs, participants

passively viewed movies of individuals smelling the contents of a glass (disgusting,

pleasant, or neutral) and expressing the facial expressions of the respective emotions. In

two “olfactory” runs, the same participants inhaled disgusting or pleasant odorants through

a mask on their nose and mouth. The core finding of Wicker et al. was that the left anterior

insula and the right anterior cingulate cortex are preferentially activated during the

experience of the emotion of disgust evoked by disgusting odorants (compared to

activation levels during pleasant and neutral odors), and this same region is preferentially

activated during the observation of disgust facial expressions (compared to activation

levels during pleasure-expressive and neutral faces). In other words, observation of

disgust-expressive faces automatically activates the same neural substrates implicated in

the experience of the same emotion.1

Anger is a third emotion system for which a paired deficit in emotion production

and face-based recognition is found. Social agonistic encounters represent a distinct

and phylogenetically recurrent adaptive problem for many animals. Various lines of

evidence, reviewed in Lawrence and Calder (2004), suggest that the dopamine system

has evolved as a neural subsystem involved in the processing of aggression in social-

agonistic encounters in a wide variety of species, and this system plays an important

role in mediating the experience of the emotion anger. They note that dopamine levels

in rats and a number of other species are elevated in social-agonistic encounters.

Conversely, administration of dopamine antagonists, such as the D2 receptor

antagonist sulpiride, selectively impairs responses to agonistic encounters. Lawrence

and colleagues hypothesized that dopaminergic blockade by the administration of

sulpiride would lead to selective disruption of face-based recognition of anger, while

sparing the recognition of other emotions (Lawrence, Calder, McGowan, & Grasby

2002). This was indeed found. Following sulpiride administration, subjects were

significantly worse at recognizing angry faces, though there were no such impairments

in recognizing facial expressions of other emotions.

1 Previous studies have indicated that the insula, among other structures, is activated during the experience

of disgusting odors and tastes (Fulbright et al., 1998; Small et al., 2003). Additionally, previous studies have

also established that the insula is preferentially activated during the observation of disgust-expressive faces

(Krolak-Salmon et al., 2003; Phillips et al., 1998, 1997; Sprengelmeyer et al., 1998). However, the Wicker

et al. (2003) study is the first to demonstrate within a single experiment, using a single mode of

investigation and the same pool of subjects, that the same neural substrate subserves both the experience

and recognition of disgust.
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Based on the studies reviewed above, there is substantial evidence that deficits in the

production of an emotion and deficits in the face-based recognition of that emotion

reliably co-occur. How is this evidence relevant to the question of whether (face-based)

emotion mindreading proceeds by tacit theorizing or by simulation?

3. Emotion mindreading by theory versus simulation

Let us further clarify and expound the two basic theoretical positions towards

mindreading, which have loomed large in the literature. There are numerous ways of

developing the TT idea, but the main idea is that the mindreader selects a mental state for

attribution to a target based on inference from other information about the target.

According to one popular version of TT, such an inference is guided by folk psychological

generalizations concerning relationships or transitions between psychological states

and/or behavior of the target (Gopnik & Wellman, 1992; Wellman, 1990). But we shall not

insist on lawlike generalizations. The fundamental feature of TT is that it is an

information-based approach. It says that attributors engage in mindreading by deploying

folk psychological information. What they don’t do, as a means to reading a target’s

mental state, is (try to) model or instantiate the very mental process that the target herself

undergoes.

The core idea of ST is that the attributor selects a mental state for attribution after

reproducing or “enacting” within herself the very state in question, or a relevantly similar

state. In other words, she tries to replicate a target’s mental state by undergoing (what she

takes to be) the same or a similar mental process to one the target undergoes. If, in her own

case, the process yields mental state M as an output, she attributes M to the target. For

example, if she wants to attribute a future decision to a target, she might try to replicate the

target’s decision-making process in her own mind and use the output of this process as the

decision to assign to the target. Alternatively, she may test a hypothesized state by

simulating it in her own mind and seeing whether its upshots match those of the target. In

either scenario, the attributor must recognize her own state as being of type M in order to

select M as the state type occupied by the target. This presumably requires some sort

of “information” about states of type M, so simulation isn’t entirely information-free

(as some proponents of simulationism maintain, e.g. Gordon, 1996). However, in contrast

to TT, ST says that the relevant information about M is applied to something like a token

or facsimile of a mental state in her own mind, not simply to information about the target

from which she infers that the target instantiates M. There is, of course, much more to be

said about the TT/ST contrast, but these points should suffice for present purposes

(for additional details, see Gallese & Goldman, 1998; Goldman, 2000, in preparation).

How would TT and ST be applied to the task of face-based emotion recognition? First,

how would TT explain the capacity to attribute emotions from facial expressions? We are

not aware of any specific TT-based proposal in the literature. However, a general outline of

what a TT-based account would look like is not hard to provide. It would propose, at a

minimum, that people have a mentally represented body of generalizations for mapping

representations of particular facial configurations to names for emotion states. When a

target is observed displaying a particular facial expression, the attributor utilizes this body
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of information, coupled with ordinary capacities for factual reasoning, to infer and

attribute an emotion state to the target. Of course, this account presupposes that there is

enough information in the facial expression itself to uniquely select an appropriate

corresponding emotion state. This supposition seems plausible, as it has been shown that

facial expressions exhibit rich geometric and configural properties sufficient for the

purposes of inferring a corresponding emotion state (Calder, Burton, Miller, Young, &

Akamatsu, 2001). Thus a TT-based account, elaborated along the lines we have suggested,

is one legitimate contender for explaining how face-based emotion recognition occurs.

ST would approach this question in a different way. It would propose that an attributor

selects an emotion category to assign to a target by producing an emotion in herself, or

running her own emotional “equipment”, and seeing which emotion has an appropriate

link to the observed facial expression. Exactly how this simulational story would go is a

matter to be addressed in detail below. In outline, however, the distinctive characteristic of

the simulationist approach is to hypothesize that (normal) attributors execute face-based

emotion attribution by means that somehow involve the production of that very emotion

(at least in cases of accurate emotion detection).

4. Explaining the emotion recognition data by TT versus ST

The central claim presented in Section 2 was that there is substantial evidence

concerning three emotions indicating that deficits in the production (experience) of an

emotion and deficits in the face-based recognition of that emotion reliably co-occur. This

strongly suggests that the same neural mechanisms subserve both the experience and the

recognition of an emotion. In addition, the Wicker et al. (2003) study found that, in

normals, the same neural regions were implicated in both the experience of disgust and the

observation of disgust-expressive faces. Putting the Wicker et al. data together with the

paired-deficit data, we have it that the same neural substrate is implicated in normals when

they both experience and observe disgust, and when this same substrate is damaged,

subjects fail to experience or recognize disgust at normal levels.

How does this evidence bear on the choice between theorizing and simulating as the

explanation of face-based emotion recognition? On the surface, it strongly favors ST. If

one (successfully) mindreads via simulation, one undergoes the same, or a relevantly

similar, process to the one the target undergoes in using or arriving at the target state.

Someone impaired in experiencing a given emotion will be unable to simulate a process

that includes that emotion. Thus, ST predicts that someone damaged in experiencing fear,

or in the neural substrate of fear experience, would have trouble mindreading fear. Hence,

the phenomenon observed in SM—a paired deficit in fear experience and recognition—is

straightforwardly predictable on the simulationist hypothesis. Similarly for the other

paired deficits. By contrast, there is no reason to expect a paired deficit under TT. Why

should conceptual representations of fear occur in the same region that underlies fear

experience? That is, why should the processing of theoretical information about fear occur

in the same region (or one of the regions) as the region subserving fear itself? TT predicts

no such finding. Perhaps TT could be supplemented with auxiliary assumptions to make it

consistent with the finding. We will discuss possible auxiliary assumptions the theory
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theorist might deploy in a moment, but here we merely note that in the absence of such

assumptions, TT would not lead one to expect the identified paired deficits. Thus, there is a

prima facie case for ST over TT as an explanation of the phenomena.

Skeptics might reply that paired deficits could be due to a merely contingent

relationship, for example the contingent co-localization of emotion experience and face-

based emotion recognition (or classification) capacities, rather than the functional co-

dependence that follows from a simulationist account. For example, lesions to the fusiform

gyrus of the right occipital cortex produce both prosopagnosia, impaired ability to

recognize faces (see Kanwisher, 2000), and achromatopsia, impaired perception of color

(see Bartels & Zeki, 2000). But these two deficits have no interesting functional

relationship to one another. It just so happens that the impaired capacities are at least

partially co-localized in the fusiform gyrus, leading to the paired deficit. Isn’t it possible

that such a purely happenstantial story also applies to the paired deficits found in fear,

disgust, and anger recognition?

In theory this is possible. But the fact that paired deficits in emotion production and

emotion recognition occur for three distinct emotions makes the pairings seem far from

contingent or accidental. They seem to reflect a systematic relationship between emotion

experience and FaBER. So while a theory-based account can appeal to various auxiliary

assumptions or hypotheses to account for the paired deficit data, for example the

contingent co-localization hypothesis, these assumptions and hypotheses appear ad hoc

relative to the simulationist explanation, which predicts the paired deficits in a more

principled way.

Let us be more specific about how a TT explanation of the paired deficits might go.

Three types of declarative knowledge might be used in the normal execution of FaBER

tasks according to TT: (1) visually obtained knowledge of the facial configuration of the

target, (2) semantic knowledge concerning these configurations, in particular knowledge

that facial configuration C is paired with emotion label ‘E’, and (3) general knowledge

concerning a given emotion, i.e. its typical elicitors or behavioral effects. In order to

account for a paired deficit in one emotion, TT must say that one or more of these types of

knowledge concerning the emotion in question is selectively damaged, while similar types

of knowledge are preserved for other emotions. As it happens, there is specific evidence

from the paired-deficit literature that paired-deficit patients do not suffer from reduced

knowledge of types (1) or (3). A deficit in knowledge of type (2) is not specifically

contravened by the evidence, but this proposal suffers from other problems.

The evidence about knowledge of types (1) and (3) is as follows. First, the paired deficit

studies present evidence that subjects have no difficulty with perceptual processing of

faces. In most of these studies, subjects performed normally on measures designed to

identify any such impairments. The most common measure used was the Benton Face

Matching Task, in which different views of unfamiliar faces must be categorized as

belonging to the same face (Benton, Hamsher, Varney, & Spreen, 1983). Additionally,

subjects were often found to be able to recognize other high-level properties of faces

including age, gender and identity. SM’s ability to recognize facial identity, for example,

was fully preserved.

An informational deficit of type (3) is also disconfirmed by existing evidence. In the

cited studies, deficits in FaBER routinely occur with preservation of subjects’ general

A.I. Goldman, C.S. Sripada / Cognition 94 (2005) 193–213200



declarative knowledge regarding emotions. For example, subjects can readily cite

situations in which a person might experience the emotion whose face-based recognition is

impaired. Recall that in describing SM, Damasio (1999) noted that “at a purely intellectual

level” SM “knows what fear is supposed to be, what should cause it, and even what one

may do in situations of fear”. Similarly, Calder, Lawrence, and Young (2001) reported that

“…patients with disgust recognition impairments are able to provide plausible situations in

which a person might feel disgusted and do not show impaired knowledge of the concept of

disgust”. Finally, in most cases subjects’ lesions occurred relatively late in life. So it cannot

be plausibly argued that they lacked declarative knowledge about emotions because of

deficits in their own emotional experience. They did suffer from experience deficits at the

time of examination, but most had ample opportunities in earlier life to undergo relevant

experiences and build normal declarative knowledge from those experiences.

So in order to account for the paired deficit data, the theory-theorist is likely to appeal to

deficits in information of type (2), information consisting of semantic labels paired with

representations of facial configurations. The theory-theorist will need to propose that

labeling information of this kind for fear, disgust, and anger depends on the integrity of the

amygdala, anterior insula, and dopaminergic system, respectively. Moreover, the theory-

theorist must claim that it is possible to damage this labeling information quite selectively,

in at least two ways. First, it must be possible to damage this labeling information for one

emotion while leaving this information preserved for other emotions. Second, it must be

possible to damage the labeling information in a way such that the label is inaccessible for

visual representations of faces specifically, because, as just reported, impaired subjects

have command of the label when verbally discussing general knowledge of the impaired

emotion type. While these postulations are certainly possible, in the absence of any

independent reason to believe that naming information is stored in this way, such

postulations seem quite ad hoc. Thus, the kinds of deficits to which theory-theorists might

appeal are either specifically contravened by the evidence or are quite ad hoc.

5. Possible simulationist models

Although the foregoing case for a simulational approach to face-based emotion

recognition strikes us as compelling, it leaves open the question of how the simulational

process proceeds. Those skeptical of our case for simulation may remain skeptical as long

as no plausible, sufficiently detailed story of the simulation process in these cases is

forthcoming. We get little help on this question from the existing literature. Articles

describing paired deficits often contain conclusions hinting at a simulational explanation,

but few pursue any details about the computational mechanisms. Exploring the options for

a simulational process is the next task we tackle.

There are several ways a simulation heuristic might be used to attribute a mental state,

depending on the nature of the causal link between the evidence events in the target

(known to the attributor) and the sought-after state of the target. The causal link might be

of two general kinds: (A) the evidence events cause the state, or (B) the state causes the

evidence events. When an attributor has knowledge of prior states of the target, for

example, specific desires and beliefs, and wants to predict a mental effect of those states,
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e.g. a decision, we have an instance of type (A). Here the evidence events cause (or will

cause) the sought-after mental state. When an attributor witnesses a target’s piece of

behavior (including a facial expression), and seeks to identify a mental state responsible

for that behavior, we have an instance of type (B). Here the sought-after mental state is

what causes the observed evidence. In face-based emotion recognition, the relevant

connection is presumably of type (B). The target’s emotional state causes her facial

expression, and this expression is the evidence used by the attributor to identify the

antecedent emotion state. How might simulation be used to exploit this kind of evidence?

5.1. Generate-and-test model

One possibility is a generate-and-test heuristic. As shown in Fig. 1, the attributor starts

by hypothesizing a certain emotion as the possible cause of the target’s facial display and

proceeds to “enact” that emotion, that is, produce a facsimile of it in her own system. She

lets this facsimile (or pretend) emotion run its typical course, which includes the

production of its natural facial expression, or at least a neural instruction to the facial

musculature to construct the relevant expression. If the resulting facial expression, or the

instruction to construct such an expression, matches the expression observed in the target,

then the hypothesized emotion is confirmed and the attributor imputes that emotion to the

target. The simulation interpretation of the paired-deficit findings would say that this is the

sort of thing that happens in emotion interpreters who are normal with respect to the

emotion in question. Someone impaired in the relevant emotion area, however, cannot

“enact” that emotion, or produce a facsimile of it. So she cannot generate the relevant face-

related downstream activity necessary to recognize the emotion. Hence, a recognition

impairment specific to that emotion arises.

Several issues about this model must be addressed. One question concerns the final

phase of the postulated process, in which the system tries to “match” a constructed facial

Fig. 1. Generate and test simulation.
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expression with the expression observed in the target. The representation of one’s own

facial expression is presumably a proprioceptive representation, whereas the represen-

tation of the target’s expression is visual. How can one “match” the other? One possible

answer is that the system has acquired an association between proprioceptive and visual

representations of the same facial configuration, through some type of learning.

Alternatively, there might be an innate cross-modal matching of the sort postulated by

Meltzoff and Moore (1997) to account for neonate facial imitation.

Second, there is a problem of how the generation process works. If candidate emotions

are generated randomly, say, from the six basic emotions, the observer will have to

covertly generate on average three facial expressions before hitting on the right one. This

would be too slow to account for actual covert mimicry of displayed facial expressions,

which occurs as early as 300 ms after stimulus onset (Dimberg & Thunberg, 1998;

Lundquist & Dimberg, 1995). An alternative is to say that “theoretical” information is

used to guide the generation process—though it isn’t clear what theoretical information it

would be. However, this proposal seems to turn the generate-and-test model into more of a

theory–simulation hybrid rather than a pure simulationist model. Does this undercut

the thrust of our simulationist argument? No. First, the simulational “test” phase of the

generate-and-test heuristic is crucial, because without it the model cannot explain the

paired deficits data. Second, the timing problems make this first model the least promising

of the four we shall offer, and all of the other three are more purely simulationist in

character.

5.2. Reverse simulation model

A second possibility, which seems to be implicitly endorsed by a number of theorists in

the literature, is a reverse simulation heuristic. The idea in reverse simulation is that the

attributor engages one of her own mental processes in the reverse direction, so as to

attribute to the target a mental state that is temporally prior to the state which serves as the

evidence for the attribution. In most cases in which simulation is deployed, reverse

simulation is not an option: the standard forward directionality of mental processes

precludes the possibility that these processes can be utilized in a reverse direction for the

purposes of evidence-posterior interpretation tasks. However, there may be an important

exception in the case of FaBER.

Under conditions of normal operation, the induction of an emotion episode causes a

coordinated suite of cognitive and physiological changes, including, at least in the case of

the so-called basic emotions, a characteristic facial expression (Ekman, 1992).

Interestingly, this causal relationship appears bi-directional. There is substantial evidence

that manipulation of the facial musculature, either voluntarily or involuntarily, has a causal

effect in generating, at least in attenuated form, the corresponding emotional state and its

cognitive and physiological correlates (see the discussion below). Thus, the relationship

between emotion states and their facial expressions exhibits a kind of rough one-to-one

correspondence in both directions. For this reason, the standard mode of operation in

which emotion states causally produce a characteristic facial expression could potentially

be utilized in a backwards direction for the purposes of reverse simulation. The underlying

idea in “reverse simulation” has also been invoked by others in the mindreading literature.
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For example, Blakemore and Decety (2001) propose that the cerebellum houses a

“forward model” which maps motor instructions into sensory expectations that would

ensue given that an action is performed. They propose that this database can be queried in

the reverse direction for the purposes of mindreading.

How would reverse simulation for the purposes of face-based emotion recognition

operate? As shown in Fig. 2, a potential attributor who sees an emotion-expressive face

starts by mimicking the facial expression she observes, presumably in an attenuated and

largely covert manner. As noted above, actual facial exertions appropriate to a certain

emotion commonly produce the experience of traces of that very emotion. An experiencer

of that mild emotion would then classify her own emotion state, and then, in keeping with

the common core of all simulational heuristics, would classify the observed face as being

expressive of the same state produced in herself. Of course, all this might happen at a

subthreshold level.

The reverse simulation model provides a plausible explanation for the paired deficit

studies cited earlier. Someone impaired in the emotion in question would be unable to

produce that emotion, or even significant traces thereof, in her own system. The requisite

facial exertions would not arouse the appropriate neural activity for emotion production.

Hence, such a person would be impaired in recognizing the corresponding emotion in a

target. But in addition to explaining the paired deficit results, several independent lines of

evidence support the reverse simulation model.

As depicted in Fig. 2, reverse simulation begins with a visual representation of the

target’s facial expression, which serves to activate facial musculature imitating the

expression of the target. That such imitation capacities exist is well established. Meltzoff

and Moore (1983) found that infants as young as one-hour-old imitate tongue protrusion,

and a range of other facial displays, which they see modeled before them. In addition to the

finding that humans can imitate the facial expressions of others, there is further evidence

that humans do in fact spontaneously and rapidly activate facial musculature

corresponding to visually presented facial expressions. In a series of studies, Dimberg

and colleagues, found that presentation of pictures of facial expressions produces rapid,

covert activation of one’s own facial musculature, which mimics the presented faces

(Dimberg & Thunberg, 1998; Lundquist & Dimberg, 1995). Such muscular activation is

often subtle, but is detectable by electromyography and (as noted above) occurs extremely

rapidly.

Fig. 2. Reverse simulation.
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The finding that subjects spontaneously, rapidly, and covertly imitate visually

presented facial expressions is consistent with the reverse simulation model (it

supports link “a” in Fig. 2), but it is also consistent with a model in which these self-

generated facial expressions are the consequence of an antecedently generated

emotion state. Support for the claim that the muscle movements are primary and in

fact give rise to a subsequent emotion state comes from two lines of evidence.

The first line of evidence suggesting that facial movements might occur prior to

the emotion experience is that there are reasons to believe that that these facial

movements are an instance of a more general “mirroring” phenomenon. An action

mirroring system, in which internal action representations activated in the production

of an action are also activated when the same action-type is observed in others, is

known to exist in monkey and human ventral premotor cortex, and neighboring

regions (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996; Iacoboni et al., 2001; Rizzolatti,

Fadiga, Gallese, & Fogassi, 1996). Furthermore, the operation of the action mirroring

system is known to generate covert activation of distal musculature. In an early

experiment that helped establish an action mirroring system in humans, Fadiga and

colleagues used transcranial magnetic stimulation (TMS) to enhance distal electro-

myographic recordings (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995). They found that

observation of actions (e.g. grasping an object, tracing a figure in the air) modeled by

a target reliably produced electromyographically detectable activation in the

corresponding muscle groups of the observer.

Recent evidence indicates that the action mirroring system may also operate during the

observation of facial expressions. An fMRI study by Carr et al. (2003) found that subjects

passively observing emotion-expressive faces display neural activation in the premotor

cortex and neighboring regions which are normally activated in the production of facial

movements, and which are in the region thought to house the action mirroring system. If

there is indeed an action mirroring system that operates during the observation of facial

expressions, it may help explain the covert activation of facial musculature discussed

earlier. In other words, the phenomenon found by Dimberg and colleagues—covert

activation of musculature that imitates the muscular activation patterns presented by a

target—may be an instance of a mirroring phenomenon that obtains for somatic

musculature more generally.2 And if the facial movements found by Dimberg and

colleagues are indeed an instance of a more general mirroring phenomenon, they need not

be explained as the product of an antecedent emotion experience.

A second line of evidence suggesting that facial movements might occur prior to the

emotion experience is the substantial accumulated data that there is a causal pathway that

links manipulations of facial expressions with corresponding changes in emotion states.

Subjects made to produce facial expressions voluntarily or involuntarily (for example, by

holding a pencil in their mouth or saying “cheese”) are found to exhibit cognitive and

physiological correlates of emotion experience (Adelman & Zajonc, 1989). A number of

theorists endorsing the “facial feedback hypothesis” view this causal pathway by which

2 It’s worth noting that the time after stimulus onset at which the Fadiga group detected covert activation of

somatic musculature, 360 ms, is consistent with the time at which Dimberg and his colleagues found that

differential activation of facial musculature reached significance, 300–400 ms.
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facial expressions produce emotion states to be an important mechanism in mediating the

experience of emotion generally (Laird & Bressler, 1992; Tomkins, 1962).

Facial feedback has also been implicated in the interpersonal communication of

emotion states. A number of theorists have noted the interesting phenomenon of “primitive

emotion contagion” in which motoric mimicry (mimicking facial expressions, prosody,

posture, and movements) is the causal basis for convergence in emotion states between

interacting individuals (Hatfield, Cacioppo, & Rapson, 1994). These theorists marshal

substantial evidence in favor of the existence of primitive emotion contagion, and

speculate that this phenomenon may play an important role in facilitating the

interpretation of others’ mental states, i.e. mindreading. The primitive emotion contagion

hypothesis is broadly consistent with simulationist approaches to mindreading, and in

particular with the reverse simulation model.

Theorists endorsing a facial-feedback hypothesis (link “b” in Fig. 2) have generally

assumed that the mechanism by which self-generated facial expressions produce

corresponding emotion states is mediated by proprioceptive sensation of the self-

generated facial expression (Tomkins, 1981). Thus link “b” in Fig. 2 of the reverse

simulation model appears to require proprioceptive mediation, which in turn implicates

proprioceptive centers in the brain, in particular the somatosensory regions of the parietal

cortices, in the process of emotion recognition. Adolphs and colleagues studied a large

number of patients (N ¼ 108 subjects) with cortical lesions, and found a significant

association between right parietal lesions and impaired face-based emotion recognition

(Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000). A link between somatosensory

impairment and face-based emotion recognition is predicted by the reverse simulation

model, but is harder to make sense of under the generate-and-test simulation model.

Additionally, it is not predicted at all under a theory-based model.

At least some data, however, are inconsistent with the reverse simulation model. Hess

and Blairy (2001) used a more challenging FaBER task and found that while spontaneous

facial mimicry did occur, the occurrence of successful mimicry did not correlate with

accuracy in facial recognition, suggesting that facial mimicry may accompany but not

actually facilitate recognition. Additionally, a study by Calder and colleagues found that

three patients with Mobius syndrome, a congenital syndrome whose most prominent

symptom is complete bilateral facial paralysis, performed normally on FaBER tasks

(Calder, Keane, Cole, Campbell, & Young, 2000). Keillor and colleagues report a similar

finding in which a patient with bilateral facial paralysis performed normally on FaBER

tasks (Keillor, Barrett, Crucian, Kortenkamp, & Heilman, 2002). These findings need to be

interpreted with caution, however, as given the long-standing nature of their impairments,

these subjects’ normal performance may reflect the operation of a compensatory strategy.

5.3. Reverse simulation with ‘as if’ loop

Adolphs et al. (2000) note that while facial feedback along the lines suggested by the

reverse simulation model may be utilized in face-based emotion recognition, they

speculate that there may be an alternative pathway. In keeping with earlier work

(Damasio, 1994), Adolphs and colleagues propose that there may be direct links between a

visual representation of a target’s facial expression and a somatosensory representation of
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“what it would feel like” were the observer to make that expression. It is speculated that

these linked visual-somatosensory representations are the basis of an independent pathway

(labeled the “as if” pathway in Fig. 2), which bypasses the facial musculature and allows

the observer to directly produce an emotion state that corresponds to the facial expression

displayed by the target. While details of the “as if” pathway are not fully in place yet, the

“as if” model may count as a third simulationist model for face-based emotion recognition,

which differs from the two models we’ve already proposed. In this third model, actual

reverse simulation involving the facial musculature does not occur. Instead, the observer

sees the facial expression displayed by the target and jumps directly to somatosensory

representations of what it would feel like to have made the requisite facial exertions (thus

the name “as if”), which in turn serves to bring about the corresponding emotion state as in

standard reverse simulation. This “as if” model is superior to the reverse simulation model

to the extent that it does not postulate a causal role for facial musculature in the recognition

process, and is therefore unthreatened by the results of Calder et al. (2000), Hess and

Blairy (2001), and Keillor et al. (2002).

5.4. Unmediated resonance model

A fourth possible model would also accommodate the findings by Calder et al. (2000)

and Keillor et al. (2002) of preserved facial recognition in patients with facial paralysis.

Unlike the third model, it would not appeal to somatosensory-based feelings normally

associated with making a face of the same sort as the one visually presented by the target.

This fourth model is what we shall call the unmediated resonance model. The idea here is

that observation of the target’s face “directly”, without any mediation of the sorts posited

by any of the first three models, triggers (sub-threshold) activation of the same neural

substrate associated with the emotion in question. This is the idea behind Gallese’s (2001,

2003) “shared manifold hypothesis”, and is suggested by Wicker et al. when they speak of

an automatic sharing, by the observer, of the displayed emotion (Wicker et al., 2003, p.

661). This would parallel findings of mirror-neuron matching systems found in monkeys

and humans, in which internal action representations, normally associated with producing

actions, are triggered during the observation of, or listening to, someone else’s

corresponding actions (Gallese et al., 1996; Kohler et al., 2002; Rizzolatti, Foggasi, &

Gallese, 2001).3 Finally, the fourth model must of course assume that the occurrence, or

production, of the relevant emotion in an observer is transmitted to some cognitive center

that “recognizes” the experienced emotion, leading to its overt (usually verbal)

classification in the experimental set-up as that type of emotion. But this assumption

would be common to all of the models, not distinctive to the fourth model.

Does this fourth model really fit the pattern of ST? Since the model posits unmediated

resonance, it does not fit the usual examples of simulation in which pretend states are

3 Of course, the role of mirroring in recognizing actions is not wholly clear. For example, Buxbaum, Sirigu,

Schwartz and Klatzky (2003) and Halsband et al. (2001) found action production deficits alongside preserved

action recognition. However, interpretation of these studies is difficult for several reasons, including most

prominently the fact that it is unclear in these studies if the production deficits are due to damage in the region of

the premotor cortex and neighboring regions thought to house the action mirroring system in humans.
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created and then operated upon by the attributor’s own cognitive equipment (e.g. a

decision-making mechanism), yielding an output that gets attributed to the target.

However, we do not regard the creation of pretend states, or the deployment of cognitive

equipment to process such states, as essential to the generic idea of simulation. The general

idea of simulation is that the simulating process should be similar, in relevant respects, to

the simulated process (Goldman, in preparation). Applied to mindreading, a minimally

necessary condition is that the state ascribed to the target is ascribed as a result of the

attributor’s instantiating, undergoing, or experiencing, that very state. In the case of

successful simulation, the experienced state matches that of the target. This minimal

condition for simulation is satisfied in the fourth model.

Finally, it should be emphasized that we make no attempt here to choose the “best” of

the four simulationist models, or even to express a preference ordering among them (apart

from the previously indicated doubts about the first model). Additional research is required

before there is adequate evidence to select among them. Our sole aim is to show that

several simulationist models are available with substantial surface plausibility and

consistency with the evidence, which lends further credence to our initial conclusion that

some sort of simulationist account of FaBER is highly probable.

6. Why simulation?

In the preceding sections, we marshaled evidence that FaBER proceeds by simulation

rather than theory-based mechanisms. At any rate, simulation is the fundamental or

primitive method of recognizing emotion from faces, although theorizing might also be

used, for example, as a compensatory strategy. The evidence is much less clear-cut,

however, with regard to distinguishing possible simulationist models, and much further

study is warranted. Our hope is that the specific models we have formulated will lend

structure to future discussion and investigation. We conclude by briefly addressing three

topics. First, we reply to a reasonable worry that may have arisen about simulational

models. Second, we speculate about the evolutionary origins of the simulational

characteristics of FaBER. Third, we suggest one possible experiment to help select

among the competing models.

Three of the simulationist models we proposed involve many disparate systems,

including, for example, specific emotion production systems, the facial musculature and

somatosensory centers. In contrast, a theory-based mechanism seems to require little more

than the mental representation of a number of generalizations linking facial configurations

with emotion names. Given desiderata such as simplicity, efficiency, or elegance, it’s hard

to see why simulational mechanisms would be advantageous relative to theory-based

mechanisms for the FaBER task. Our answer to this challenge is straightforward.

Simulation might be (somewhat) complex from a functional perspective, but it might be

simpler from an evolutionary perspective. Simulation relies upon running the same

emotional apparatus (possibly in reverse) that is already used to generate or experience the

emotion. As a consequence, simulation routines do not require an organism to be outfitted

with entirely new processes in order to confer an ability to recognize emotions in others.

Natural selection is a tinkerer, not a planner, and she frequently builds new capacities from
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existing ones. For this reason, simulation routines may have been favored in the course of

evolution.

Our second remark features a bolder speculation—not original to us—about the

evolutionary origins of a simulation mechanism for FaBER. As many writers point out

(e.g. Wicker et al., 2003), there are many reasons why it would be adaptive to have

mechanisms of emotion contagion. Consider the case of disgust, for example. Disgust is

frequently experienced in response to a food item that should not be eaten. If an individual

observes a conspecific having such a response to a food item, it would be adaptive for that

individual to have the same disgust response vis-à-vis that food item, in order to induce

avoidance. Thus, mechanisms of emotion contagion or resonance can be explained in

terms of this kind of adaptive advantage. Once in place, the resonance mechanism could be

transmuted into a simulational method of recognition. By contrast, there are no obvious

steps whereby emotion contagion would be transmuted into theory-based recognition.

Finally, we turn to a suggestion for future experimental work prompted by our four

models. D. Osherson (personal communication) asks what would happen if subjects were

given the task of recognizing facially expressed emotions while doing (unrelated) face

exercises, in particular exercises that prevent them from engaging their facial musculature

in an emotion-expressive way. Previous studies have found that manipulation of the facial

musculature in an emotion-expressive manner induces emotion experiences (see Section

5.2), and also produces interference on various emotion-relevant tasks (see, for example,

Laird, Wagener, Halal, & Szegda 1982). But no studies have examined the effects on

FaBER of exercises incompatible with making emotion-expressive faces. Would such

exercises make FaBER more difficult? Would they induce errors? Both the generate-and-

test model and the reverse simulation model seem to predict interference, and hence

reduced recognition. On the other hand, neither the ‘as-if’ loop variant of the reverse

simulation model nor the unmediated resonance model makes this prediction, because

neither of them posits use of the attributor’s own facial musculature in emotion

recognition. So the first two models would predict a positive result (reduced recognition)

in such a test, and would be undercut by a negative result. But a negative result would not

undercut either the third or fourth model. This is one experimental means, then, by which

to test the rival models.
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