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Information Along Contours and Object Boundaries
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F. Attneave (1954) famously suggested that information along visual contours is concentrated in regions
of high magnitude of curvature, rather than being distributed uniformly along the contour. Here the
authors give a formal derivation of this claim, yielding an exact expression for information, in C.
Shannon’s (1948) sense, as a function of contour curvature. Moreover, they extend Attneave’s claim to
incorporate the role of sign of curvature, not just magnitude of curvature. In particular, the authors show
that for closed contours, such as object boundaries, segments of negative curvature (i.e., concave
segments) literally carry greater information than do corresponding regions of positive curvature (i.e.,
convex segments). The psychological validity of this informational analysis is supported by a host of
empirical findings demonstrating the asymmetric way in which the visual system treats regions of
positive and negative curvature.

In 1954, Attneave proposed that information along a visual
contour is concentrated in regions of high magnitude of curvature,
rather than distributed uniformly.1 His observation was informal
but astute and helped to inspire interest in information-processing
approaches to the study of vision. Figure 1A shows a shape with
points of locally maximal magnitude of curvature marked. By way
of demonstration that such points convey most of the psycholog-
ically important information about shape, Attneave drew a line
drawing of a cat by taking only the points of local maxima of
curvature magnitude and joining them with straight line segments.2

The resulting line drawing (now popularly known as Attneave’s
cat) was easily recognizable, suggesting that not much loss of
information had occurred. Attneave also briefly described the
results of an experiment in which participants were asked to
approximate two-dimensional shapes with a fixed number of
points and then asked to indicate where on the original shapes
these points were located. Histogram plots of the points selected
revealed salient peaks at precisely the points of local maxima of
curvature magnitude (similar to Figure 1B). The details of Att-
neave’s experiment were apparently never published (Attneave’s,
1954, article cites only a “mimeographed note”). However Nor-
man, Phillips, and Ross (2001) have recently conducted a similar
experiment and replicated Attneave’s results. Moreover, contour
deletion experiments (Biederman & Blickle, 1985, discussed in

Biederman, 1987) have shown that deletion of high-curvature
contour segments creates greater difficulties in recognition than
does deletion of low-curvature segments of comparable length,
demonstrating the special role high-curvature contour segments
play in recognition.

Resnikoff (1985) has provided a derivation of Attneave’s (1954)
claim, based on Shannon’s (1948) mathematical definition of
information. Although Resnikoff deserves credit for placing Att-
neave’s proposal on a formal footing for the first time, we feel that
his derivation has several problems that leave it short of providing
a mathematical substantiation of Attneave’s idea (see the Appen-
dix). In this article, we provide a novel derivation of the informa-
tion content of contours, which does not require the assumptions
implicit in Resnikoff’s analysis but rather is informed by recent
psychophysical findings about the mental representation of curves.
Moreover, we extend the informational analysis to the case of
closed contours—as might correspond to object boundaries—de-

1 Curvature is sometimes treated as an unsigned quantity—the magni-
tude of the tangent derivative or the “degree of bendiness”—and some-
times as a signed quantity, in which case sign is conventionally assigned
positive for turns toward the interior of the figure (i.e., on convexities) and
negative for turns away from the interior (i.e., in concavities). These
discrepant senses can cause confusion, for example when low curvature
can refer either to a relatively straight curve (when curvature is used in the
unsigned sense) or a region with high magnitude in the negative direction
(i.e., a sharp concavity). Attneave (1954) used the term curvature in its
unsigned sense. Thus in modern language his claim was that information
depends on the magnitude of curvature. He made no reference in his article
to the sign of curvature, and his proposal did not distinguish between
convex and concave regions of a contour.

2 Irving Biederman (speaking informally at the Psychonomic Society
conference, New Orleans, LA, November, 2000) pointed out that in Att-
neave’s (1954) own telling—and contrary to myth—Attneave never actu-
ally made a smoothly curved line drawing of a cat. Rather, Attneave drew
the famous feline polygon by hand directly from visual inspection of his
own pet.
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riving an asymmetry in the information content of negative and
positive curvature regions. This analysis extends Attneave’s orig-
inal claim—which treats positive and negative curvature regions
symmetrically—and is supported by a host of empirical findings in
the literature demonstrating the influence of sign of curvature on
shape perception.

Information

We begin with a statement of Shannon’s (1948) formula for a
continuous measure M. Assume first a distribution (probability
density function) p(M), which represents the observer’s beliefs
about the value of M before a measurement is taken. What infor-
mation is gained by measuring M? Shannon’s insight was that this
depends on the value obtained and, more specifically, on its
likelihood. If the observed value of M is relatively close to what
was expected—say, it was the most likely case—then relatively
little information has been gained by measuring it. But if it reveals
a surprising value—say, something in the tails of the distribution
p(M)—then relatively much information has been gained. Specif-
ically, Shannon showed that this dependence must follow the
negative logorithm3 of the probability, that is,

u�M� � � log�p�M��. (1)

The quantity u(M) is sometimes called the surprisal of M. The
information contained in the distribution p(M)—that is, the entire
ensemble of probabilities p(M) taken as a whole—is simply the
expected value of the surprisal,

I� p�� ��
M

p�M� log�p�M��, (2)

that is, the mean of all the possible surprisals weighted by their
probabilities.

Contours

Now consider the case of a simple planar curve (i.e., with no
self-intersections) of length L, sampled at n uniformly spaced
points separated by intervals �s � L/n (see Figure 2). From point
to point along the sampled curve, the tangent direction changes by

an angle �� or �, called the turning angle. (Without loss of
generality, we assign the field of normals such that positive values
of �� correspond to clockwise turns and negative values corre-
spond to counterclockwise turns.) Turning angles, and relative
orientations between edge pairs more generally, are a parameter of
widespread interest in the vision literature, for example in the
enormous literatures on contour integration in both psychophysics
(Caelli & Umansky, 1976; Field, Hayes, & Hess, 1993), physiol-
ogy (Bosking, Zhang, & Fitzpatrick, 1997; Gilbert, 1995), and
computational vision (e.g., Zucker, 1985). The reasons for this
interest are very basic. Absolute position is very unlikely to be a
parameter of interest to the visual system because of the need for
translation invariance and likewise for absolute orientation be-
cause of the (perhaps weaker) need for rotational invariance (see
Jaynes, 1973). Hence turning angle, which is invariant to both
translation and rotation, is a more plausible choice as a parameter
of a priori interest.

Now, having chosen turning angle � as a parameter of interest,
in what way are specific observed values of � informative? This
depends on the assumed distribution p(�) (see Figure 2). That is,
as one moves around the curve, choosing successively the next
change in tangent direction, from what distribution are these
choices drawn?

In what follows we assume that the change in tangent direction
on a smooth curve follows a von Mises distribution centered on
“straight” � � 0,

p��� � A exp�b cos����, (3)

where b is a parameter4 modulating the spread of the distribution
(acting like the inverse of variance) and A is a normalizing con-
stant (depending on b but not on �). The von Mises distribution
(due to von Mises, 1918; see Figure 3) is the natural analog of a

3 Treatments of information theory usually assume logs in base 2, but the
choice of base does not really matter because the resulting quantities differ
only by a multiplicative constant. In what follows we actually use base e
for reasons that will become apparent.

4 The symbol � is often used to denote the spread parameter b, but we
reserve � for curvature, used below.

Figure 1. Information on the boundary of a shape is concentrated in regions of high magnitude of curvature.
A: A shape with curvature extrema marked, including both positive (convex) extrema and negative (concave)
extrema (i.e., minima of signed curvature). B: The same shape with contour information (surprisal) plotted
(Equation 4), reminiscent of Attneave’s (1954) histograms.
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Gaussian (normal) distribution for the case of angular measure-
ments (see Fisher, 1993).5 It serves as an appropriate choice for a
distribution of tangent directions for several reasons. First, like the
Gaussian in the case of nonangular measurements, it maximizes
entropy given a fixed mean and spread (Mardia, 1972), meaning
here that it represents in a maximally neutral manner the assump-
tion that the tangent will have a particular expected direction and
a particular magnitude of uncertainty around that direction. Sec-
ond, it agrees with a variety of empirical data, including the tuning
curves of orientation-selective neurons in the primary visual cortex
(Swindale, 1998) as well as human observers’ visual expectations
about how smooth curves are likely to continue (Feldman, 1995,
1996, 1997, 2001).6 The precise choice of distribution is actually
not very important to our argument (see below for substantiation of
this claim); the important properties of this choice of distribution
are that (a) it is centered at � � 0, meaning that straight contin-
uation of the tangent direction is considered the most likely case,
and (b) probability decreases symmetrically with deviations from
straight. These properties are indeed observed in the actual statis-
tics of orientation changes at successive points along perceptual
contours in natural images (Elder & Goldberg, 2002; Geisler,
Perry, Super, & Gallogly, 2001).

Now, at a particular point along the curve and a particular value
of turning angle �, what is the information at that point? Following
Shannon (1948), all we can give for a particular measurement is its
surprisal. Combining Equations 1 and 3, we get

u��� � �log[p���] � �log A � b cos���. (4)

The first term is an additive constant, not dependent on �, which
gives the absolute minimal surprisal, obtained in the case of a
straight line; its exact value derives from the specifics of the von
Mises distribution. The second term, �bcos(�), shows how the
suprisal depends on �: as the negative cosine, which means it
increases monotonically with increasing deviations from straight.7

Figure 1B shows a plot of the surprisal along a shape boundary,8

which closely resembles Attneave’s (1954) empirical histogram
plots (see also Norman et al., 2001).

The monotonic increase in suprisal with curvature does not
depend on the choice of a von Mises distribution. To show this, we
appeal to Chebyshev’s inequality (see Feller, 1967), which pro-
vides an upper bound that applies to all distributions. One entail-
ment of Chebyshev’s inequality is that any probability distribution
p with mean 0 obeys

p�x� �
1

z2 , (5)

where z is the z score of x, that is, its value normalized by the
standard deviation of the distribution. This is a rather loose bound,
but one that holds regardless of the choice of distribution. In our
notation, it means that for any angular distribution p(�) with mean
0 and standard deviation �,

p��� � ��

��
2

. (6)

Substituting this bound into the definition of suprisal u(x) �
�logp(x), we see that the surprisal of the turning angle � is
bounded below by

u��� � �log ��

��
2

� ��log�2 � log��2��
� constant 	 2 log���.

5 A Gaussian is not well defined for angles because its support is (��,
�), whereas angles are only defined in (�
,
). The von Mises asymptot-
ically approaches the Gaussian as the spread narrows (the parameter b
increases), with b acting like 1/�2 (see Mardia, 1972). In practice, the
distinction between the two distributions makes little numerical difference,
especially when the spread is low; the two are highly correlated. For
example, the correlation between the distributions over the range of angular
values tested in Feldman (1997) is r 	 .999, guaranteeing that the empir-
ical data adduced there in support of the Gaussian transfer almost com-
pletely to the von Mises used here.

6 These cited articles actually use the numerically very similar Gaussian
distribution; see Footnote 5.

7 To get a more intuitive sense of how this function behaves, consider its
Taylor expansion about � � 0, which is

�b cos��� � �b�1 �
�2

2!
	

�4

4!
� . . .� ,

� �b 	 b�2/ 2 	 higher order terms.

This shows that in the neighborhood of � � 0 (the region of psycho-
logical interest), the suprisal increases by approximately a quadratic, with
the deviation from quadratic increasing as we move into the tails of the
distribution. As mentioned above, the spread parameter b acts like 1/�2,
which means that b�2/2 likewise acts as �2/2�2. As it happens, this is
exactly what we would have obtained had we adopted the mathematically
less apt Gaussian assumption, where the exponent in the density function
is ��2/2�2, leading to �2/2�2 when the minus log is taken.

8 Code for computing surprisal on the basis of Equation 4 can be found
at http://ruccs.rutgers.edu/
manish/demos/curveinfo.html.

Figure 2. A simple plane curve sampled at intervals of arc length �s.
Each point has a tangent �; the angle �� between successive tangents is
denoted �.

Figure 3. The expected change in tangent direction � is distributed as a
von Mises distribution centered on 0 (straight).

245THEORETICAL NOTE



In words, the surprisal increases with turning angle, at least as
quickly as twice the log of its magnitude. The minus cosine
increase derived above, based on the von Mises assumption, sat-
isfies this bound. Thus regardless of the exact choice of distribu-
tion, information is bound to increase monotonically with the
magnitude of the turning angle.

Curvature

Now we connect this to curvature. The curvature � is the change
in tangent direction as we move along the curve and hence is
approximated by the ratio between the change in the tangent
direction (i.e., � � ��) and �s:

� �
�

�s
. (7)

By definition, this approximation becomes exact in the limit as
�s3 0 (i.e., as the number of sample points n3 �). Note that �
inherits its sign from �; that is, clockwise turns are considered
positive. Now we rearrange terms to yield an expression for �:

� � �s�. (8)

We assumed above that � was distributed as a von Mises
distribution with spread parameter b (Equation 3). Because ��s �
�, this means that ��s is distributed likewise, which in turn means
that � is distributed about 0 with spread parameter b(�s)2, that is,9

p��� � A� exp�b��s�2 cos��s���, (9)

where A� is again a normalizing constant (analogous to, though
different from, A in Equation 3). Plugging this into the definition
of suprisal (Equation 1), we find that the surprisal of a given value
of curvature � is

u��� � �log A� � b��s�2 cos��s��. (10)

Again ignoring the additive constant (left-hand term), we see that
at a given point along a curve the surprisal is proportional to the
negative cosine of the product of scale and curvature,

u���  � cos��s��, (11)

and thus increases monotonically with curvature, exactly as Att-
neave (1954) proposed. (Note that the cosine function decreases
monotonically from zero up through 
, and thus the minus cosine
increases monotonically; see Footnote 7.) Moreover, this expres-
sion is symmetric with respect to the sign of curvature (i.e., the
surprisal is identical for � and ��), depending only in its magni-
tude—again consistent with Attneave’s articulation of the claim.
The details of Equations 10 and 11 depend on the von Mises
assumption, but the Chebyshev argument above can be extended to
the curvature case to yield a distribution-free bound on surprisal in
terms of curvature,

u��� � constant 	 2 log ��s��. (12)

The main conclusion—that suprisal increases with the magnitude
of curvature—is thus guaranteed to obtain regardless of the precise
choice of distribution (i.e., as long as it peaks at 0 and decreases
symmetrically with increasing deviation from 0).

To be more precise, we see that in these expressions (Equations
11 or 12), information along a contour depends on the product of
curvature � and �s. What exactly does this mean? Recall that
curvature itself is not a scale-invariant quantity. When the entire
figure is expanded uniformly by a given ratio (say, by inspecting
it from a shorter viewing distance), all curvature values decrease
by the same ratio. But because �s � L/n, by definition �s scales
with the figure. This means that the value ��s is scale invariant,
because whenever the figure doubles in size (say), curvature � is
halved but �s is doubled, leaving ��s unchanged. Another way of
seeing this is to recall that the magnitude of curvature is equal to
the inverse of the radius of the locally best-fitting circle, 1/R.
Hence ��s � �s/R � L/Rn. But because L and R scale by the same
factor, this ratio is clearly invariant to scale.10 �s can be thought
of as the length of our “measuring stick” and the product ��s as a
measure of scale-invariant curvature or normalized curvature
(see, e.g., Hoffman & Singh, 1997; Koenderink, 1990).11

Hence our expression for the surprisal of curvature (Equation
10) accords with the intuition that information along a curve is
scale invariant: It depends only on the inherent shape of the curve
and not on the particular viewing scale at which we happen to look
at it.12

Closed Contours

As we noted earlier, Attneave’s (1954) claim refers only to the
magnitude of curvature and does not distinguish between positive
and negative curvature (i.e., clockwise and counterclockwise turn-
ing of the tangent or, equivalently, convex and concave regions).
Correspondingly, our Equation 10 is insensitive to the sign of � or
�—which followed from the fact that the distribution p(�) is
symmetric about 0. So far, there has been no reason for it be
otherwise.

However, when a visual contour is the boundary of an object—
with one side of the contour assigned “figure” and the other

9 Because 1/b influences the von Mises distribution in the same way that
�2 influences the normal distribution (see Mardia, 1972), it follows that it
is the quantity 1/�b that must be scaled by �s; hence the new spread
parameter of the von Mises would be given by ��b�s)2.

10 Note that this argument does not depend on �s being a small or
infinitesimal quantity: L� is a measure of scale-invariant curvature for any
length that is tied to the scale of the figure, as all such measures are clearly
proportional to one another.

11 On 3-D surfaces, one has two principal curvatures at each point—
namely, the curvatures along the directions in which the surface curves the
most and the least. Hence, it is possible to define scale-invariant notions of
surface curvature by taking ratios of these quantities. Koenderink (1990),
for example, defines the shape index in terms of the ratio (�max �
�min)/(�max � �min), a quantity that clearly remains invariant across uni-
form scalings. For two-dimensional contours, however, each point has a
single value of curvature associated with it, and one must thus use some
measure of the scale of the figure itself to normalize the value of curvature.

12 Our statement of this fact is of course a direct consequence of our
derivation using turning angle, which is obviously scale invariant. We
emphasize it nevertheless because many discussions of shape in the liter-
ature, including casual renditions of Attneave’s (1954) observation, often
ignore the fact that curvature per se is scale dependent—a tendency that
requires correction in the context of any mathematical statement of the
relationship between curvature and information.
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“ground”—an asymmetry is introduced between turning one way
and turning the other: One is toward figure (positive curvature),
and the other is toward ground (negative curvature). (Our assump-
tion that clockwise turns have positive sign means that we are
traveling clockwise around the figure.) This asymmetry has been
demonstrated to have clear psychological consequences.

Citing theoretical analysis and practice from art history, Koen-
derink and Van Doorn (1982) noted that positive curvature regions
are typically perceived as having a “thinglike” character, whereas
negative curvature regions are perceived as having a “gluelike”
character.13 In their seminal article on part segmentation, Hoffman
and Richards (1984) proposed that the visual system uses negative
minima of curvature (points of locally highest curvature magni-
tude, in concave regions of a shape) to segment shapes into
component parts. Thus all curvature maxima (in Attneave’s, 1954,
sense of unsigned curvature) are not treated alike psychologically:
Those with negative curvature are given special status as bound-
aries between perceived parts, whereas equivalent ones with pos-
itive curvature are not (being perceived generally as lying on a
single part).

The empirical consequences of this proposed asymmetry be-
tween positive and negative curvature (or, equivalently, between
convex and concave regions) have been demonstrated in a wide
variety of tasks, including probe discrimination (Barenholtz &
Feldman, 2003), positional judgment (Bertamini, 2001; Gibson,
1994), memory for shapes (Braunstein, Hoffman, & Saidpour,
1989; Driver & Baylis, 1996), the perception of figure and ground
(Baylis & Driver, 1994; Driver & Baylis, 1996; Hoffman & Singh,
1997), amodal completion (Liu, Jacobs, & Basri, 1999), the per-
ception of transparency (Singh & Hoffman, 1998), and visual
search (Elder & Zucker, 1993; Hulleman, te Winkel, & Boselie,
2000; Humphreys & Müller, 2000).

How can the difference between positive and negative curvature
be reflected in the informational analysis? Intuitively, the idea is
that on a closed contour C, with the interior assumed figure, the
distribution p(�) is “biased” so that turning in the positive-
curvature direction is more likely than turning in the negative
direction. Otherwise, the curve will not eventually close upon
itself. Indeed, the geometry of curves tells exactly how much more
likely. Over the complete circuit of the curve, the total turning
angle must add up to exactly 2
 (360°) of total turning angle,

�
C

� � 2
, (13)

which means that the expected value (mean) of the distribution
p(�), rather than being 0 as before, must now be 2
/n, where n is
the number of samples taken at intervals �s.14 For simplicity, we
assume the same von Mises form of the distribution of � as before,
except with mean shifted from 0 to 2
/n; that is, the entire
distribution is simply translated in � space by a small amount 2
/n
in the positive direction (i.e., toward the interior of the shape):

p��� � A exp�b cos�� �
2


n �� . (14)

Now substituting into the formula for suprisal as before, we get

u��� � �log A � b cos�� �
2


n � . (15)

Now we progress from angle to curvature by replacing � with its
approximation ��s, and b with b(�s)2, yielding a formula for the
suprisal as a function of curvature:

u��� � �log A� � b��s�2 cos���s �
2


n � . (16)

Note that � here must be interpreted in its “signed” sense with
positive values assigned to the turning of the tangent towards the
figure.

Here in the closed-contour case the surprisal is minimal when
the tangent direction turns slightly (2
/n) inward. Straight (� � 0)
tangents, rather than being the most expected case as before, are
now slightly surprising. The key thing to observe is that points of
negative curvature (� � 0) are now more surprising than points of
equivalent positive curvature. However much a given positive
value of curvature (i.e., a turn toward the figure) is “in the tails” of
the distribution—thus entailing surprise and information—the
same value in the negative direction is even more in the tails and
hence even more surprising.

This means that negative curvature points literally carry greater
information than otherwise equivalent positive-curvature points.
Figure 4 shows a plot of the information (surprisal) along a shape
containing convex and concave sections of equal magnitude of
curvature, illustrating the asymmetry. The magnitude of contour
curvature contributes information, and negative curvature contrib-
utes more information. This picture is supported by recent empir-
ical data showing that perceptual comparisons along the contour
are generally slowed by curvature and slowed even further by
negative curvature, as compared with positive curvature of equal
magnitude (Barenholtz & Feldman, 2003). The greater information
content of negative curvature regions is also supported by subjects’
higher sensitivity to the introduction or removal of concavity than
of a comparable-sized convexity (Barenholtz, Cohen, Feldman, &
Singh, 2003).

Note again that our main conclusions—that information gener-
ally increases with curvature and is greater for concave as com-
pared with convex turns—do not depend on the precise choice of
a von Mises for the distribution (which is, though, supported by
empirical data; see discussion above). Rather they follow directly
from the symmetry of the distribution p(�) about its mean, which
is required to be positive following the assumption of a closed

13 Koenderink and Van Doorn’s (1982) analysis was developed in the
context 3-D surface curvature—and more precisely, Gaussian curvature—
which is somewhat more complicated than contour curvature. However, a
theorem by Koenderink (1984) ensures that, for smooth surfaces, the sign
of curvature of an occluding contour corresponds to the sign of Gaussian
curvature on corresponding surface regions. Hence their analysis transfers
easily to contour curvature.

14 Here we build on what Equation 13 tells us about the expected mean
of the distribution of turning angles on a closed curve. An alternative way
to articulate the consequences of contour closure might be that instead of
having n degrees of freedom (independent turning angles) in our sample, in
the closed case we now have n � 1, with that nth being constrained to close
the curve. This is a “harder” constraint, but it seems less felicitous, in part
because we have no a priori reason to differentiate one of the turning angles
from the other n � 1 (as they are not of course labeled in any way). Instead
we choose to use a constraint that treats all n samples symmetrically, for
example, a softer constraint on their expected mean.
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curve. The same conclusions would have followed from any sym-
metric monotonically decreasing distribution, although the exact
functional form of the resulting equations would be different.

It is especially interesting that no psychological assumptions
about mechanisms underlying part boundary identification were
necessary to derive the fact that more information is carried by
negative curvature. Rather, this followed simply from the assump-
tion of a closed curve and the implications this must have for the
distribution of turning angles as the curve is traversed.

It should be noted that there exists a situation in which the
contour is biased to turn away from the figure rather than toward
it: namely, where a simple closed curve bounds a hole or window.
In this case, the informational analysis predicts greater concentra-
tion of information in regions of the contour that are concave
relative to the shaped hole, rather than concave relative to the
surrounding material surface. Although this sounds counterintui-
tive at first, it is actually consistent with recent psychological work
on the perception of holes. In particular, holes present the follow-
ing perceptual anomaly: Although the region surrounding the hole
is clearly figural—in the sense of being a material surface that
occludes the backdrop visible through it—the hole is nevertheless
seen as a distinct perceptual entity that has its own intrinsic shape
(Palmer, 1999). Thus, unlike other forms of ground, recognition
memory for the shapes of holes has been found to be just as good
as for similarly shaped blobs (Rock, Palmer, & Hume, unpublished
manuscript cited in Palmer, 1999, p. 286). From the point of view
of the visual system, this means that although the surrounding
surface is given a figural status as far as depth and occlusion
relations are concerned, the hole is given a quasifigural status, as
far as shape analysis is concerned (Nelson & Palmer, 2001;
Palmer, 1999; Subirana-Vilanova & Richards, 1996; but see Ber-
tamini & Croucher, 2003). Therefore, it is natural to expect that
convexity relationships would be assigned relative to the hole,
rather than relative to the surrounding material surface.

Applications and Extensions

As Attneave (1954) suggested, specifying the distribution of
information along a contour plays a key role in our understanding

of how shape is mentally represented. Formalizing this observa-
tion, as we have done here, is a step toward a more rigorous
understanding of shape representation. The process of formaliza-
tion has, for example, already allowed us to extend Attneave’s
original claim—in particular, to demonstrate that regions of pos-
itive and negative curvature are not symmetric with respect to their
information content, as Attneave’s analysis assumed. In addition,
our measure has a number of natural applications and potential
extensions, some of which we mention here.

One use of a formal measure of shape information is in predict-
ing behavioral measures pertaining to the acquisition and repre-
sentation of shape information. For example, attention and eye
movements may be expected to be directed toward especially
informative portions of a shape. One potential difficulty, though, is
that our measure only captures one kind of information, namely,
information about the way a smooth contour bends (see discussion
below), whereas attention and eye movements may be optimized to
collect information more generally. A more straightforward pre-
diction is that observers will tend to be more sensitive to changes
in shape near highly informative regions than to those near unin-
formative regions, a prediction that has recently been confirmed
(Barenholtz et al., 2003). This connection is particularly exciting
because it suggests that formal information measures might be
useful more generally for predicting performance in change-
detection studies—an area of enormous recent interest in the
literature but with few formal models or predictions.

Another exciting direction for development is to connect formal
shape information with the underlying neural representation of
shape. There is increasing interest in how neural spike trains may
encode probabilities in an informationally optimal way (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1996). In the
context of shape representation, recent studies involving single-
cell recordings have revealed that a majority of neurons in area V4
respond preferentially to maxima of curvature magnitude along
contours (Pasupathy & Connor, 2002). Moreover, distinct sub-
populations of cells have been found to be selective for convex and
concave extrema of contour curvature, thereby indicating that the
sign of curvature is explicitly encoded as well. This raises the
enticing possibility that there may be a direct connection between
the formal information along shape contours and the underlying
neural “shape code.” A formal understanding of information along
contours, such as that which we have presented here, is a natural
first step toward the systematic investigation of such a connection.

There are a number of different mathematical directions in
which the information measure may be extended. One is to inte-
grate information along the length of a contour segment and use
this integral as a measure of its cumulative information: �Cu(�) in
the discrete case or �Cu(�) in the smooth case. This integration is
particularly interesting in light of the relationship between Shan-
non (1948) information and complexity, widely recognized in the
statistical and machine-learning literatures (Rissanen, 1989). In
this literature the negative log of a probability measure is often
identified with the “description length,” that is, the complexity of
a given message or pattern, because it expresses the length of the
given message in an optimally efficient code (see Duda, Hart, &
Stork, 2001, for an introduction). This raises the possibility that the
cumulative information would serve as a psychologically realistic
prediction of the descriptive complexity of a given contour—
closely related to the total “bending energy” (Mumford, 1994). A

Figure 4. Plot of surprisal along a contour using the asymmetric distri-
bution predicated on closure (Equation 16). Note how information is
greater along negatively curved (concave) portions of the contour than
along positively curved (convex) portions. This shape is constructed from
two mirror-image sine waves so that the indicated extrema all have iden-
tical magnitude of curvature but opposite sign (see Barenholtz & Feldman,
2003).
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formal measure of contour or shape complexity, in turn, would
have numerous applications in shape perception, shape comple-
tion, and contour integration. (See Singh & Fulvio, in press, for the
contribution of bending energy to the visual extrapolation of
contour shape.) Integrating information along an entire contour
also raises the possibility that different contours could be com-
pared in terms of their total information, that is, their subjective
shape complexity.

Caveat

Like any measure of information, ours measures information
relative to the specific prior beliefs of the observer—in our case
relative to the assumed prior distribution(s) over the change in
tangent direction along a contour. As in Shannon’s (1948) original
formulation, in which information is computed relative to a prob-
ability distribution over messages that is assumed known to the
receiver, our measure of information is strictly predicated on
particular knowledge and beliefs on the part of the observer. If
these assumptions are changed, then the information measure will
inevitably be changed as a result. (We explicitly consider one such
possibility in the Appendix.) It is important to emphasize that the
assumptions our theory attributes to the observer, as embodied in
our von Mises distribution and its variants, concern only the way
the contour is shaped locally and do not reflect any other more global
or configural properties, or indeed expectations of any other kind.

One consequence of this is that although curvature extrema
maximize shape information in our sense, they do not maximize all
kinds of information. Hence an observer seeking simply to max-
imize information intake would do well to turn his or her attention
to a random-number generator rather than to the curvature extrema
along a shape. However although this would maximize informa-
tion concerning the state of the random-number generator, it ob-
viously would not reveal much about the shape. The point is that
curvature extrema carry the most information about the local shape
of an object, but other parts of the visual scene might well carry
more information about other matters.

In this connection we should emphasize that we have not shown
that the local shape of the object is itself, a priori, informative
about any other parameters the observer might find of interest. A
natural question to ask is whether parameters in the environment,
including both shape parameters as well as others, tend to be
mutually predictive (Barlow, 1994), in the sense of exhibiting high
levels of mutual information (see Cover & Thomas, 1991). For
example, distinct tangents or turning angles along a contour might
be substantially redundant in some shapes or within parts of particular
shapes. Formalizing this idea might lead to an alternative way of
formalizing shape information, which we defer to future work.

Conclusion

Theories of shape have often emphasized the role of curvature
extrema (Richards, Dawson, & Whittington, 1986) and, in the
context of perceptual part structure, negative extrema specifically
(Hoffman & Richards, 1984; Hoffman & Singh, 1997; Singh &
Hoffman, 2001; Singh, Seyranian, & Hoffman, 1999). It follows
from our analysis that curvature extrema (in particular, positive
maxima and negative minima of signed curvature) are also local
maxima of information. Thus in a very concrete sense, these points

carry greater information about shape than do other sections of the
contour—consistent with Attneave’s (1954) observation. In addi-
tion to providing mathematical justification for Attneave’s claim,
our analysis also extends it by demonstrating, for closed contours,
a role for the sign of curvature. Whereas Attneave considered only
the magnitude of curvature—treating regions of positive and neg-
ative curvature symmetrically—our analysis shows that regions of
negative curvature literally carry greater information than do cor-
responding regions of positive curvature. The psychological valid-
ity of this asymmetry is supported by empirical work on the
representation of visual shape, which shows that the visual system
treats regions of negative and positive curvature quite differently
and is differentially sensitive to them. Finally, our analysis also
makes it clear that information attaches not to mathematical cur-
vature per se but rather to a normalized, scale-invariant version of
curvature (��s in our notation). Thus the contribution of the
geometrical structure of a shape to its mental representation does
not depend on scale (as curvature proper does); information is a
function of “shape only” in the sense of Kendall (1977).
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Appendix

Resnikoff’s (1985) Formulation

Resnikoff (1985) derived an information measure based on contour
curvature that, he argued, mimics Attneave’s (1954) proposal that infor-
mation is localized in regions of extremal curvature. Resnikoff deserves
credit, we feel, for placing Attneave’s proposal on a mathematical footing
for the first time. However, his derivation has two main problems that leave
it short of providing a mathematical substantiation of Attneave’s idea.
First, his approach is based on the idea of gaining information by making
successively finer measurements of a fixed (though unknown) quantity—
which seems inappropriate when applied to the problem of measuring
contour orientation at successive points along a contour. Second, the
behavior of the resulting information measure comes out wrong compared
with both Attneave’s claim and other psychological intuitions. In this
appendix we briefly review and critique his approach.

Resnikoff’s formulation is based on a general framework for quantifying
the amount of information gained by successive measurements of a given
parameter of fixed, but unknown, value. Whereas Shannon’s (1948) orig-
inal theory assumed an observer who knows the underlying probability
distribution of messages along the channel (like our shape observer, who
we assume to know the distribution of turning angle along the contour),
Resnikoff’s theory assumes a blank-slate observer lacking this or any
other prior information about the quantity in question. The question then is
how successive messages (measurements) augment such an observers’
knowledge.

Resnikoff’s general approach is as follows. Any measurement of a
parameter p has finite precision, meaning that it really consists of discov-
ering that the parameter falls within a certain interval of finite nonzero size.
Assume that a previous measurement has revealed p to fall within some
interval (a,b) of size |b � a|. Now we take a second measurement and find
that p falls within a smaller interval (a�,b�) of size |b� � a�| � |b � a|. How
much information have we gained by taking the second measurement?
Resnikoff shows that the information I (i.e., really the surprisal) of the
second measurement is

I � �log� �b� � a��
�b � a� � . (A1)

This expression is very general, showing how information is transmitted
via a measurement that increases precision.

Now Resnikoff relates this to curvature by applying Equation A1 to the
measurement of an angle and, specifically, to the turning angle � as one
moves around a smooth curve at discrete intervals �s. Resnikoff considers
that as one moves along the curve, successive measurements of the turning
angle constitute successive measurements of an angle, suitable for evalu-
ation via Equation A1. For a given turning angle � and a given reference
turning angle �R, this gives

I � �log� �

�R
� , (A2)

as the information due to a given turning angle � (cf. Resnikoff’s, 1985,
Equation 5.2). Just as in our formulation, this can then be related directly
to curvature via the relationship � � �s� to give

I � �log� �

�R
� , (A3)

as the expression for information as a function of curvature relative to a
standard reference curvature �R (Resnikoff’s, 1985, Equation 5.8). Resni-
koff argues next that, having fixed a standard curvature �R, information
will be extremal when curvature is extremal, exactly as Attneave (1954)
proposed.

However, there are several flaws in the above argument, which we feel
make Resnikoff’s claim unwarranted. First, application of Equation 17 to
the case of turning angle (or curvature) seems ill motivated. As derived and
developed by Resnikoff, this equation refers to the gain in information by
successive measurements of a given fixed quantity: that is, to changes in
the state of knowledge of the observer about a fixed but unknown param-
eter. But turning angles at successive points along a curve do not fit this
description. Turning angles have different values at different points along
the curve because of the inherent geometry of the curve—the fact that it
curves at different rates at different points—not because the observer has
changed his or her state of knowledge about some fixed quantity. Turning
angle decreases (or increases) because the curve bends not because the
observer has measured it more (or less) precisely. Hence applying Equation
A1 to turning angle does not seem valid.

Second, even accepting the validity of Resnikoff’s basic setup, the
behavior of his information measure comes out wrong. As Resnikoff noted,
his information measure depends always on the comparison (i.e., ratio) of
two turning angles (or curvatures). Hence to evaluate the information at a
particular point along a curve, one needs first a reference angle to compare
it with. There are two general ways of choosing this angle, both of which
Resnikoff discussed.

One is to select successive angles as one moves along the curve,
comparing each turning angle with the previous one. This leads to infor-
mation depending not on the turning angle but rather on the way it (and in
the smooth version, the curvature) changes as one moves along the curve.
This means, extrapolating to the smooth version, that information would
depend on the derivative of curvature with respect to arc length—not on
curvature itself. This is not what Attneave (1954) proposed, and it is not,
in fact, psychologically plausible. For example, it would imply that highly
curved regions of a contour that were locally nearly circular would contain
almost no information.

The second approach, which Resnikoff in any case favored, is to fix
a reference turning angle somewhere on the curve and compare all
others with it. This way, he argued, information will be extremal when
turning angle, and thus curvature, is extremal with respect to this fixed
standard. The problem now is that information will be extremal in the
wrong way— or more precisely in one of several wrong ways depending
on the choice of reference angle. Imagine that we choose a straight
(zero-curvature) reference point. Now ratios of other turning angles to
the reference will always be infinite (undefined, �log[0]), which is
clearly undesirable. So instead, select as a reference a high-curvature
point. Now points with similarly high curvature will have low infor-
mation, whereas points with low curvature will have high information,
exactly the opposite of Attneave’s (1954) proposal. Finally, consider
fixing some low-curvature point as the reference; this is Resnikoff’s
preference. Now regions of higher curvature will contain more infor-
mation, with curvature extrema providing the most information, con-
sistent with Attneave’s proposal. However straight (zero-curvature)
regions will have infinite (undefined) information, which seems qual-
itatively the wrong behavior.

In our formulation, in contrast with Resnikoff’s, the probability of a
turning angle derives not from a comparison to another one but by refer-
ence to a particular visual expectation about how smooth curves will
continue, namely, that they will most likely continue straight (in the
open-curve case, Equation 3). Probability is never zero, and thus suprisal
is never infinite.

Indeed, the essential difference between our approach and Resnikoff’s
concerns the nature of the observer’s prior assumptions about the turning
angle. In Resnikoff’s formulation, all the observer knows when taking a
measurement is that a prior measurement revealed it to fall within a
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particular interval; the observer thus has no particular expectation about
where inside that interval the next measurement is likely to fall. This is
equivalent to an assumption of uniform probability density over the given
interval, with all values equally likely. By contrast, in our formulation, we
assumed that points had been sampled from a smooth curve, so that
probability density about the position of the next point was concentrated in
the “forward” direction, at zero turning angle; this assumption was encap-
sulated in our von Mises prior. As discussed, this general form (centered at
zero and monotonically decreasing away from zero—like a von Mises
though not exclusively so) is supported by empirical data and, moreover, is
related to the assumption that the points were generated by sampling a
smooth curve. Hence in the context of the psychological representation of
smooth contours, our nonuniform, forward-centered assumption seems
justified.

However, it is well worth noting that in other contexts, something closer
to Resnikoff’s uniform density assumption might be appropriate. For
example, if the series of vertices were generated by a fractal process or

perhaps a Brownian process with successive angles generated from a
uniform density, rather than by sampling from a smooth curve, then
Resnikoff’s assumptions would be more apt.A1 In this case, information
would follow Resnikoff’s prescriptions more closely than ours. Of course,
the curve resulting from such a process would little resemble the smooth
contours discussed above. This raises the fascinating empirical question of
whether the human visual system can “tune” its turning-angle distribution
to differing environments or contexts and, if so, whether there is any way
of empirically measuring the concomitant differences in the information
measure. These and other questions await future research.

A1 We are grateful to Howard Resnikoff for this suggestion.
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