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Completing visual contours: The relationship
between relatability and minimizing inflections

MANISH SINGH and DONALD D. HOFFMAN
University of California, Irvine, California

Visual completion is a ubiquitous phenomenon: Human vision often constructs contours and sur-
faces in regions that have no sharp gradients in any image property. When does human vision inter-
polate a contour between a given pair of luminance-defined edges? Two different answers have been
proposed: relatability and minimizing inflections. We state and prove a proposition that links these two
proposals by showing that, under appropriate conditions, relatability is mathematically equivalent to
the existence of a smooth curve with no inflection points that interpolates between the two edges. The
proposition thus provides a set of necessary and sufficient conditions for two edges to be relatable. On
the basis of these conditions, we suggest a way to extend the definition of relatability (1) to include the
role of genericity, and (2) to extend the current all-or-none character of relatability to a graded mea-
sure that can track the gradedness in psychophysical data.

Visual completion is a process of human vision that can
construct contours and surfaces in regions that have no
sharp gradients in any image property. Researchers dis-
tinguish two kinds of visual completion (Michotte, Thines,
& Crabbe, 1964/1991). In modal completion, the percep-
tion of a completed surface is accompanied by a perceived
brightness gradient along its completed contour. For ex-
ample, in Kanizsa’s (1979) illusory triangle (Figure 1b),
the region inside the triangle is seen as being whiter than
the surrounding white. In amodal completion, by con-
trast, there is no perceived brightness gradient, even
though one is aware of the shape of the completed sur-
face. For example, in Figure 1a, one is aware of a unified
elliptical shape passing behind the rectangle—even
though one sees no brightness edges in the region where
the ellipse is occluded by the rectangle.

Human vision does not, however, always complete
contours to form unified objects. In Figures Icand 1d, for
example, the displays of Figures 1a and 1b have been re-
spectively modified so that one no longer has the percep-
tion of unified, completed shapes. What spatial factors
determine when human vision will, or will not, complete
a visual contour?

This question has been addressed in the literature in
two different ways. One proposal, owing to Kellman and
Shipley (1991), is that the process of interpolation be-
tween two luminance-defined edges proceeds when the
two edges are relatable to one another. The precise defi-
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nition of relatability is as follows (see Kellman & Ship-
ley, 1991, pp. 174-175):

DEFINITION 1. Let E| and E, be two surface edges, with
sy and s, as their respective linear extensions (see Fig-
ure 2). Then the two edges are said to be relatable if
(1.1) the two linear extensions s, and s, intersect; and
(1.2) their outer angle of intersection (angle ¢ in Fig-
ure 2) is acute.!

For example, in Figures la and 1b, the various edge
pairs are relatable, whereas in Figures 1c and 1d, they are
not. In a number of experimental studies, Shipley and
Kellman (e.g., Shipley & Kellman, 1992a, 1992b) have
shown the psychological relevance of the notion of re-
latability. For example, they found that the strength of a
perceived interpolated contour decreases steadily as a
given edge pair deviates from perfect relatability (as in
the displays in Figures ¢ and 1d).

A different proposal, owing to Takeichi, Nakazawa,
Murakami, and Shimojo (1995), involves the role of inflec-
tion points (i.e., points where a curve reverses its sign of
curvature). According to this proposal, (1) human vision
completes visual contours in a way that minimizes the
number of inflection points on the interpolated contour,
and (2) the more inflection points an interpolated contour
needs to have (while maintaining continuity of direction),
the lower its perceptual strength—and the less likely it is
that visual completion will take place.? Takeichi et al.
have presented evidence that subjects indeed complete vi-
sual contours in a way that is consistent with these re-
quirements. For the displays in Figures 1¢ and 14, for ex-
ample, any smooth curve interpolating between the
various edge pairs must have at least one inflection
point—and this might explain the absence, or weakness,
of perceived interpolated contours in these figures. Take-
ichi et al. also note that modal completion (e.g., in illusory
figures, such as Kanizsa’s triangle) takes place only when
it is possible to have a smooth interpolating curve that
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Figure 1. Two examples of visual completion: (a) amodal com~
pletion of an ellipse behind the rectangle, and (b) modal complie-
tion of a triangle in front of the disks. In (¢) and (d) the percep-
tion of completed figures is greatly reduced.

has no points of inflection—hence modal completion
may have a higher threshold than amodal completion. In
addition to the requirement of minimizing inflection points,
Takeichi et al. also require that the end points of the in-
terpolated contour (i.e., the points where the interpolated
contour meets the luminance-defined edges) not be points
of inflection on the completed curve, and that the inter-
polated contour continue the curvature of the edges.

The theory of relatability and the theory of inflections,
therefore, both provide a possible explanation for the
same phenomenon-—namely, the presence or absence, as
well as the strength, of perceived interpolated contours.
Furthermore, the two proposals seem related. For exam-
ple, in Figures 1c and 1d, making the various edge pairs
nonrelatable also introduces inflection points on any
smooth curve interpolating between them. (Note, however,
that the edge pairs in Figure 1 have the special property
that the two edges in each pair are parallel.) In this paper,
we address the question of what, in general, the precise
relationship between these two proposals is.

In the next section, we state and prove a proposition
which shows that, under appropriate conditions, relata-
bility is in fact mathematically equivalent to the condi-
tion that there exists a smooth curve with no inflection
points that interpolates between the two edges. This propo-
sition therefore provides a set of necessary and sufficient
conditions (and hence, an alternative definition) for re-
latability, in terms of properties that an interpolating
curve must satisfy—and this includes the property of hav-
ing no inflections. Following this, we consider some other
points of difference between the theoretical framework
of Kellman and Shipley (1991} and that of Takeichi et al.

(1995). We end with some constructive suggestions on
possible ways to extend the notion of relatability.

RELATABILITY AND INFLECTIONS:
A MATHEMATICAL RESULT

In Kellman and Shipley’s definition of relatability, it
is clear that an edge is essentially thought of as an or-
dered pair (a, t), where a is a point in R2 (the point at which
interpolation must begin), and a unit direction vector t
(giving the direction of the edge at point a), along which
the interpolated contour must continue. So, for example,
neither the length of the edge, nor its curvature, affects
the definition of relatability (see Definition 1).3

For any such ordered pair (a, t), with a, te R? and
1t} = 1, let R(a, t) denote the open ray originating at a,
and in the direction of t. That is,

R(a, ty = {xeRx=a+rt;r>0}.

Then the definition of relatability can be reformulated
as follows.

DEFINITION 1a. Letaj, a,, t,, t,e R, with ||t || = {|t,] = 1.
The two edges (a,, t,) and (a,, t,) are relatable (see Fig-
ure 3) if

(la.l) R(ay, t)) NR(ay, t,) #

and
(1a.2)| 9] < g,

where @ is the directed angle from t, to —t,.

With this simple reformulation, we can now state the
proposition. Recall that a C! curve is one that is first-order
continuous everywhere; and a piecewise C2 curve is one
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Figure 2. Kellman and Shipley’s (1991) definition of relatabil-
ity: The linear extensions of the two edges must meet, and their
outer angle of intersection must be acute.



Figure 3. A C! and piecewise C? curve that interpolates be-
tween two relatable edges (Kellman & Shipley, 1991, Appendix B).
This curve satisfies the conditions of our propesition.

that is second-order continuous everywhere except, pos-
sibly, for finitely many points.

PRrOPOSITION. Two edges (a, t,) and (a,, t,) are relat-
able if and only if there exists a regular C1, and piecewise
C?, plane curve o:: [0, L] — R2, with curvature K, that
satisfies the following three properties: (1) a(0) = a;
oLy =a,; ’(0)=t; a'(L) = —t,;(2) K,(s) does not re-
verse sign for 0 <s<L; and (3) fo Ik, (s)ds <m/2.

Condition 1 simply says that the interpolating curve
must start at the point a,, with tangent t,, and terminate
at the point a,, with tangent —t,. Condition 2 says that the
curve should have no points of inflection. Condition 3 says
that the interpolating curve must not turn through a total
angle of more than &/2. We will comment further on Con-
dition 3 immediately following the proof of the proposition.

Proor. (I) Let us first assume that the two edges (a;, t;)
and (a,, t,) are relatable. We need to show the existence
of a C!, and piecewise C?, plane curve « that inter-
polates between these two edges, and satisfies Properties
1-3 of the proposition.

Ift, and t, are parallel, relatability (1) forces R(a,, t,)
and R{a,, t,) to be colinear, for otherwise R(a, t,)N
R(a,, t;) = (& and (2) forces ¢ = 0, for otherwise Con-
dition 2 of Definition 1a is violated. In this case, we can
simply define ¢ to be the straight-line segment joining a,
to a,, as follows,

oafs) = a; +st,, s€[0, L],

where L = [la, — a,||. Then «a trivially satisfies Proper-
ties 13 of the proposition.

If t; and t, are not parallel, we use the construction of

Skeath (Kellman & Shipley, 1991, Appendix B),* and
show that this curve satisfies the three properties.
Assume without loss of generality that a, = 0, the ori-
gin of the coordinate system, and t;, = i = (1, 0), the unit
vector along the positive x-direction. Then, —t, = (cos g,
sing). Invoking Property 1 of relatability, let R(a,, t,) N
Ria,, ty) = {x4}. (Two nonparallel rays either are dis-
joint or intersect in a point.) Assume also that ja; —
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Xl <lla, — x4 i and ¢> 0. (The proofs in the other cases
are smnlar )

The curve « interpolating from a, to a, is now con-
structed by piecing together an arc of a circie and a
straight-line segment (see Figure 3), as follows.

If fa, — x,|[ <lla, — x4]i, there exists a point b on
R(a,, t,), lying between a, and Xg, such thatla; — x, || =
b= x|l Iffla; — x| =[la, = x|, take b =2, . Lett; =
j = (0, 1), the unit vector along the positive y-direction,

and
_[ LAY 1
ty -—ECOS[(Z)%‘ 2},sxn(¢+ 2]}

Then, the two rays R(a,, t;) and R(b, t,) must intersect.
Call their point of intersection ¢. Then, by our construc-
tion, we have

la, —¢ll=|b-c(=p),

since the two triangles Acxya, and Acexyb are congruent.
Also, let ||b — a,{| = /.
Now, define a: [0, L]

{ 1
k4 3n <s<
a(s)“%c-i-p[cos( > +pj sm( > +p11,0_s__p¢,

- R2 by:

U"(S“P(P)tz, P¢SSSP¢+1a
where L = p¢ + /.
Then, we have
(3n 3 s )]
-3 + =4+ = 1,0 ,
o(s)= { am{z p} cos[ > P)J’ <s<po
[—t,, pop<s<lL.
Therefore,

a(0)=c+p(cos—337-r- sin %ﬁ) a,

a(Ly=b—(L-pg)t, =b-It, =a,,
a'(0) = ( sm%ﬂ— cos 2} (1,0)=t,,

Clearly, « is unit speed (Jo'(s)}] = 1 for 0 <s < L),
and it is C'? on each of its two components {arc of circle,
and straight-line segment). Also, letting «_. denote the
left-hand limit and ¢, denote the right-hand limit, then

am(p¢)=c+p{cos{3 *q)) sm(3” +¢ ;1

a.(pg)=b,

(3

1y ) /37z v{
o —sin] 2= +¢ |, ¢
(p9)= ? sin| 3 +9 , cos|

27 f.ﬁ
=(cosg,sing)=~—t
AL (pg)=-t,
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Hence, oo is continuous at s = p@, and therefore aris C',
and piecewise CZ, on [0, L] (s = pé is the only point of
C2 discontinuity for 0 <s < L).

Since ¢ is a unit speed curve, the plane curvature of &
is defined by

Ka(s )= 9/(3 h

where 8(s) is the slope angle of cr at 5.5
We have,

(s/p,0<s< po

U0=o. ppsssr’

Therefore,

K, (s) = 1/ p,0<s<pg
* 0, pp<s<L

Hence x,(s) does not reverse sign for 0 <s < L.
Also,
oL

I el 5 1 -
Jo 1xa()1ds = [ ds = - (pp) =,
and we know, by relatability, that

T
o< 5

This proves the first half of the proposition.

(IT) Let us now assume that we are given a C!, and
piecewise C2, curve o [0, L] — R? which interpolates
between two edges (a,, t,) and (a,, t,), and satisfies Prop-
erties 1-3 of the proposition. We can assume that o is
unit speed. (Otherwise, it is always possible to reparam-
etrize & to make it unit speed.) We show that (a,, t;) and
(a,, t;) must be relatable.

Assume, as before, that a; = 0,and t, = i = (1, 0). Since
ais Cl, it is possible to define a continuous function 8
on [0, L}, such that 8(s) gives the slope angle of ¢ at s
[with 8(0) = 0]. Since aris piecewise C?, K,(s) = 07(s)
is defined for all but finitely many points in [0, L]. By
Property 2, since K,(s) does not reverse sign, let us as-
sume, without loss of generality, that x,(s) 2 0, Vse
[0, L] [wherever x,(s) is defined]. Hence, 6is monoton-
ically increasing on [0, L].

Let (L) = ¢. By Property 1 of the proposition, we must
have —t, = a’(L) = (cos ¢, sin §), so that

¢ =cos I(t, - —t,).

Since 8(0) = 0, and 81s monotonically increasingon [0, L],
it follows that = 0. If ¢ = 0, it must be the case, by mono-
tonicity, that 8(s) = 0, Vse [0, L], so that ¢ is a straight-
line segment. In this case, (a;, t,) and (a,, t,) are trivially
relatable. Let us assume, therefore, that ¢ > 0.

By Property 3 of the proposition, we have

L,
[, 8 (s)ds < 125—

since K, (s) = 8'(s) 2 6 for 0 <5 < L [except, of course,
for the finitely many points where 6’(s) is not defined—

but these do not affect the integral]. By Cauchy’s funda-
mental theorem of calculus, we have

[;6'(s)ds =6(L)~6(0) = 9.
Therefore,
_ n
0<9=cos i (t; - —t;)< %,

and this proves the second condition in the definition of
relatability.

Now, we show that the two open rays R(a,, t;) and
R(a,, t,) must intersect. Let a,/]ja, || = (cos B, sin 3).
Hence f is the slope of the chord joining a, and a, (re-
call that a; = 0). It is clear (see Figure 4) that R(a,, t|)
and R(a,, t,) will intersect if and only if

B<o¢<m.

We have already shown that
n
9< 3.

Hence we need only show that < ¢.

Since a is C!, we know by the mean value theorem
that there exists an s, in the open interval (0, L) such that
a’(sy) is parallel to the chord joining a, and a,. In other
words,

350€(0, L) : 6(sy) = B.

Since 8 is monotonically increasing on [0, L], we must
have

B=0(s))<8(L) = ¢.

To start a reductio ad absurdum, assume that 8 = ¢.
Then, we must have (again, by the monotonicity of 8),

8(s) = B, Vsels,, L].

Figure 4. Two open rays interesect if and only if B < ¢ < m.



Define the set,
T = {1e[0,L)| 8(s) = B, Vselr, L]}.

Since sy& T, we know that 7# (2. Also, it is clear that T'is
a closed set, and it is bounded below since 0 ¢ T [recall that
6(0) = 0]. Therefore, T must have a minimal element. Let

t* =min T (> 0).

Since t* € T, a(t*) lies on the chord joining a, and a,,
and therefore [3 is also the slope of the chord joining a,
and o(r*). Again applying the mean value theorem, we
conclude that

s5€(0, t*): B(s{) = B.
Now we have s; < #* with
B(sg) = 6(1*) = B.
Since 8 is monotonic, this forces
6(s) = B, Vse[sg, 1*],
and therefore,
o(s) = B, Vsels{, L].

But this means that s e T, which is a contradiction, since
t* = min T, and sy < r*. This contradiction proves that
B < ¢, and hence, the two open rays R(a,, t,) and R(a,, t,)
must intersect.

QED

Soine Remarks
1. Condition 3 of the proposition—namely,

fy 1 Kals)ds <%

—is strictly stronger than Condition 2 in the definition of
relatability (Definition la)—namely,

0l< 7T

Whereas | ¢ | measures the magnitude of the angle between
the two tangents a’(0) = t, and a’(L) = ~t,, [£| k(s)]
ds measures the total angle through which the curve o
turns as it traverses its path froms = 0 tos = L. Figure 5
shows three examples that clarify this difference. For the
curve in Figure 5a,

oz
¢=0 L\< —2-J,
but
jOLfKa(S)ﬁdszn{> .gj

For the curve in Figure 5b,

.

<

9=

ENE
N};:q’

\
)‘)

but
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Figure 5. Exampies that clarify the role of jo"‘i K, (s)|ds in the
proposition.

L r
k) as =2 (> 2

R

And for the curve in Figure 5c¢,

but
INEXOIES =%’5(> g)
2. The proposition is no longer true if Condition 3,
[ ikats)ds < 3
is replaced with
ol< 7.

A counterexample is provided by Figure Sc¢; this satisfies

4
lo1< =,
and the interpolating curve has no inflections, but the
two edges are nevertheless not relatable.

3. The proposition is no longer true if Condition 2 (i.e.,
having no inflections} is removed. A counterexample is
provided by Figure 5d, in which the interpolating curve
satisfies
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but the two edges are nevertheless not relatable.

4. Kellman and Shipley have also extended the defin-
ition of relatability to three dimensions, by adding the
requirement that the two edges be coplanar. The proposi-
tion is easily extended to the 3-D case: One need only
add a fourth condition requiring that the interpolating
curve & be planar (i.e., have torsion 0).

EXTENDING RELATABILITY

One should be cautious in interpreting the proposition
proved above. Although it provides a precise statement
of the link between relatability and the role of inflection
points, it should not be construed as claiming that the
frameworks of Kellman and Shipley (1991) and Takeichi
et al. (1995) are equivalent. One difference between the
two frameworks, of course, is that Kellman and Shipley’s
definition of relatability requires that

| n
i¢{< E"

whereas Takeichi et al.’s framework does not. Another dif-
ference, however, is that the framework of Takeichi et al.
explicitly takes into account the role of genericity.
Genericity is a powerful constraint used by human vi-
sion. Like other visual constraints, it serves to reduce the

countless number of interpretations that are always con-
sistent with any given images. In its simplest form, this
principle says to reject unstable interpretations of visual
stimuli—those interpretations which, if perturbed slightly,
would lead to a qualitative change in the image. It has been
applied to provide theories of a number of visual capaci-
ties, such as the 3-D interpretation of line drawings (Bin-
ford, 1981), the perception of subjective contours (Al-
bert & Hoffman, 1995), the perception of object parts
(Biederman, 1987; Hoffman, 1998; Hoffman & Rich-
ards, 1984; Hoffman & Singh, 1997; Singh & Hoffman,
1997; Singh, Seyranian, & Hoffman, 1999), the perception
of shape from shading (Freeman, 1994), the phenomenon
of color constancy (Brainard & Freeman, 1997), and the
perception of transparency (Singh & Hoffman, 1998).

As pointed out earlier, the definition of relatability (Def-
inition 1, or 1a) does not take into account the curvature
of an edge—only its direction, and the location of the
point where interpolation must begin. This allows for the
possibility that the point where the interpolated curve
meets the luminance-defined edge may be (1) a point of
inflection (see Figure 6a), or (2) a point of discontinuity of
curvature (i.e., a second-order discontinuity) of the com-
pleted contour (see Figure 6¢).% Both of these cases are
nongeneric (Takeichi et al., 1995). For example, assume
that the end points of the interpolated curve are points of
inflection on the completed contour (as in Figure 6a). In
this case, a slight change in viewing position would per-
turb the occluding surface and the occluded surface slightly

©

()

Figure 6. It is nongeneric for the end points of an interpolated curve to be points
of inflection, or C? discontinuity, on the completed contour.



with respect to each other—so that the points where occlu-
sion begins would no longer be points of inflection (see
Figure 6b). Another way to think of this is as follows: If
we have two surfaces, one occluding the other, and the
contour of the occluded surface has points of inflection on
it, then only for a few special viewing positions will such
an inflection point be a point where occlusion begins. Sim-
ilarly, it is nongeneric for the end points of the interpolated
curve to be points of C? discontinuity on the completed
contour (see Figure 6d). However, it is less clear to what
extent human vision is sensitive to C2 discontinuities.

Future work on relatability needs to address these is-
sues. One possibility might be to take the conditions of
the proposition proved above as an alternate definition of
relatability, and then to extend relatability by adding fur-
ther conditions that an interpolating curve must satisfy.
Some possible examples of such conditions are as follows:
The end points of the interpolating curve should not be
points of inflection, and the interpolating curve should be
C? continuous everywhere, including at the endpoints.
In order to do this, a luminance-defined edge should be
defined not only by its direction and end point, but also
by its curvature.

Another issue is that the current definition of relata-
bility is all or none: A pair of edges either does, or does not,
satisfy the two conditions that define relatability (Def-
inition 1). Psychophysical data, however, show graded-
ness in subjects’ responses (Kellman & Shipley, 1991;
Shipley & Kellman, 1992a). For example, the perceived

_

(@) (d)

—_//
(b) (e)
© ®

Figure 7. A graded measure of relatability based on J{; (drwc/ds)?ds
and jg; K, (s)|ds can track the gradual decrease in subjects’ re-
sponses with increase in angle between two relatable edges (a—¢),
and with increase in offset between two parallel edges (d-f).
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strength of boundary interpolation decreases gradually
with increasing angle (see Figures 7a—7¢) between a pair
of relatable edges (Kellman & Shipley, 1991). Moreover,
for edge pairs that are parallel (see Figures 7d-7f), per-
ceived interpolation strength decreases gradually with in-
creasing degree of offset between the edges (Shipley &
Kellman, 1992a), even though only the colinear pair is
relatable. Also, for textures composed of Gabor patches,
the detectability of virtual lines connecting the patches de-
creases with increasing angle between the patches (Field,
Hayes, & Hess, 1993); similar effects have been found
with textures composed of dots (Pizlo, Salach-Golyska, &
Rosenfeld, 1997; Smits & Vos, 1987; Uttal, 1975). Hence,
it would be desirable to have a measure of relatability
that is graded. Takeichi et al.’s (1995) framework does
allow for some gradedness: The more inflections an in-
terpolated curve needs to have, while maintaining conti-
nuity of direction, the weaker the interpolation is. How-
ever, for the two cases mentioned above (see Figure 7),
even this measure does not explain the gradedness in per-
ceived strength of interpolation: For the relatable edge pairs
shown in Figures 7a—-7c¢, the number of inflection points
needed on the interpolated contour is zero—irrespective
of the angle between the edges. Similarly, for the parallel
edge pairs shown in Figures 7d-7f, each interpolated
contour needs exactly one point of inflection—irrespec-
tive of the degree of (nonzero} offset between the edges.

In the computer vision literature, a number of measures
of smoothness for curves (and surfaces) have been pro-
posed, and some of these have also been applied to percep-
tual psychology (e.g., Blake & Zisserman, 1987; Grim-
son, 1981; Sha’ashua & Ullman, 1988; Uliman, 1976;
Weiss, 1990). A commonly used measure is variation of
curvature. For a curve defined on [0, L], the variation of
curvature is given by

{ dx \2
j;L - st

The lower this variation, the smoother the curve. Hence,
interpolated curves are typically chosen in order to min-
imize this (or some such similar) measure.

One way to develop a graded notion of relatability is
as follows: Given two edges, first choose a maximally
smooth curve that interpolates between them—say, by
minimizing variation of curvature. (This will also mini-
mize the number of inflection points on the curve.) Then,
for this curve, use the values

f.L' f
}GéKa(S);dS

{the measure used in Condition 3 of the proposition) and
> 2
-L{/ dx.

o |
| L ds
J; |
oL ds )

(variation of curvature) to obtain a graded measure of re-
latability. Note that these two measures can vary inde-



950 SINGH AND HOFFMAN

pendently of each other, and that borh may be determinants
of the degree of relatability. For example, the curves in
Figures 7a—7c all have

S dx.
e e =0,

J‘o ds}

but they differ in
[y 1Kals) ds

(the values being 0, n/3, and 7/2, respectively). Con-
versely, the curves in Figures 7c and 7e both have

L, T
}.0 (Ko (s)|ds = 2
——that is, they both turn through a total angle of 7/2, but
they differ in
(dx,

L
£

{which gives value 0 for Figure 7¢, but a positive value for
Figure 7e).
A graded measure of relatability based on both
L
b Ko (s)lds

and

L/ dk o :
fo ( T ds

is consistent with the currently available data on bound-
ary interpolation that shows gradedness in subjects’ re-
sponses. It can explain the decrease in perceived strength
of boundary interpolation with both (1) increase in angle
between the two edges (Figures 7a—7¢), and (2) increase
in offset between two parallel edges (Figures 7d-71). It
can also explain why having more inflection points on
an interpolating curve decreases its perceived strength:
Adding inflection points on a curve increases both

Jy ka1 ds

and

Furthermore, in the case of parallel edges,
iL, ‘
Jy 1<ats)lds

provides a scale-invariant measure of the degree of offset
between the two edges. Such a measure is desirable, be-
cause, within a reasonable range of scalings, one does not
expect the perceived strength of interpolation (and hence,
the degree of relatability) to change with scaling {e.g., if

the entire figure is expanded to twice—or half—its orig-
inal size). The precise way in which these two measures
combine in order to give an overall measure of relatabil-
ity remains, however, a matter of empirical investigation.

CONCLUSION

Relatability and minimizing inflections are important
factors in determining whether or not human vision will
interpolate a contour between two luminance-defined
edges. They can also serve to formalize the notion of
“good continuation” (see, e.g., Kellman & Shipley, 1991).
We have stated and proved a proposition that shows that,
under appropriate conditions, relatability is mathemati-
cally equivalent to the existence of a smooth curve with
no inflection points that interpolates between two edges.
The conditions in the proposition thus provide an alter-
nate definition of relatability, in terms of properties that
an interpolating curve must satisfy. This characterization
is useful because it allows for an easy way to extend the
definition of relatability (1) to include the role of gener-
icity, and (2) to extend the current all-or-none character
of relatability to a graded measure that can track the
gradedness in psychophysical data.
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NOTES

1. While motivating their definition of relatability, Kellman and Ship-
ley (1991) point to the need for a monotonicity constraint: “Intuitively,
it requires that the connection must progress continuously from one
edge to the other. The connection cannot extend cutward and then re-
turn, or double back on itself, etc.” (p. 174). Their example of violation
of the monotonicity constraint shows a curve with constant sign of cur-
vature that turns through a full circle and a half, and which crosses itself
(Figure 22, p. 174). They go on to say that the monotonicity constraint

RELATABILITY AND INFLECTIONS 951

is incorporated formally in the two conditions that define relatability
(Definition 1). Therefore, we shall simply use the two conditions in De-
finition 1 as defining relatability.

Kellman and Shipley (1991) also offer a different formulation of re-
latability (given that the edges are not parallel}—namely, 0SRcos < r
(see Figure 2), where R and r are chosen so that R 2 r (p. 176). They as-
sert that this is equivalent to Definition 1. Again, therefore, we shall
simply use Definition 1 for relatability.

2. The idea of minimizing the number of inflection points on an in-
terpolating contour is perfectly consistent with standard approaches to
curve interpolation in computer vision that minimize variation in cur-
vature. For example, curves that minimize

{dx,
j[ e )
Lds )

also minimize number of inflection points.

3. However, the length of the edges may affect a different factor,
called support ratio (Shipley & Kellman, 1992b; see also Singh, Hoff-
man, & Albert, in press).

4. In Appendix B of Kellman and Shipley (1991), Skeath uses this
construction to show that “when two edges meet the relatability crite-
rion, a first-order continuous curve can be fit between them, tangent to
the end point at both edges” (p. 176). This is undoubtedly true (and the
construction gives a concrete example). However, it is not a criterion
that can serve to characterize relatability, since a first-order continuous
curve can also be fit between two edges that are not relatable. The pur-
pose of our proposition is to give just such a characterization—one that
is both necessary and sufficient.

5. For any C'! plane curve o defined on some interval [0, L], it is al-
ways possible to define 8(s) such that 8 is continuous on [0, L] (see,
e.g., Millman & Parker, 1977, p. 55). In general, this may involve
adding integral multiples of 27 in places, in order to ensure continuity;
but this is not the case here.

6. These two cases are independent. Guaranteeing that the end points
of the interpolated contour are not points of C? discontinuity does not
guarantee that they will not be points of inflection—and vice versa.
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