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Principles of Contour Information: Reply to Lim and Leek (2012)
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Lim and Leek (2012) presented a formalization of information along object contours, which they argued
was an alternative to the approach taken in our article (Feldman & Singh, 2005). Here, we summarize
the 2 approaches, showing that—notwithstanding Lim and Leek’s (2012) critical rhetoric—their ap-
proach is substantially identical to ours, except for the technical details of the formalism. Following the
logic of our article point by point, Lim and Leek (a) defined probabilistic expectations about the geometry
of smooth contours (which they based on differential contour geometry, while we used a discrete
approximation—the only essential difference in their approach), (b) assumed that information along the
contour was proportional to the negative logarithm of probability, following standard information theory,
and then (c) extended this formulation to closed contours. We analyze what they described as errors in
our approach, all of which rest on mathematical misunderstandings or bizarre misreadings of our article.
We also show that their extension to 3-dimensional surfaces and their “modified minima rule” contain
fatal deficiencies.
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In Feldman and Singh (2005), we presented a formal answer to
a question first posed by Attneave (1954): Which portions of a
visual contour convey the most information? This problem lies at
the foundation of the psychological representation of visual shape,
as it depends on the way the brain encodes the geometry of the
bounding contours of objects. But aside from an important contri-
bution by Resnikoff (1985), this problem had not received a
coherent mathematical answer in the decades since Attneave’s
article.1 In recent years, however, an increasingly sophisticated
understanding of the probabilistic representation of visual proper-
ties has made an effective approach to this problem possible. In our
2005 article, we proposed a framework for contour information
based on a set of very simple ideas, which boil down the following
three points.

1. We define probabilistic expectations about the geometry of
smooth contours, based on the assumption that smooth contours
are most likely to continue to be straight at each point, with a
decreasing likelihood of larger turning angles (see Figure 1). We
expressed this idea mathematically by assuming that the turning
angle � follows a von Mises density (similar to a normal or
Gaussian density2), p(�) � exp(� cos �). (We also considered

several weaker or more general assumptions; see discussion be-
low.) That is, we assumed that contours tend to continue to be
straight with some random deviation about this direction.

2. Following the principles of standard information theory, we
assume that the information at each contour point corresponds to
the surprisal of its turning angle �, defined as �log p(�). In other
words, the shape information at each contour point depends on
how “surprising” the geometry at the point is, given our probabi-
listic expectations p(�) about how the contour will continue. This
leads directly to Attneave’s (1954) claim that information content
increases with the curvature of the bounding contour.

3. Information along closed contours (e.g., object boundaries)
can be understood by modifying the distribution of the turning
angles p(�) based on the constraint that the contour must eventu-
ally close. This yields the mathematical result that points of neg-
ative curvature (concavities) convey more information than do
points of positive curvature (convexities) because they are more
“surprising.” This extends Attneave’s (1954) original claim and is
consistent with the psychological finding that convexities and
concavities play different roles in shape perception (e.g., Baren-
holtz & Feldman, 2003; Cohen & Singh, 2007; de Winter &
Wagemans, 2008a, 2008b; Hoffman & Richards, 1984; Hoffman
& Singh, 1997; Koenderink & Van Doorn, 1982; Panis, de Winter,
Vandekerckhove, & Wagemans, 2008) and that changes to shapes

1 See the Appendix of our original article for a critique of Resnikoff’s
(1985) approach.

2 The von Mises is the counterpart of the Gaussian or normal density
suitable for angular measurements (Mardia & Jupp, 2000). � is a parameter
acting like the reciprocal of the variance of a normal distribution. The two
functions have provably analogous properties and, in any case, are nearly
identical over the range under consideration.
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are easier to detect at concavities than at convexities (e.g., Baren-
holtz, Cohen, Feldman, & Singh, 2003; Bertamini & Farrant, 2005;
Cohen, Barenholtz, Singh, & Feldman, 2005; Vandekerckhove,
Panis, & Wagemans, 2008).

This approach is mathematically coherent and consistent with
standard information theory, and moreover, it can easily be ex-
tended in several ways. One that we mentioned in the original
article is that information along an extended contour C can be
understood by integrating suprisal along that contour, yielding a
natural measure of contour complexity ��C log p(�). Another is
that information can be extended to include the contribution of
higher derivatives of the contour—for example, changes in curva-
ture—merely by placing analogous probabilistic assumptions on
those derivatives, such as the assumption that the change in the
turning angle (like the turning angle itself) is most likely to be
zero. This corresponds to an expectation of cocircularity, that is, a
tendency to continue contour curvature, which is supported by
empirical evidence in the context of contour integration (e.g.,
Feldman, 1997; Pizlo, Salach-Goyska, & Rosenfeld, 1997) and the
visual extrapolation of contours behind occluders (Singh & Fulvio,
2005, 2007).

Lim and Leek’s (2012) Approach

Lim and Leek (2012) presented what they describe as an alter-
native approach to formalizing contour information, and identified
what they describe as errors in our development of the formalism.
Notwithstanding their critical rhetoric, their approach echoed our
framework 1–3, point by point. The only substantive difference,
detailed below, was that their formulation started from probabilis-
tic assumptions about the curvature � of a smooth contour (a
differential property, defined in the limit as arc length goes to
zero), while ours began with probabilistic assumptions about the
turning angle (a discrete quantity, measurable in the image). Spe-
cifically, they assumed a probability density function over curva-
ture, p(�)—analogous to our density over turning angle p(�). From
there on, their development proceeded in a manner exactly parallel
to ours:

1�. Assume contour curvature has distribution p(�) that
peaks at zero curvature (i.e., “straight”) and decreases
with increasing curvature magnitude.

2�. Assume that information depends on the corresponding
surprisal, �log p(�).

3�. Show that the above formulation can be modified for the
case of closed contours by modifying the distribution
p(�) to reflect the constraint that the contour must even-
tually close.

Lim and Leek (2012) then extended this formulation to three
dimensions (see below). Regardless of arguments about the ben-
efits of their continuous formulation versus our discrete one, it is
important to recognize that beyond this technical distinction (cur-
vature vs. turning angle), their approach was essentially concep-
tually identical to ours—hardly the “novel approach” their article
promises.

Discrete Versus Continuous Foundations

Contour curvature is a differential property of smooth curves,
technically the derivative of the tangent direction with respect to
arc length (and therefore determined by the second derivative of
the curve). As such, it is defined as a limiting value as one
considers the abstract smooth curve in a neighborhood of dimin-
ishing size—in effect, it quantifies how rapidly the curve is bend-
ing in an infinitesimal neighborhood. By contrast, the turning
angle � measures how much the curve has actually “turned” in a
given nonzero interval. Basing a theory of shape information on a
differential property may be appealing to a mathematician con-
cerned primarily with differential geometry, but we choose to base
our approach on discrete quantities that are actually measurable in
the image because this ties our work to problems faced by the
biological visual system, which can only measure contours with
finite resolution. This also allowed us to connect our analysis to the
extensive psychophysical and physiological literature on contour
integration, which has been an active area of research at least since
the early 1970s (e.g., Elder & Goldberg, 2002; Field, Hayes, &
Hess, 1993; Geisler, Perry, Super, & Gallogly, 2001; Geisler &
Perry, 2009; Lamote & Wagemans, 1999; Smits & Vos, 1987;
Uttal, 1973).

In the literature on contour integration, researchers have exam-
ined how the visual system groups discrete local elements (e.g.,
dots, oriented edges, or Gabor patches) into representations of
extended contours. Among other things, this literature has docu-
mented the geometric relations—most importantly, the turning
angles between neighboring discrete elements—that support the
percept of an extended contour. (Indeed, by definition, one cannot
actually study empirical properties of contour curvature without
going via a discrete approximation such as turning angle.) These
psychophysical findings have led to the important idea of an
“association field” (Field et al., 1993; Geisler et al., 2001), have
been linked to the statistics of natural images (Elder & Goldberg,
2002; Geisler & Perry, 2009; Geisler et al., 2001), and have
informed physiological findings about long-range horizontal con-
nections between orientation-sensitive units in the primary visual
cortex (e.g., Bosking, Zhang, & Fitzpatrick, 1997). Performance

Figure 1. In the Feldman and Singh (2005) approach, a contour is
assumed to continue with a turning angle that is distributed as a von Mises
(approximately normal) distribution with a mean of 0° (i.e., straight). The
information at a point depends on the surprisal of the turning angle, �log
p(�).
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on contour integration tasks has also allowed researchers to esti-
mate the distribution of the turning angles that the visual system
implicitly expects. Specifically, the Gaussian or von Mises distri-
bution of the turning angle has been documented in a number of
studies (Feldman, 1996, 1997, 2001). Hence, our assumption of
such a distribution, unlike Lim and Leek’s (2012) adoption of a
distribution over curvature itself, was not simply a mathematical
abstraction but a scientifically documented premise.

Moreover, as Lim and Leek (2012) eventually acknowledged,
unlike turning angle, curvature is not scale invariant. This means
that any information theoretic treatment would, likewise, have
information varying with the scale, or overall size, of the object.
Lim and Leek only mentioned this late in their development and
asserted that it can be patched, but their solution is ad hoc—
repairing a problem that stems from the foundation of the theory—
and without empirical support.

Technical Discrepancies

In previous articles on turning angle, Feldman (1996, 1997,
2001) found psychophysical evidence for a Gaussian or von Mises
density for the turning angle �, which is corroborated by physio-
logical work on the tuning properties of orientation-selective neu-
rons in the primary visual cortex (Swindale, 1998). But in Feldman
and Singh (2005), we noted that certain key claims about contour
information do not depend on the specific form of the distribution
but, instead, were guaranteed as long as the distribution p(�)
peaked at zero (in the open-contour case) and decreased monoton-
ically with increasing turning angle. Indeed, as we stated in the
original article, the fact that contour information rises with turning
angle stems directly from the assumption of decreasing probability
with larger turning angles, via the very basic relation that surprisal
is simply �log p(�), an assumption that Lim and Leek (2012)
explicitly adopted. Indeed this basic observation—that information
along contours depends on probabilistic expectations about how
curves continue—was the principal contribution of our article, and
this seems to have been embraced wholeheartedly by Lim and
Leek (2012).

Lim and Leek (2012) did dispute our more specific claim that
there is a bound on information as a function of curvature regard-
less of distributional form, which stems from a much more tech-
nical argument. Our claim was that the probability of more ex-
treme turning angles is bound by a limit that diminishes with the
increasing turning angle because of what is called the Chebyshev
bound. The Chebyshev bound shows that the tail area of any
probability distribution must diminish as one goes further out in
the tails, regardless of the form of the distribution. What this
means in our context is that the probabilities of turning angles fall
under a bound that decreases monotonically as they get more
extreme. Lim and Leek (2012) described our derivation as math-
ematically flawed, but their argument stems from a puzzling con-
fusion between the terms “probability” and “probability density.”
Probability density is a quantity associated with a continuous
random variable, such as the turning angle, which must be inte-
grated over some nonzero interval in order to yield a nonzero
probability. Unlike probability, probability density can take values
higher than 1, so long as the integral over any interval—the
probability itself—does not exceed 1. For smooth densities over
continuous random variables (like the one over turning angle

considered in our article), the “probability” per se of a single point
value—say, 45°—is automatically 0 (because, again, it must be
integrated across some nonzero interval to amount to a nonzero
value). Hence, an expression such as “the probability of an angle
�0” really means “the integral of the probability density function in
a small neighborhood of �0,” more properly notated ��0

�0	ε f (�) d�,
where f( � ) is the probability density function—a notation we
avoided in our article as pedantic and potentially confusing. In
words, what this means is that the probability of a given angle
corresponds to the area under the density curve over a small range
(e.g., the probability that the turning angle falls between 45° and
46°)—an area that is a subset of the tail and thus necessarily
smaller than the tail, which Chebyshev showed is itself bounded in
size. This was our original argument, and it is correct. Lim and
Leek’s suggestion that it leads to an absurd conclusion—that there
is no bound on the magnitude of probability—depends entirely on
perversely interpreting p(�) as density rather than probability,
which results only in showing that probability density can be larger
than 1—which is correct, but trivial. Once one distinguishes cor-
rectly between probability and probability density, Lim and Leek’s
Equation 3, which stated that the area under the curve in the
neighborhood near a given angle, p(t 	 
t)
t in their notation, is
limited by the Chebyshev bound, becomes precisely equivalent to
our assertion that they claim to dispute. In sum, the only way our
claim could appear to be invalid is if one misreads the notation
p(�) to mean probability density at an infinitesimal point—an
interpretation that is no way supported by our article and is very
unlikely to be drawn by any mathematically knowledgeable reader.
The authors’ point is therefore most charitably understood as a
pedantic criticism about notation and less charitably understood as
a deliberate obfuscation intended to create the appearance of an
error.

Returning to the main issue, the primary contribution of our
original article was the observation that information along con-
tours can be understood as Shannon surprisal (�log p), once one
adopts a suitable probability model for contours. One can make a
range of assumptions about this probability model, with concom-
itant constraints on the resulting surprisal. We can divide these
assumptions into three basic cases, all of which were mentioned at
various points in our original article, but which Lim and Leek
(2012) conflated in their discussion:

• Strongest Assumption

One can assume a particular distribution of turning angle, such
as that it is Gaussian or von Mises. As documented above and in
our original article, such an assumption is well supported by the
psychological literature. In this case, surprisal clearly increases
with turning angle. Lim and Leek (2011) did not dispute this.

• Weaker Assumption

Instead of assuming a particular functional form for the distri-
bution, we can simply assume that the distribution has a probabil-
ity that is monotonically decreasing with the increasing turning
angle. In this case, the increase in suprisal �log p with increasing
turning angles again follows immediately.

• Weakest Assumption

680 SINGH AND FELDMAN



Finally, instead of assuming a monotonically decreasing prob-
ability distribution, we can instead make no assumptions about the
functional form of the distribution, in which case (the Chebyshev
argument shows) one can still make a surprisingly strong claim
about angle probability, namely that it is bound by a monotonically
decreasing function (and hence that contour information is bound
by a monotonically increasing function). Lim and Leek (2012)
disputed this argument, but in so doing, they repeatedly conflated
it with one of the above assumptions. (They also conflate “prob-
ability” and “probability density,” as we noted above.) The fact
that the bound decreases monotonically obviously does not mean
that the function itself decreases (which is why our original article
asserted only that the bound decreases in this case). Of course, in
practice, a decreasing bound places a strong constraint on likely
angles since it implies that the range of possible angle probabilities
gets tighter as the angle gets larger.

Another point of criticism raised by Lim and Leek (2012) is that
as the sampling density of the contour is increased, the effect of the
turning angle on information content gets progressively smaller.
This criticism is equally misplaced. For any finite-resolution mea-
surement system, it must be the case that the smaller the window
through which one examines a smooth contour, the closer to linear
it looks. If this microscopic view of the contour is all that is
available to the system, it would indeed have to conclude that that
contour segment is (locally) flatter. Their criticism thus simply
boils down to the fact that in a sufficiently small neighborhood, all
smooth curves approximate straight lines. From the point of view
of perception, this is uninteresting because the visual system does
not have access to an arbitrarily fine view.3 Moreover, their
criticism presupposes that when the separation between consecu-
tive sample points is decreased, the dispersion (or spread) of the
von Mises distribution on turning angle will remain unchanged.
This assumption is unjustified. Simple considerations of the ge-
ometry of smooth contours suggest that the distribution of turning
angles would be expected to be tighter (smaller spread) when the
contour is examined through smaller apertures. This criticism of
Lim and Leek’s (2012) is thus based on a straw man—a patently
invalid extension of our framework, which serves only to confuse.
Finally, Lim and Leek’s complaint about our visualization code is
trivial—analogous to complaining about the scale of the y-axis in
a data plot.

Lim and Leek’s (2012) Three-Dimensional Extension
and the “Modified Minima Rule”

Later in their article, Lim and Leek (2012) attempted to gener-
alize their approach from two-dimensional contours to three-
dimensional (3D) surfaces. Unfortunately, their proposed 3D ex-
tension fails several basic tests of plausibility.

Curvature on a 3D surface is substantially more complex than
for a contour, and several alternative formulations of curvature are
possible (Koenderink, 1990). At any given point on a surface, the
curvature of a path depends on the direction in which it is taken;
there is a different curvature value for each possible direction. Of
these directions, one has maximal curvature and one has minimal
curvature, and these form an orthogonal basis for describing sur-
face curvature. These two directions determine the so-called prin-
cipal curvatures, �1 and �2, which must be combined in some way

in order to characterize “the curvature” of the surface at that point.
Different measures of surface curvature combine them in different
ways: Gaussian curvature takes their product and mean curvature
takes their average, whereas curvedness and shape index use more
complex combination functions (Koenderink, 1990). A central
challenge in defining information content for surfaces is to deter-
mine how exactly the two principal curvatures contribute to the
surprisal. Lim and Leek (2012) unfortunately disregarded this deep
issue altogether and simply adopted Gaussian curvature as a basis
for their information measure—giving no motivation or principled
reason for their choice and indeed not even mentioning that alter-
native measures of surface curvature exist.

Unfortunately, Gaussian curvature is not in our view an ade-
quate basis upon which to quantify information. Most obviously,
Gaussian curvature is zero if either of the two principal curvatures
is zero—such as everywhere along the curved surface of a cylin-
der. More generally, Gaussian curvature is zero everywhere along
the surface of a generalized cylinder with a straight axis but an
arbitrary (though fixed) cross-section—regardless of the curvature
profile of the cross-section (e.g., the cookie-cutter cat in Figure
2A). This means that Lim and Leek’s (2012) formalism predicts
that all points on such a curved surface convey identical—and
minimal—shape information. Similarly, the surface in Figure 2B,
although it has ridges and valleys of varying strengths, neverthe-
less has zero Gaussian curvature everywhere (because one of the
two principal curvatures is consistently zero). That these variations
in surface geometry convey no variation in shape information
blatantly contradicts intuition, and this is not supported by any
empirical finding of which we are aware. It is disappointing that
these rather obvious defects in the formulation are not acknowl-
edged, much less addressed, in Lim and Leek’s article.4

Lim and Leek (2012) went on to argue that their measure of 3D
surface information implies a constraint on 3D part boundaries,
namely, that they can only occur within regions of negative Gauss-
ian curvature (saddle-shaped regions). Indeed, the tendency for
such regions to contain part boundaries was observed almost three
decades ago in a well-known article by Koenderink and van Doorn
(1982), which Lim and Leek did not cite. Lim and Leek gave no
argument whatsoever for any mathematical connection between
shape information as they have quantified it and part boundary
status—which makes it difficult to evaluate its intended scope.

In any case, it is readily apparent that part boundaries need not
fall only within negative Gaussian curvature regions, as Lim and

3 A more elaborate treatment of the information content of contours
should of course take into account analysis at multiple scales. Although the
details of such an analysis await future work, our original article set up the
mathematical components that would be required for it.

4 It may be argued that surfaces with zero Gaussian curvature are
nongeneric because one of the principal curvatures must be exactly zero.
However, whether such surfaces are generic depends on one’s generative
model for surfaces. If the distribution on each principal curvature peaks
sharply at 0, for example, such surfaces will typically not be nongeneric.
Further, small perturbations to the zero principal curvature on such surfaces
will perturb the Gaussian curvature only slightly away from zero. Hence,
even taking small perturbations into account, it would still be the case that
variations in the nonzero principal curvature (such as the outline of the
cookie-cutter cat in Figure 2A) will affect the surface surprisal only
minimally.
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Leek’s (2012) “modified minima rule” asserts. Many biological
limbs have boundaries that do not fall exclusively within negative
Gaussian curvature regions but are nevertheless perceived as psy-
chological parts of objects (see, e.g., de Winter & Wagemans,
2006; Singh, Seyranian, & Hoffman, 1999). An example is the
human shoulder joint, which has negative Gaussian curvature
underneath but positive Gaussian curvature above. Thus, Lim and
Leek’s definition of part would seem to exclude human arms, as
well as legs and most animal limbs. Indeed, it is well established
that the loci of negative minima are by themselves insufficient to
segment shapes into parts, and various researchers have proposed
geometric factors beyond negative minima for part decomposition
(e.g., de Winter & Wagemans, 2006; Siddiqi, Tresness, & Kimia,
1996; Singh & Hoffman, 2001; Singh et al., 1999). By contrast,
Lim and Leek’s proposal simply added a further constraint on
which negative minima should be used (namely, those that lie in
hyperbolic regions). It does nothing to address the limitations of
negative minima that have been discussed in the parts literature,
and thus, it contributes little to our understanding of part decom-
position.

The surfaces in Figure 2 illustrate another shortcoming of lim-
iting part boundaries to negative Gaussian curvature regions:
These surfaces contain no negative Gaussian curvature regions at
all but do contain several fairly salient part boundaries (e.g., at the
base of the ears or tail of the cookie-cutter cat and along the valleys
of “wave”).

Conclusion

In summary, we are gratified that Lim and Leek (2012) seem to
agree with the major elements of the approach we proposed in our
2005 article, though we are somewhat baffled by the negative way
in which they have framed their agreement. Our approach is
simple, is internally coherent, agrees with both intuition as well as
psychophysical and physiological data on contour perception, and
harmonizes with the growing literature on probabilistic approaches
to visual perception. The defects that Lim and Leek listed stem
either from mathematical misunderstandings or from bizarre mis-

readings of our article—some of which we hope we have clarified
above. Unfortunately, while the prospect of extending this ap-
proach to 3D is appealing, the simplistic manner they propose to
do so, based solely on Gaussian curvature, is unconvincing. Still,
we welcome attention to this important problem and look forward
to what we hope will be more edifying developments in the future.
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