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We propose a novel framework for perceptual grouping based on the idea of mixture models, called
Bayesian hierarchical grouping (BHG). In BHG, we assume that the configuration of image elements is
generated by a mixture of distinct objects, each of which generates image elements according to some
generative assumptions. Grouping, in this framework, means estimating the number and the parameters
of the mixture components that generated the image, including estimating which image elements are
“owned” by which objects. We present a tractable implementation of the framework, based on the
hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn
from a number of classical perceptual grouping problems, including dot clustering, contour integration,
and part decomposition. Our approach yields an intuitive hierarchical representation of image elements,
giving an explicit decomposition of the image into mixture components, along with estimates of the
probability of various candidate decompositions. We show that BHG accounts well for a diverse range
of empirical data drawn from the literature. Because BHG provides a principled quantification of the
plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides
an appealing unifying account of the elusive Gestalt notion of Prägnanz.
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Perceptual grouping is the process by which image elements are
organized into distinct clusters or objects. The problem of group-
ing is inherently difficult because the system has to choose the
“best” grouping interpretation among an enormous number of
candidates (the number of possible partitions of N elements, e.g.,
grows exponentially with N). Moreover, exactly what makes one
interpretation “better” than another is a notoriously subtle problem,
epitomized by the ambiguity surrounding the Gestalt term Präg-
nanz, usually translated as “goodness of form.” Hence, despite an
enormous literature (see Wagemans, Elder, et al., 2012; Wage-
mans, Feldman, et al., 2012, for modern reviews), both the under-
lying goals of perceptual grouping—exactly what the system is
trying to accomplish—as well as the computational mechanisms
the human system employs to accomplish these goals, are poorly
understood.

Many models have been proposed for specific subproblems of
perceptual grouping. Models of contour integration, the process by
which visual elements are grouped into elongated contours, are par-

ticularly well-developed (e.g., Ernst et al., 2012; Field, Hayes, &
Hess, 1993; Geisler, Perry, Super, & Gallogly, 2001). However, these
models often presuppose a variety of Gestalt principles, such as
proximity, and good continuation (Wertheimer, 1923), whose moti-
vations are themselves poorly understood. Figure-ground organiza-
tion, in which the system interprets qualitative depth relations among
neighboring surfaces, is also heavily studied, but again models often
invoke a diverse collection of rules, including closure, symmetry,
parallelism, and so forth (e.g., Kikuchi & Fukushima, 2003; Sajda &
Finkel, 1995). Other problems of perceptual grouping have likewise
been studied both computationally and empirically. Notwithstanding
the success of many of these models in accounting for the phenomena
to which they are addressed, most are narrow in scope and difficult to
integrate with other problems of perceptual grouping. An overarching
or unifying paradigm for perceptual grouping does not, as yet, exist.

Of course, it cannot be assumed that the various problems of
perceptual grouping do, in fact, involve common mechanisms or
principles. “Perceptual grouping” might simply be an umbrella
term for a set of essentially unrelated though similar processes.
(According to Helson, 1933, the Gestalt literature identified 114
distinct grouping principles; see also Pomerantz, 1986). Neverthe-
less, it has long been observed that many aspects of perceptual
grouping seem to involve similar or analogous organizational
preferences (Kanizsa, 1979), suggesting the operation of a com-
mon underlying computational mechanism—as reflected in Gestalt
attempts to unify grouping via Prägnanz (Wertheimer, 1923). But
attempts to give a concrete definition to this term have not con-
verged on a clear account. Köhler (1950) sought an explanation of
Prägnanz at the neurophysiological level, whereas van Leeuwen
(1990a, 1990b) argued that it should reflect a theory of mental
representation. Despite this long history, the idea of an integrated
computational framework for perceptual grouping, in which each
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of a variety of narrower grouping problems could be understood as
a special case, remains elusive.

A number of unifying approaches have centered around the idea
of simplicity, often referred to as the minimum principle. Hochberg
and McAlister (1953) and Attneave (1954) were the first to apply
ideas from information theory to perceptual organization, showing
how the uncertainty or complexity of perceptual interpretations
could be formally quantified, and arguing that the visual system
chooses the simplest among available alternatives. Leeuwenberg
(1969) developed a more comprehensive model of perceptual
complexity based on the idea of the length of the stimulus descrip-
tion in a fixed coding language, now referred to as structural
information theory. More recently, his followers have applied
similar ideas to a range of grouping problems, including amodal
completion (e.g., Boselie & Wouterlood, 1989; van Lier, van der
Helm, & Leeuwenberg, 1994, 1995) and symmetry perception
(e.g., van der Helm & Leeuwenberg, 1991, 1996). The concrete-
ness of the formal complexity minimization makes these models a
clear advance over the often vague prescriptions of the Gestalt
theory. But they suffer from a number of fundamental problems,
including the ad hoc nature of the fixed coding language adopted,
the lack of a tractable computational procedure, and a variety of
other problems (Wagemans, 1999).

Recently, a number of Gestalt problems have been modeled in
a Bayesian framework, in which degree of belief in a given
grouping hypothesis is associated with the posterior probability of
the hypothesis conditioned on the stimulus data (e.g., Kersten,
Mammasian, & Yuille, 2004). Contour integration, for example,
has been shown to conform closely to a rational Bayesian model
given suitable assumptions about contours (Claessens & Wage-
mans, 2008; Elder & Goldberg, 2002; Ernst et al., 2012; Feldman,
1997a, 2001; Geisler et al., 2001). Similarly, the Gestalt principle
of good continuation has been formalized in terms of Bayesian
extrapolation of smooth contours (Singh & Fulvio, 2005, 2007).
But the Bayesian approach has not yet been extended to the more
difficult problems of perceptual organization, and a unifying ap-
proach has not been developed. A more comprehensive Bayesian
account of perceptual grouping would require a way of expressing
grouping interpretations in a probabilistic language, and tractable
techniques for estimating the posterior probability of each inter-
pretation. The Bayesian framework is well known to relate closely
to complexity minimization, essentially because maximization of
the Bayesian posterior is related to minimization of the description
length (DL; i.e., the negative log of the posterior; see Chater, 1996;
Feldman, 2009; Wagemans, Feldman, et al., 2012). The Bayesian
approach, too, is often argued to solve the bias-variance problem,
giving a solution with optimal complexity given the data and prior
knowledge (MacKay, 2003). Hence, a comprehensive Bayesian
account of grouping promises to shed light on the nature of the
minimum principle.

In what follows, we introduce a unified Bayesian framework for
perceptual grouping, called Bayesian hierarchical grouping
(BHG), based on the idea of mixture models. Mixture models have
been used to model a wide variety of problems, including motion
segmentation (Gershman, Jäkel, & Tenenbaum, 2013; Weiss,
1997), visual short-term memory (Orhan & Jacobs, 2013). and
categorization (Rosseel, 2002; Sanborn, Griffiths, & Navarro,
2010). But other than our own work on narrower aspects of the
problem of perceptual grouping (Feldman et al., 2013; Feldman,

Singh, & Froyen, 2014; Froyen, Feldman, & Singh, 2010, 2015),
mixture models have yet to be applied to this problem in general.
BHG builds on our earlier work but goes considerably farther in
encompassing a broad range of grouping problems and introducing
a coherent and consistent algorithmic approach. BHG uses ag-
glomerative clustering techniques (in much the same spirit as
Ommer & Buhmann, 2003, 2005, in computer science) to estimate
the posterior probabilities of hierarchical grouping interpretations.
We illustrate and evaluate BHG by demonstrating it on a diverse
range of classical problems of perceptual organization, including
contour integration, part decomposition and shape completion, and
also show that BHG generalizes naturally beyond these problems.
In contrast to many past computational models of specific group-
ing problems, BHG does not take Gestalt principles for granted as
premises, but attempts to consider, in a more principled way,
exactly what is being estimated when the visual system decom-
poses the image into distinct groups. To preview, our proposal is
that the visual system assumes that the image is composed of a
combination (mixture) of distinct generative sources (or objects),
each of which generates some visual elements via a stochastic
process. In this view, the problem of perceptual grouping is to
estimate the nature of these generating sources, and thus to de-
compose the image into the coherent groups, each of which cor-
responds to a distinct generative source.

In what follows we will first outline the computational frame-
work of BHG. We then show how BHG accounts for a number of
distinct aspects of perceptual grouping, relying on a variety of data
drawn from the literatures of contour integration, part decompo-
sition and shape completion, as well as some “instant psychophys-
ics” (i.e., perceptually natural results on some simple cases).

The Computational Framework

In recent years, Bayesian models have been developed to explain a
variety of problems in visual perception. The goal of these models,
broadly speaking, is to quantify the degree of belief that ought to be
assigned to each potential interpretation of image data. In these
models, each possible interpretation cj ! C ! !c1 . . . cJ" of an image
D is associated with posterior probability p(C|D), which, according
to Bayes’ rule, is proportional to the product of a prior probability
p(C) and likelihood p(D|C) (for introductions, see Feldman, 2014;
Kersten et al., 2004; Mamassian & Landy, 2002). Similarly, we
propose a framework in which perceptual grouping can be viewed
as a rational Bayesian procedure by regarding it as a kind of
mixture estimation (see also Feldman et al., 2014; Froyen et al.,
2015). In this framework, the goal is to use Bayesian inference to
estimate the most plausible decomposition of the image configu-
ration into constituent “objects.”1 Here, we give a brief overview
of the approach, sufficient to explain the applications that follow,
with mathematical details left to the Appendixes.

1 Note that a full decision-theoretic treatment would add a utility to each
hypothesis (a loss function) in order to decide among actions (Maloney &
Mamassian, 2009). In this article we focus more narrowly on the determi-
nation of belief in grouping hypotheses, and defer the broader problem of
action selection to future research.
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An Image Is a Mixture of Objects

A mixture model is a probability distribution that is composed
of the weighted sum of some number of distinct component
distribution or sources (McLachlan & Basford, 1988). That is, a
mixture model is a combination of distinct data sources, all mixed
together, without explicit labels—like a set of unlabeled color
measurements drawn from a sample of apples mixed with a sample
of oranges. The problem for the observer, given data sampled from
the mixture, is to decompose the data set into the most likely
combination of components (e.g., a set of reddish things and a set
of orange things). Because the data derive from a set of distinct
sources, the distribution of values can be highly multimodal and
heterogeneous, even if each source has a simple unimodal form.
The fundamental problem for the observer is to estimate the nature
of the sources (e.g., parameters such as means and variances) while
simultaneously estimating which data originate from which source.

The main idea behind our approach is to assume that the image
itself is a mixture of objects.2 That is, we assume that the visual
elements we observe are a sample drawn from a mixture model in
which each object is a distinct data-generating source. Technically,
let D ! {x1 . . . xN} denote the image data (with each xn

representing a two-dimensional vector in !2, e.g., the location of a
visual element). We assume that the image (really, the probability
distribution from which image elements are sampled) is a sum of
K components

p(xn"#) ! #
k!1

K

p(xn"$k)p(cn ! k"p). (1)

In this expression, cn ! c ! !c1 . . . cN" is the assignment of data
xn to source components, p is a parameter vector of a multinomial
distribution with p(cn ! k|p) ! pk, "k are the parameters of the k-th
object, and # ! !$1, . . . , $K, p". The observer’s goal is to estimate
the posterior distribution over the hypotheses cj, assigning a degree
of belief to each way of decomposing the image data into constit-
uent objects—that is, to group the image.

The framework derives its flexibility from the fact that the
objects (generating sources) can be defined in a variety of ways
depending on assumptions and context. In a simple case like dot
clustering, the image data might be assumed to be generated by a
mixture of Gaussian objects, that is, simple clusters defined by a
mean #k and covariance matrix $k (see Froyen et al., 2015). Later,
we introduce a more elaborate object definition appropriate for
other types of grouping problems, such as contour integration and
part decomposition. For contour integration, for example, we de-
fine an image as a mixture of contours, with contours formalized
as elongated mixture components. For part decomposition, we
define a shape as a “mixture of parts.” In fact, all the object
definitions we introduce in this article are variations of a single
flexible object class, which, as we will show, can be tailored to
generate image data in the form of contours, clusters, or objects
parts. So notwithstanding the differences among these distinct
kinds of perceptual grouping, in our framework, they are all treated
in a unified manner.

To complete the Bayesian formulation, we define priors over the
object parameters p("|%) and over the mixing distribution p(p|&).
The first of these defines our expectations about what “objects” in
our context tend to look like. The second is more technical,
defining our expectations about how distinct components tend to

“mix.” (It is the natural conjugate prior for the mixing distribution,
the Dirichlet distribution with parameter &.) Using these two
priors, we can rewrite the mixture model (Equation 1) to define the
probability of a particular grouping hypothesis cj. The likelihood of a
particular grouping hypothesis is obtained by marginalizing over the
parameters ("k, p$D"cj, %% ! &'n!1

N p$xn"$cn
%'k!1

K p$$k"%%d$). This
yields the posterior of interest

p(cj"D, &, %) ' p(D"cj, %)p(cj"&), (2)

where p$cj"&% ! &p$cj"p%p$p"&%dp is a standard Dirichlet integral
(see Rasmussen, 2000, for derivation). This equation defines the
degree of belief in a particular grouping hypothesis.

Note that the posterior can be decomposed into two intuitive
factors: the likelihood p(D|cj, %), which expresses how well the
grouping hypothesis cj fits the image data D, and a prior, which, in
effect, quantifies the complexity of the grouping hypothesis cj. As
in all Bayesian frameworks, these two components trade off.
Decomposing the image into more groups allows each group to fit
its constituent image data better, but at a cost in complexity;
decomposing the image into fewer, larger groups is simpler, but
does not fit the data as well. In principle, Bayes’ rule allows this
tradeoff to be optimized, allowing the observer to find the right
balance between a simple grouping interpretation and a reasonable
fit to the image data.

Unfortunately, as in many Bayesian approaches, computing the
full posterior over grouping hypotheses cj can become intractable
as N increases, even for a fixed number of components K (Gersh-
man & Blei, 2012). Moreover, we do not generally know the
number K of clusters, meaning that K must be treated as a free
parameter to be estimated, making the problem even more com-
plex. To accommodate this, we extend the finite mixture model
into a so-called Dirichlet process mixture model, commonly used
in machine learning and statistics (Neal, 2000). Several approxi-
mation methods have been proposed to compute posteriors for
these models, such as Markov-Chain Monte Carlo (McLachlan &
Peel, 2004) or variational methods (Attias, 2000). In the current
article, we adopt a method introduced by Heller and Ghahramani
(2005), called Bayesian hierarchical clustering (BHC), to the prob-
lem of perceptual grouping, resulting in the framework we refer to
as BHG.

One of the main features of BHG is that it produces a
hierarchical representation of the organization of image ele-
ments. Of course, the idea that perceptual organization tends to
be hierarchical has a long history (e.g., Baylis & Driver, 1993;
Lee & Mumford, 2003; Marr & Nishihara, 1978; Palmer, 1977;
Pomerantz, Sager, & Stoever, 1977). Machine learning, too, has
often employed hierarchical representations of data (see Mur-
phy, 2012, for a useful overview). Formally, a hierarchical
structure corresponds to a tree in which the root node represents
the image data at the most global level, that is, the grouping
hypothesis that postulates that all image data are generated by
one underlying object. Subtrees then describe finer and more
local relations between image data, all the way down to the

2 It should be noted that by “objects,” we mean data-generating sources
in the image. In this article we address the problem of perceptual grouping
in two dimensions. Our framework, however, is readily extended to 3D
(El-Gaaly, Froyen, Elgammal, Feldman, & Singh, 2015).
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leaves, which each explain only one image datum xn. Although
this formalism has become increasingly popular (Amir & Lin-
denbaum, 1998; Feldman, 1997b, 2003; Shi & Malik, 2000), no
general method currently exists for actually building this tree
for a particular image. In this article we introduce a computa-
tional framework, BHG, that creates a fully hierarchical repre-
sentation of a given configuration of image elements.

Bayesian Hierarchical Clustering

In this section we give a slightly technical synopsis of BHG
(details can be found in the Appendices A and B). Like other
agglomerative hierarchical clustering techniques, BHC (Heller &
Ghahramani, 2005) begins by assigning each data point its own
cluster, and then progressively merges pairs of clusters to create a

hierarchy. BHC differs from traditional agglomerative clustering
methods, in that it uses a Bayesian hypothesis test to decide which
pair of clusters to merge. The technique serves as a fast approxi-
mate inference method for Dirichlet process mixture models
(Heller & Ghahramani, 2005).

Given the data set D ! {x1 . . . xN}, the algorithm is initiated
with N trees Ti each containing one data point Di ! {xn}. At each
stage, the algorithm considers merging every possible pair of trees.
Then, by means of a statistical test, it chooses two trees Ti and Tj

to merge, resulting in a new tree Tk, with its associated merged
data set Dk ! Di " Dj (Figure 1A). Testing all possible pairs is
intractable, so to reduce complexity, BHG considers only those
pairs that have “neighboring” data points. Neighbor relations are
defined via adjacency in the Delaunay triangulation, a computa-

BA Dk

Di

Dj

Tk

Ti

Tj

DC

Figure 1. Illustration of the Bayesian hierarchical clustering process. (A) Example tree decomposition (see also
Heller & Ghahramani, 2005) for the 1D grouping problem on the right. (B) Tree slices, that is, different grouping
hypotheses. (C) Tree decomposition as computed by the clustering algorithm for the dot clusters on the right,
assuming bivariate Gaussian objects. (D) Tree slices for the dot clusters. See the online article for the color
version of this figure.
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tionally efficient method of defining spatial adjacency (de Berg,
Cheong, van Kreveld, & Overmars, 2008) that has been found to
play a key role in perceptual grouping mechanisms (Watt, Ledge-
way, & Dakin, 2008). Considering only neighboring trees substan-
tially reduces computational complexity, from !$N2% in the initial
phase of Heller & Ghahramani’s original algorithm to !$Nlog
$N%% in ours (see Appendix A).

In considering each merge, the algorithm compares two hypoth-
eses in a Bayesian hypothesis testing framework. The first hypoth-
esis H0 is that all the data in Dk are generated by only one
underlying object p(Dk|"), with unknown parameters ". In order
to evaluate the probability of the data given this hypothesis
p$X"H0%, we introduce priors p("|%) over the objects as described
earlier in order to integrate over the to-be-estimated parameters ",

p(Dk"H0) ! &$ '
xn!Dk

p(xn"$)p($"%)d$. (3)

For simple objects such as Gaussian clusters, this integral can
be computed analytically, but with more complex objects, it
becomes intractable and approximate methods must be used
(see Appendix B).

The second hypothesis, H1, is the sum of all possible partition-
ings of Dk into two or more objects. However, again, exhaustive
evaluation of all such hypotheses is intractable. The BHC algo-
rithm circumvents this problem by considering only partitions that
are consistent with the tree structure of the two trees Ti and Tj to be
merged. For example, for the tree structure in Figure 1A, the possible
tree-consistent partitionings are shown Figure 1B. As is clear from the
figure, this constraint eliminates many possible partitions. The prob-
ability of the data under H1 can now be computed by taking the
product over the subtrees p$Dk"H1% ! p$Di"Ti%p$Dj"Tj%. As will
become clear, p(Di|Ti) can be computed recursively as the tree is
constructed.

To obtain the marginal likelihood of the data under the tree Tk,
we need to combine p$Dk"H0% and p$Dk"H1%. This yields the
probability of the data integrated across all possible partitions,
including the one-object hypothesis H0. Weighting these hypoth-
eses by the prior on the one-object hypothesis p$H0% yields an
expression for p(Di|Ti),

p(Dk"Tk) ! p(H0)p(Dk"H0) ( [1 ) p(H0)]p(Di"Ti)p(Dj"Tj). (4)

Note that p$H0% is also computed bottom up as the tree is built,
and is based on a Dirichlet process prior (Equation 6; for details,
see Heller & Ghahramani, 2005; we discuss this prior in greater
depth in text that follows). Finally, the probability of the merged
hypothesis p$H0"Dk% can be found via Bayes’ rule,

p(H0"Dk) !
p(H0)p(Dk"H0)

p(Dk"Tk)
. (5)

This probability is then computed for all Delaunay-consistent
pairs, and the pair with the highest merging probability is merged.
In this way, the algorithm greedily3 builds the tree until all data are
merged into one tree. Given the assumed generative models of
objects, this tree represents the most “reasonable” decomposition
of the image data into distinct objects.

Examples of such trees are shown in Figure 1. Figure 1A
illustrates a tree for the classical one-dimensional grouping prob-
lem (Wertheimer, 1923; Figure 1B). The algorithm first groups the

closest pair of image elements, then continues as described earlier
until all image elements are incorporated into the tree. Figure 1C
and D similarly illustrate two-dimensional dot clustering (Froyen
et al., 2015). The results shown in the figure assume objects
consisting of bivariate Gaussian distributions of image elements.

Tree slices and grouping hypotheses. During the construc-
tion of the tree, one can greedily find an at-least local maximum
posterior decomposition by splitting the tree once p$H0"Dk% *
.5. However, we are more often interested in the distribution over
all the possible grouping hypotheses rather than choosing a single
winner. In order to do so, we need to build the entire tree, and
subsequently take what are called tree slices at each level of the
tree (Figure 1B and D), and compute their respective probabilities
p(cj|D, &, %). Because the current algorithm proposes an approx-
imation of the Dirichlet process mixture model (see Heller &
Ghahramani, 2005, for proof), we make use of a Dirichlet process
prior (Rasmussen, 2000, and independently discovered by Ander-
son, 1991) to compute the posterior probability of each grouping
hypothesis (or tree slice). This prior is defined as

p(cj"&) !
+(&)&K 'k!1

K +(nk)

+(N ( &)
, (6)

where nk is the number of data points explained by object with
index k. When & ' 1, there is a bias toward more objects, each
explaining a small number of image data; whereas when 0 ( & (
1, there is a bias toward fewer objects, each explaining a large
number of image data. Inserting Equation 6 into Equation 2, we
can compute the posterior distribution across all tree-consistent
decompositions of data D:

p(cj"D, &, %) ' p(cj"&) '
k!1

K

p(Dk"%), (7)

where p(Dk|%) is the marginal likelihood over " for the data in
cluster k of the current grouping hypothesis.

Prediction and completion. For any grouping hypothesis,
BHG can compute the probability of a new point x" given the existing
data D, called the posterior predictive distribution p(x"|D, cj).

4 As in
Equation 1, the new datum is generated from a mixture model
consisting of the K components comprised in this particular grouping
hypothesis. More specifically, new data are generated as a weighted
sum of predictive distributions p$x*"Dk% ! &p$x*"$%p$$"Dk, %%d",
where Dk is the data associated with object k),

p(x*"D, cj) ! #
k!1

K

p(x*"Dk),k. (8)

Here, )k is the posterior predictive of the Dirichlet prior defined
as ,k ! $& ( nk% ⁄ #i!1

K $& ( ni% (see Bishop, 2006, p. 478, for a
derivation).

The posterior predictive distribution has a particularly important
interpretation in the context of perceptual grouping: It allows the
model to make predictions about missing data, such as how shapes

3 A greedy algorithm is one that makes a choice at each stage of
computation based on available information, and does not revisit choices
once made.

4 In standard Bayesian terminology, the posterior distribution assigns
probability to hypotheses, and the posterior predictive distribution assigns
probability to unobserved data.
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continue behind occluders (amodal completion). Several examples
are shown in the Results section.

The Objects

In the BHG framework, objects (generating sources) can be
defined in a way suitable to the problem at hand. For a simple dot
clustering problem, we might assume Gaussian objects governed
by a mean #k and a covariance matrix $k. We have previously
found that such a representation accurately and quantitatively
predicts human cluster enumeration judgments (Froyen et al.,
2015). Figure 1C to D shows sample BHG output for this problem.
In this problem, because the prior and likelihood are conjugate, the
marginal p(D|H0) can be computed analytically.

However, more complex grouping problems, such as part de-
composition and contour integration, call for a more elaborate
object definitions. As a general object model, assume that objects
are represented as B-spline curves G ! {g1 . . . gK} (see Figure 2),
each governed by a parameter vector qk. (B-splines [see Farouki &
Hinds, 1985] are a convenient and widely used mathematical
representation of curves). For each spline, data points xn are
sampled from univariate Gaussian distributions perpendicular to
this curve,

p(xn"$k) ! "(dn"-k, .k), (9)

where dn ! ||xn * gk(n)|| is the distance between the data point
xn and its perpendicular projection to the curve gk(n), also
referred to as the rib length.5 #k and +k are, respectively, the
mean rib length and the rib length variance for each curve. Put
together, the parameter vector for each component is defined as
"k ! {#k, +k, qk}. Figure 2 shows how this object definition
yields a wide variety of forms, ranging from contour-like ob-
jects (when #k ! 0; Figure 2A) to axial shapes (when #k ' 0,
making “wide” shapes; Figure 2B). Objects with #k ! 0 but
larger variance +k will tend to look like dots generated from a
cluster. For elongated objects, note that the generative function
is symmetric along the curve (see Figure 2), constraining ob-
jects to obey a kind of local symmetry (Blum, 1973; Brady &
Asada, 1984; Feldman & Singh, 2006; Siddiqi, Shokoufandeh,
Dickinson, & Zucker, 1999).

In the Bayesian framework, the definition of an object class
requires a prior p("|%) on the parameter vector " governing the
generative function (Equation 9). In the illustrations in this

article we use a set of priors that create a simple but flexible
object class. First, we introduce a bias on the “compactness” of
the objects by adopting a prior on the squared arc length Fk1

(also referred to as elastic energy) of the generating curve k, Fk1 ,
exp(-1), resulting in a preferences for shorter curves. Similarly, we
introduce a prior governing the “straightness” of the objects by
introducing a prior over the squared total curvature Fk2, also
referred to as bending energy, of the curve k (Mumford, 1994),
Fk2 , exp(-2), resulting in a preference for straighter rather than
curved objects (for computations of both Fk1 and Fk2, see Appen-
dix B). We also assume a normal-inverse-chi-squared prior (con-
jugate of the normal distribution) over the function that generates
the data points from the curves (Equation 9), with parameters {#0,
.0, /0, +0}. #0 is the expectation of the rib length and .0 defines
how strongly we believe this; +0 is the expectation of the variance
of the rib length, and /0 defines how strongly we believe this.
Taken together, these priors and their hyperparameter vector % !
{-1, -2, #0, .0, /0, +0} induce a simple but versatile class of
objects suitable for a wide range of spatially defined perceptual
grouping problems.

In summary, the BHG framework makes a few simple assump-
tions about the form of objects in the world, and then estimates a
hierarchical decomposition of the image data into objects (or, more
correctly, assigns posterior probabilities to all potential decompo-
sitions within a hierarchy). In what follows, we give examples of
results drawn from a variety of grouping problems, including
contour integration, part decomposition, and shape completion,
and show how the approach explains a number of known percep-
tual phenomena and fits data drawn from the literature.

Results

We next show results from BHG computations for a variety of
perceptual grouping problems, including contour integration, con-
tour grouping, part decomposition, and shape completion.

Contours

In what follows, we show several examples of how BHG can be
applied to contour grouping. In the first three examples, the prob-
lem in effect determines the set of alternative hypotheses, and we
show how BHG gauges the relative degree of belief among the
available grouping interpretations. In the rest of the examples, we
illustrate the capabilities of BHG more fully by allowing it to
generate the hypotheses themselves rather than choosing from a
given set of alternatives.

To apply BHG to the problem of grouping contours, we need to
define an appropriate data-generating model. To model contours,
we use the generic object class defined earlier with the hyperpa-
rameters set in a way that expresses the idea that contours are
narrow, elongated objects (#0 ! 0 and . ! 1 0 104, +0 ! .01, and
/0 ! 20) that do not extend very far or bend very much (-1 ! 0.16
and -2 ! 0.05). Finally we set the parameter of the Dirichlet
process prior to & ! .1, expressing a modest bias toward keeping
objects together rather than splitting them up. Naturally, alterna-

5 Random deviations from the central axis are called “ribs” because they
sprout laterally from a “skeleton”; see fuller discussion of Feldman and
Singh’s (2006) skeletal framework in the text that follows.

Figure 2. The generative function of our model depicted as a field. Ribs
sprout perpendicularly from the curve (red), and the length they take on is
depicted by the contour plot. (A) For contours, ribs are sprouted with a #
close to zero, resulting in a Gaussian fall-off along the curve. (B) For
shapes, ribs are sprouted with # ' 0, resulting in a band surrounding the
curve. See the online article for the color version of this figure.
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tive setting of these parameters may be appropriate for other
contexts.

Dot lattices. Ever since Wertheimer (1923), researchers
have used dot lattices (see Figure 3) to study the Gestalt
principle of grouping by proximity (e.g., Kubovy & Wagemans,
1995; Oyama, 1961; Zucker, Stevens, & Sander, 1983). A dot
lattice is a collection of dots arranged on a grid-like structure,
invariant to at least two translations a (with length |a|), and b
(with length |b| / |a|). These two lengths and the angle 1
between them defines the dot lattice, and influence how the dots
in the lattice are perceived to be organized. A number of
proposals have been made about grouping in dot lattices, with
one of the few rigorously defined mathematical models being
the pure-distance law (Kubovy, Holcombe, & Wagemans, 1998;
Kubovy & Wagemans, 1995), which dictates that the tendency
to group one way or the other will be determined solely by the
ratio |v|/|a|. Here, |v| can be |b| or the length of the diagonals of
the rectangle formed by |a| and |b|.

In the computational experiments that follow, the angle 1 was
set to 90°, while also keeping the orientation of the entire lattice
fixed, allowing us to restrict our attention to the two dominant
percepts of rows and columns (see Figure 3). In these lattices, |a|
(interdot distance in the horizontal direction) is fixed, and |b|
(interdot distance in the vertical direction) is varied such that |b|/|a|
ranges from 1 to 2. The BHG framework allows grouping to be
modeled as follows.

Following Equation 7, the posterior distribution over the two
hypotheses, rows (ch) and columns (cv), can then be computed as

p(cv"D) !
p(D"%, cv)p(cv"&)

p(D"%, ch)p(ch"&) ( p(D"%, cv)p(cv"&)
. (10)

The results for a 5 0 5 lattice are shown in Figure 3A. We
plotted the log of the posterior ratio log p(cv|D)/p(ch|D) as a
function of the ratio |b|/|a| (similar to Kubovy et al., 1998). Figure
3A to B shows how the posterior ratio decreases monotonically
with the ratio |b|/|a|, consistent with human data (Kubovy &
Wagemans, 1995). In other words, the posterior probability of the
horizontal contours (rows) interpretation increases monotonically
with |b|/|a|. The exact functional form of the relationship depends
on the details of the object definition. If our object definition
includes an error on arc length, then this implies a linear relation-
ship between the ratio |b|/|a|, and the log posterior ratio is precisely
as predicted by the pure-distance law (Figure 3A). The examples
in this article use a quadratic penalty of arc length (see Appendix
B) for computational convenience, in which case we get a slightly
nonlinear prediction depicted in Figure 3B.

Good continuation. Good continuation, the tendency for col-
linear or nearly collinear sets of visual items to group together, is
another Gestalt principle that has been extensively studied (Feldman,
1997a, 2001; Smits & Vos, 1987; Smits, Vos, & Van Oeffelen, 1985).
Here, we show that BHG can make quantitatively accurate predictions
about the strength of tendency toward collinear grouping by compar-
ing its predictions to measured judgments of human subjects. Feld-
man (2001) conducted an experiment in which subjects were shown
dot patterns consisting of six dots (e.g., Figure 4A and B) and then
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Figure 3. Bayesian hierarchical grouping predictions for simple dot lattices. As input, the model received the
location of the dots as seen in the bottom two rows, in which the ratio of the vertical |b| over the horizontal |a|
dot distance was manipulated. The graph on top shows the log posterior ratio of seeing vertical versus horizontal
contours as a function of the ratio |b|/|a|. Left plot: Object definition included error on arc length. Right plot:
Object definition included a quadratic error on arc length. See the online article for the color version of this
figure.
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asked to indicate if they saw one or two contours, corresponding to a
judgment about whether the dots were perceived as grouping into a
single smooth curve or two distinct curves with an “elbow” (nons-
mooth junction) between them. To model these data, we ran BHG on
all the original stimuli and computed the probability (Equation 10) of
the two alternative grouping hypotheses: c1 (all dots generated by one
underlying contour) and c2 (dots generated by two distinct contours).6

We then compared this posterior to pooled human judgments for all
343 dot configurations considered in Feldman, and found a strong
monotonic relationship between model and data (see Figure 4). Be-

cause of the binomial nature of both variables, we took the log odds
ratio of each. The log odds of the human judgments and log posterior
ratio of the model predictions were highly correlated (Likelihood

6 The hypothesis c2 comprises several subhypotheses listing all the
possible ways that these six dots could be subdivided into two contours.
Here, we only took into account those hypotheses that would not alter the
ordering of the dots (i.e., hypotheses {(1), (2, 3, 4, 5, 6)}, {(1, 2), (3, 4, 5,
6)}, {(1, 2, 3), (4, 5, 6)}, {(1, 2, 3, 4), (5, 6)}, and {(1, 2, 3, 4, 5), (6)}).
Because these are disjoint, p(c2|D) is the sum over all these hypotheses.
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−5 10
Model predictions: log [p(c2|D)] - log[p(c1|D)]
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Figure 4. Bayesian hierarchical grouping’s performance on data from Feldman (2001). (A, B) Sample stimuli with
likely responses (stimuli not drawn to scale). (C) Log odds of the pooled subject responses plotted as a function of
the log posterior ratio of the model log p (c2|D) * log p(c1|D), in which each point depicts one of the 343 stimulus
types shown in the experiment. Both indicate the probability of seeing two contours p(c2|D). Model responses are
linearized using an inverse cumulative Gaussian. See the online article for the color version of this figure.
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Ratio Test [LRT] ! 229.3, degrees-of-freedom [df] ! 1, p ( .001,
R2 ! 0.6650; Bayes Factor [BF] ! 2.93775e 2 77).7

Association field. The interaction between good continuation
and proximity is often expressed as an “association field” (Field et
al., 1993; Geisler et al., 2001), and is closely related to the idea of
cocircular support neighborhoods (Parent & Zucker, 1989; Zucker,
1985). Given the object definition, the BHG framework automat-
ically introduces a Bayesian interaction between proximity and
collinearity without any special mechanism. To illustrate this ef-
fect, we manipulated the distance D and relative orientation " of
two segments each composed of five dots (Figure 5A). To quantify
the degree of grouping between the two segments, we considered
two hypotheses: one c1, in which all 10 dots are generated by a
single underlying contour, and another c2, in which the two seg-
ments are each generated by distinct contours. The posterior prob-
ability of the former p(c1|D), computed using Equation 10, ex-
presses the tendency for the two segments to be perceptually
grouped together in the BHG framework (Figure 5B). As can be
seen in the figure, the larger the angle between the two segments
and/or the further they are from each other, the less probable c1

becomes. The transition between ungrouped and grouped segments
can be seen in Figure 5B as a transition from blue (low p[c1|D]) to
red (high p[c1|D]).

Contour grouping. The preceding examples illustrate how
BHG gauges the degree to which a given configuration of dots
coheres as perceptual group. But the larger and much more diffi-
cult problem of perceptual grouping is to determine how elements
should be grouped in the first place—that is, which of the vast
number of qualitatively distinct ways of grouping the observed
elements is the most plausible. Here, we illustrate how the frame-
work can generate grouping hypotheses by means of its hierarchi-
cal clustering machinery and estimate the posterior distribution
over those hypotheses. We first ran BHG on a set of simple edge
configurations (see Figure 6). One can see that the framework
decomposes these into intuitive segments at each level of the
hierarchy. Figure 6A gives an illustration of how the MAP (max-
imum a posteriori) hypothesis is that all edges are generated by the
same underlying contour, whereas the hypothesis one step down
the hierarchy segments it into two intuitive segments. The latter
hypothesis, however, has a lower posterior. Another example of an
intuitive hierarchy can be seen in Figure 6D, in which the MAP
estimate consists of three segments. The decomposition one level
up (the two-contour hypothesis) joins the two segments that are
abutting together, but has a lower posterior. These simple cases
show that the model can build up an intuitive space of grouping
hypotheses and assign them posterior probabilities.

Figure 7 shows a set of more challenging cases in which dots are
arranged in a variety of configurations in the plane. The figure
shows the MAP interpretation drawn from BHG (color coded),
meaning the single interpretation assigned highest posterior. In
most cases, the decomposition is highly intuitive. In Figure 7B, the
long vertical segment is broken into two parts. Although this might
seem less intuitive, it follows from the assumptions embodied in
the object definition. Specifically, the object definition includes a
penalty for the length of the curve in the form (-1), which is
applied to the entire curve. Exactly how dot spacing influences
contour grouping is part of a more complex question of how
spacing and regularity of spacing influence grouping (e.g., Feld-
man, 1997a; Geisler et al., 2001).

Parts of Objects

The decomposition of whole objects into perceptually distinct
parts is an essential aspect of shape interpretation with an exten-
sive literature (see, e.g., Biederman, 1987; Cohen & Singh, 2006;
De Winter & Wagemans, 2006; Hoffman & Richards, 1984;
Palmer, 1977; Singh & Hoffman, 2001). Part decomposition is
known to be influenced by a wide variety of specialized factors
and rules, such as the minima rule (Hoffman & Richards, 1984),
the short-cut rule (Singh, Seyranian, & Hoffman, 1999), and limbs
and necks (Siddiqi & Kimia, 1995). But each of these rules has
known exceptions and idiosyncrasies (see De Winter & Wage-
mans, 2006; Singh & Hoffman, 2001), and no unifying account is
known. Part decomposition is conventionally treated as a com-
pletely separate problem from the grouping problems considered
in this article. But as we now show, it can be incorporated ele-
gantly into the BHG framework by treating it as a kind of grouping
problem, in which we aim to group the elements that make up the
object’s boundary into internally coherent components. When
treated this way, part decomposition seems to follow the same
basic principles—for example, evaluation of the strength of alter-
nate hypotheses via Bayes’ rule—as do other kinds of perceptual
grouping.

Feldman and Singh (2006) proposed an approach to shape
representation in which shape parts are understood as stochastic
mixture components that generate the observed shape. Their ap-
proach is based on the idea of the shape skeleton, a probabilistic
generalization of Blum’s (1967, 1973) medial axis representation.
In this framework, the shape skeleton is a hierarchically organized
set of axes, each of which generates contour elements in a locally
symmetric fashion laterally from both sides. As mentioned earlier,
the random lateral vector is referred to as a rib (because it sprouts
sideways from a skeleton), and the distance between the contour
element and the axis is called the rib length. In the Feldman and
Singh (2006) framework, the goal is to estimate the skeleton that,
given an observed set of contour elements, is mostly likely to have
generated the observed elements (the MAP skeleton). Critically,
each distinct axial component of the MAP skeleton “explains” or
“owns” (is interpreted as having generated) distinct contour ele-
ments, so a skeleton estimate entails a decomposition of the shape
into parts. In this sense, part decomposition via skeleton estimation
is a special case of mixture estimation, in which the shape itself is
understood as “a mixture of parts.” Skeleton-based part decompo-
sition seems to correspond closely to intuitive part decompositions
for many critical cases (Feldman et al., 2013). But the original
approach (Feldman & Singh, 2006) lacked a principled and trac-
table estimation procedure. Here, we show how this approach to
part decomposition can be incorporated into the BHG mixture
estimation framework, yielding an effective hierarchical decom-
position of shapes into parts.

To apply BHG, we begin first by sampling the shape’s boundary
to create a discrete approximation consisting of a set of edges
D ! {x1 . . . xN}. Figure-ground assignment is assumed known
(that is, we know which side of the boundary is the interior; the
skeleton is assumed to explain the shape “from the inside”). Next,

7 Both the BF and the LRT were computed by comparing a regression
model in which the log odds of the model predictions were taken as a predictor
versus an unconditional means model containing only an intercept.
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we choose hyperparameters that express our generative model of a
part (i.e., reflect our assumptions about what a part looks like). The
main difference compared to contours is that we now do not want
the mean rib length to be zero. That is, in the case of parts, we
assume that the mean rib length can be assigned freely with a slight
bias toward shorter mean rib lengths to incorporate the idea that
parts are more likely to be narrow (#0 ! 0; .0 ! .001). The
remaining generative parameters were set to reflect the assumption
that parts should preferably have smooth boundaries (+0 ! .001;
/0 ! 10). The hyperparameters biasing the shape of the axes
themselves were set to identical values as in the contour integra-
tion case (-1 ! .16; -2 ! .05). Finally, the mixing hyperparameter
was set to & ! .001.

Figure 8 shows an example of BHG applied to a multipart shape.
The model finds the most probable (MAP) part decomposition
(Figure 8C) and the entire structural hierarchy (Figure 8B). In
other words, BHG finds what we argue is the “perceptually natural
description” of the shape at different levels of the structural hier-
archy (Figure 8D and E). The MAP part decomposition for several
shapes of increasing number of parts is shown in Figure 9. Note
that each axis represents a part.

Figure 10 shows some sample results. BHG correctly handles
difficult cases such as a leaf on a stem (Figure 10A) and dumbbells
(Figure 10B), while still maintaining the hierarchical structure of
the shapes (Siddiqi et al., 1999). Figure 10D shows a typical
animal. In particular, Figure 10C shows the algorithm’s robustness
to contour noise. This shape, the “prickly pear” from Richards,
Dawson, and Whittington (1986) is especially interesting because
a qualitatively different type of noise is added to each part of the
shape, which cannot be correctly handled by standard scale-space
techniques. Furthermore, a desirable side effect of our approach is
the absence of ligature regions. A ligature is the “glue” that binds
two or more parts together (e.g., connecting the leaf to its stem in
Figure 10A). Such regions have been identified (August, Siddiqi,
& Zucker, 1999) as the cause of internal instabilities in the con-
ventional medial axis transform (Blum, 1967), diminishing their

usefulness for object recognition. Past medial axis models had to
cope with this problem by explicitly identifying and deleting such
regions (e.g., August et al., 1999). In our approach, by contrast,
they do not appear at all in the BHG part decompositions, so they
do not have to be dealt with separately.

Shape complexity. As a side effect, the BHG model also
provides a natural measure of shape complexity, a factor that often
arises in experiments but which lacks a principled definition. For
example, we have found that shape complexity diminishes the
detectability of shapes in noise (Wilder, Singh, & Feldman, 2015).
Rissanen (1989) showed that the negative of the logarithm of
probability—log p, the DL, provides a good measure of complex-
ity because it expresses the length of the description in an optimal
coding language (see also Feldman & Singh, 2006). To compute
the DL of a shape, we first integrate over the entire grouping
hypothesis space C ! {c1 . . . cJ}:

p(D"&, %) !
1

J#j!1

J

p(D"%, cj)p(cj"&). (11)

The DL is then defined as DL ! * log p(D|&, %). Figure 9
shows how, as we make a shape perceptually more complex (here,
by increasing the number of parts), the DL increases monotoni-
cally. This metric is universal to our framework and can be used to
express the complexity of any image given any object definition.
In general, the DL expresses the complexity of any stimulus, given
the generative assumptions about the object classes that are as-
sumed to have generated it.

Part salience. Hoffman and Singh (1997) proposed that rep-
resentation of object parts is graded, in that parts can vary in the
degree to which they appear to be distinct perceptual units within
the shape. This variable, called part salience, is influenced by a
number of geometric factors, including the sharpness of the re-
gion’s boundaries, its degree of protrusion (defined as the ratio of
the part’s perimeter to the length of the part cut), and its size
relative to the entire shape. Within BHG, we can define part
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Figure 5. The “association field” between two line segments (each containing five dots) as quantified by
Bayesian hierarchical grouping. (A) Manipulation of the distance and angle between these two line segments.
The blue line depicts the one-object hypothesis, and the two green lines depict the two-object hypothesis. (B) The
association field reflecting the posterior probability of p(c1|D) of the one-object hypothesis. See the online article
for the color version of this figure.
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A

B

C

D

E

Figure 6. Bayesian hierarchical grouping (BHG) results for simple dot contours. The first column shows the input
images and their MAP segmentation. Input dots are numbered from left to right. The second column shows the tree
decomposition as computed by BHG. The third column shows the posterior probability distribution over all
tree-consistent decompositions (i.e., grouping hypotheses). See the online article for the color version of this figure.
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salience in a more principled way by comparing two grouping
hypotheses: the hypothesis in which the part was last present
within the computed hierarchy c1, and the hypothesis c0 one step
up in the hierarchy in which the part ceases to exist as a distinct
entity. The higher this ratio, the stronger the part’s role in the
inferred explanation of the shape. In the examples that follow, we
defined part salience as the log ratio between posterior probabili-
ties of these hypotheses, which captures the weight of evidence in
favor of the part. Figure 11 shows some sample results. Note that
the log posterior ratio increases with both part length (Figure 11A)
and protrusion (Figure 11B), even though neither is an overt factor
in its computation. The implication is that the known influence of
both factors is in fact a side effect of the unifying Bayesian
account.

To demonstrate quantitatively how BHG captures part salience,
we compared our model’s performance with published human-
subject data on part identification. Cohen and Singh (2007) tested
the contribution of various geometric factors to part salience. Here,
we focus on their experiment concerning part protrusion. In this
experiment, subjects were shown a randomly generated shape on
each trial, with one of 12 levels of part protrusion (3 [base
widths] 0 4 [part lengths]), after which they were shown a test part
depicting a part taken from this shape (see Figure 12A). Subjects
were asked to indicate in which of four display quadrants this part
was present in the original, complete shape. Cohen and Singh
found that subjects’ accuracy in this task increased monotonically
with increasing protrusion of the test part. For each of the 12 levels
of part protrusion, subjects were shown 50 different randomly
generated shapes. In order for us to compare our model’s perfor-
mance with subjects’ accuracy, we ran BHG on 20 randomly
selected shapes for each level of part protrusion. We then looked
for the presence of the test part in the hierarchy generated by BHG
and computed the log posterior ratio between the hypotheses c1

and c0 (Equation 10). Because subject responses were binomial,
we computed the log odds ratio. Figure 12 shows that log odds
of the subjects’ accuracy on the task increases monotonically
with the log posterior ratio of the test part. The log posterior
ratio of the test part was found to be a good predictor of the log
odds of the subject’s accuracy at part identification (LRT !
50.594, df ! 1, R2 ! 0.4109; BF ! 8.0271e 2 14; see
Footnote 7).

Shape Completion

Shape completion refers to the visual interpolation of contour
segments that are separated by gaps, often caused in natural images
by occlusion. In dealing with partially occluded object boundaries,
the visual system needs to solve two problems (Singh & Fulvio,
2007; Takeichi, Nakazawa, Murakami, & Shimojo, 1995). First, it
needs to determine if two contour elements should be grouped
together into the representation of single, extended contour (the
grouping problem). Second, it has to determine what the shape of
the contour within the gap region should be (the shape problem).
Here, we focus primarily on the shape problem and show how our
model can make perceptually natural predictions about the missing
shape of a partly occluded contour.

Local and global influences. Most previous models of com-
pletion base their predictions on purely local contour information,
namely, the position and orientation of the contour at the point at
which it disappears behind the occluder (called the inducer; Ben-
Yosef & Ben-Shahar, 2012; Fantoni & Gerbino, 2003; Williams &
Jacobs, 1997). Such models cannot explain the influence of non-
local factors such as global symmetry (Sekuler, Palmer, & Flynn,
1994; van Lier et al., 1995) and axial structure (Fulvio & Singh,
2006). Nonlocal aspects of shape are, however, notoriously diffi-
cult to capture mathematically. But the BHG framework allows
shape to be represented at any and all hierarchical levels, allowing
it to make predictions that combine local and global factors in a
comprehensive fashion.

In the BHG framework, completion is based on the posterior
predictive distribution over missing contour elements, which as-
signs probability to potential completions conditioned on the
estimated model. Assuming that figure-ground segmentation has
already been established, we first compute the hierarchical repre-
sentation of the occluded shape (given the object definitions set up
in the context of part decomposition earlier) with the missing
boundary segment, then we compute the posterior predictive
(Equation 8) based on the best grouping hypothesis, that is, MAP
tree slice. This induces a probability distribution over the field of
potential positions of contour elements in the occluded area as
influenced by the global shape. This field should thus be under-
stood as a global shape prior over possible completions, which
could be used by future models in combination with some good-
continuation constraint based on the local inducers to infer a
particular completion. For example, consider a simple case in
which a circle is occluded by a square (Figure 13A). The model
predicts that the interpolated contour must lie along a circular path
with the same curvature as the rest of the circle. The model makes
similarly intuitive predictions even with multipart shapes (Figure
13B). The model can also handle cases in which grouping is
ambiguous (the grouping problem mentioned earlier), that is, in
which the projection of the partly occluded object is fragmented in
the image by the occluder (Figure 13C). The model can even make
a prediction in cases in which there is not enough information for
a local model to specify a boundary (Figure 13D). All these
completions follow directly from the framework, with no funda-
mentally new mechanisms. The completion problem, in this frame-
work, is just an aspect of the effective quantification of the
“goodness” or Prägnanz of grouping hypotheses, operationalized
via the Bayesian posterior.

BA

Figure 7. (A, B) The MAP grouping hypothesis for a more complex dot
configurations. Distinct colors indicate distinct components in the MAP.
(B) An example illustrating some shortcomings of the model. The prefer-
ence for shorter segments leads to some apparently coherent segments to be
oversegmented. See the online article for the color version of this figure.
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Dissociating global and local predictions. Some of the
model predictions mentioned above could also have been made by
a purely local model. However, global and local models often
predict vastly different shape completions, and the strongest evi-
dence for global influences rests on such cases. For example
Sekuler et al. (1994) found that certain symmetries in the com-
pleted shape facilitated shape completion. More generally, van
Lier et al. (1994, 1995) found that the regularity of the completed
shape, as formulated in their regularity-based framework, likewise
influences completion. The shapes in Figure 14, containing so-
called fuzzy regularities, further illustrate the necessity for global
accounts (van Lier, 1999). As we keep the inducer orientation and
position constant, we can increase the complexity of a tubular
shape’s contour (Figure 14A and C). A model based merely on

local inducers would expect the completed contour to look exactly
the same in both cases, but to most observers, it does not. Because
BHG takes the global shape into account, it predicts a more
uncertain (i.e., noisy) completion when the global shape is noisier
(Figure 14B, D, and E). The capacity of the BHG framework to
precisely quantify such influences raises the possibility that, in
future work, we might be able to fully disentangle local and global
influences and determine how they combine to determine visual
shape completion.

Discussion

In this article we proposed a principled and mathematically
coherent framework for perceptual grouping, based on a central

Figure 8. Shape decomposition in Bayesian hierarchical grouping. (A) A multipart shape, and (B) resulting tree
structure depicted as a dendrogram. Colors indicate MAP decomposition, corresponding to the boundary labeling
shown in (C). D and E show (lower probability) decompositions at other levels of the hierarchy. See the online
article for the color version of this figure.
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theoretical construct (mixture estimation) implemented in a unified
algorithmic framework (BHC). The main idea, building on pro-
posals from our previous articles (Feldman et al., 2014; Froyen et
al., 2015), is to recast the problem of perceptual grouping as a
mixture estimation problem. We model the image as a mixture (in
the technical sense) of objects, and then introduce effective com-
putational techniques for estimating the mixture—or, in other
words, decomposing the image into objects. Above, we illus-
trated the framework for several key problems in perceptual
grouping: contour integration, part decomposition, and shape
completion. In this section we elaborate on several properties of
the framework, and point out some of its advantages over
competing approaches.

Object Classes

The flexibility of the BHG framework lies in the freedom to
define object classes. In the literature, the term “object” encom-
passes a wide variety of image structures, simply referring to
whatever units result from grouping operations (Feldman,
2003). In our framework, objects are reconceived generatively
as stochastic image-generating processes, which produce image
elements under a set of probabilistic assumptions (Feldman &
Singh, 2006). Formally, object classes are defined by two
components: the generative (likelihood) function, p(D|"), which
defines how image elements are generated for a given class, and
the prior over parameters, p("|%), which modulates the values
the parameters themselves are likely to take on. Taken together,
these two components define what objects in the class tend to
look like.

In all the applications demonstrated above, we assumed a ge-
neric object class appropriate for spatial grouping problems, which
generalizes the skeletal generating function proposed in Feldman
and Singh (2006). Objects drawn from this class contain elements
generated at stochastically chosen distances from an underlying
generating curve, whose shape is itself chosen stochastically from
a curve class. (The curve may have length zero, in which case the
generating curve is a point, and the resulting shape approximately
circular.) Depending on the parameters, this object class can gen-
erate contour fragments, dot clouds, or shape boundaries. This
broad class unifies a number of types of perceptual units, such as
contours, dot clusters, and shapes, that are traditionally treated as
distinct in the grouping literature, but which we regard as a
connected family. For example, in our framework, contours are, in
effect, elongated shapes with short ribs, dot clusters are shapes
with image elements generated in their interiors, and so forth.
Integrating these object classes under a common umbrella makes it
possible to treat the corresponding grouping rules, contour inte-
gration, dot clustering, and the others mentioned above as special
cases of a common mechanism.

One can, of course, extend the current object definition into 3D
(El-Gaaly, Froyen, Elgammal, Feldman, & Singh, 2015), or imag-
ine alternative object definitions, such as Gaussian objects (Froyen
et al., 2015; Juni, Singh, & Maloney, 2010). Furthermore, objects
classes can be defined in nonspatial domains, using such features
as color, texture, and contrast (Blaser, Pylyshyn, & Holcombe,
2000). As long as the object classes can be expressed in the
appropriate technical form, the Bayesian grouping machinery can
be pressed into service.

22.8130 64.7314 108.9959 155.0982 230.8837

DL

Figure 9. MAP skeleton as computed by the Bayesian hierarchical grouping for shapes of increasing
complexity. The axis depicts the expected complexity, DL (Equation 11), of each of the shapes based on the
entire tree decomposition computed. See the online article for the color version of this figure.

A B C D

Figure 10. Examples of MAP tree slices for (A) leaf on a branch, (B) dumbbells, (C) “prickly pear” from
Richards, Dawson, and Whittington (1986), and (D) Donkey. (Example D has a higher dot density because the
original image was larger.) See the online article for the color version of this figure.
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Hierarchical Structure

BHG constructs a hierarchical representation of the image ele-
ments based on the object definitions and assumption set. Hierar-

chical approaches to perceptual grouping have been very influen-
tial (e.g., Baylis & Driver, 1993; Lee, 2003; Palmer, 1977;
Pomerantz et al., 1977). At the coarsest level of representation, our
approach represents all the image elements as one object. For
shapes, this is similar to the notion of a model axis by Marr and
Nishihara (1978), providing only coarse information such as size
and orientation, of the entire shape (Figure 15A). Lower down in
the hierarchy, individual axes correspond to something more like
classical shape primitives such as geons (Biederman, 1987) or
generalized cones (Binford, 1971; Marr, 1982; Figure 15A to C).
Note, however, that our axial representation not only describes the
shape of each part but also entails a statistical characterization of
the image data that supports the description. This is what allows
descriptions of missing parts (see Figure 13). Even further down
the hierarchy, more and more detailed aspects of image structure
are represented (Figure 15B and C).

Structural versus spatial scale. Two different notions of
scale can be distinguished in the literature. Most commonly, scale
is defined in terms of spatial frequency, invoking a hierarchy of
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Figure 11. Log posterior ratio between tree consistent one- and two-
component hypotheses, as a function of (A) part length, and (B) part
protrusion. See the online article for the color version of this figure.
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Figure 12. (A) Representative stimuli used in the Cohen and Singh (2007) experiment relating part protrusion
to part saliency. As part protrusion increases, so does subjective part saliency. (Parts are indicated by a red part
cut.) (B) Log odds of subject accuracy as a function of log posterior ratio log p(c1|D) * log p(c0|D) as computed
by the model. (Error bars depict the 95% confidence interval across subjects. The red curve depicts the linear
regression.) See the online article for the color version of this figure.
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D

Figure 13. Completion predictions based on the posterior predictive
distribution based on the MAP skeleton (as computed by Bayesian hier-
archical grouping). See the online article for the color version of this figure.
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operators or receptive fields of different sizes, with broader recep-
tive fields integrating image data from larger regions, and finer
receptive fields integrating smaller regions. This notion of spatial
scale has been incorporated into a number of models of perceptual
grouping, including figure-ground (e.g., Jehee, Lamme, & Roelf-
sema, 2007; Klymenko & Weisstein, 1986) and shape representa-
tion (e.g., Burbeck & Pizer, 1994). Pure spatial scale effects have,
however, been shown not to account for essential aspects of
grouping (Field et al., 1993; Jáñez, 1984). In contrast, any hierar-
chical representation of image structure implicitly defines a notion
of structural scale, referring to the position of a particular struc-
tural unit along the hierarchy (Feldman, 2003; Marr & Nishihara,
1978; Palmer, 1977; Siddiqi et al., 1999). Typically, structural
scale assumes a tree structure, with nodes at various levels de-

scribing various aggregations of image units, the top node incor-
porating the entire image, and leaf nodes referring to individual
image elements.

These two notions of scale have not generally been explicitly
distinguished in the literature, but we would argue that they are
distinct. Elements at a common level of structural scale need not,
in fact, have similar spatial frequency content, whereas elements
with similar spatial scales may well occupy distinct levels of the
organizational hierarchy. The BHG framework incorporates both
notions of scale in a manner that keeps their distinct contributions
clear (Figure 16A). In BHG, spatial scale is modulated in effect by
the prior over the variance of rib length, p(+|+0, /0) (also see
Appendix B). Large values of +0 makes object hypotheses more
tolerant to variance in the spatial location of image elements.
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Figure 14. A simple tubular shape was generated with different magnitudes (SD) of contour noise. Note that
the local inducers are identical in both input images (A and C). For noiseless contours (A), the posterior
predictive distribution over completions has a narrow noise distribution (B), whereas for noisy contours (C), the
distribution has more variance (D). Panel E shows the relationship between the noise on the contour and the
completion uncertainty as reflected by the posterior predictive distribution. See the online article for the color
version of this figure.

structural scale
coarse fine

BA C

Figure 15. Prediction fields for the shape in Figure 8 for three different levels of the hierarchy. In order to
illustrate how underlying objects also represent the statistical information about the image elements, they explain
the prediction/completion field was computed for each object separately without normalization so that the
highest point for each object is equalized. See the online article for the color version of this figure.
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Figure 16B illustrates the effect of changing this prior on the
resulting interpretation. Structural scale, in contrast, is defined by
the level in the estimated hierarchy. Figure 16C illustrates how the
hierarchy changes as spatial scale is modified. At fine spatial
scales, the inferred hierarchy includes three hypotheses at distinct
structural scales, with the three-part hypothesis being the most
probable (Figure 16A). But at a coarser spatial scale, a different
hierarchical interpretation is drawn, with the two-part hypothesis
the most probable, and the three-part hypothesis, as found in the
finer spatial scale, completely absent. This example illustrates how
structural scale and spatial scale are related but distinct, describing
different aspects of the grouping mechanism.

Selective organization. Selective organization refers to the
fact that the visual system overtly represents some subsets of
image elements but not others (Palmer, 1977). The way BHG
considers grouping hypotheses and builds hierarchical representa-
tions realizes the notion of selective organization in a coherent
way. In our model, only N grouping hypotheses are considered,
whereas the total number of possible grouping hypotheses c is
exponential in N. Grouping hypotheses selected at one level of the
hierarchy depend directly on those chosen at lower level (grouping
hypotheses are “tree-consistent”), leading to a clean and consistent
hierarchical structure. Inevitably, this means that numerous group-
ing hypotheses are not represented at all in the hierarchy. Such
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selective organization is empirically supported by the observation
that object parts not represented in the hierarchy are more difficult
to retrieve (Cohen & Singh, 2007; Palmer, 1977).

Advantages of the Bayesian Framework

The Bayesian approach used here has several advantages over
traditional approaches to perceptual grouping. First, it allows us to
assign different degrees of belief, that is, probabilities, to different
grouping hypotheses, capturing the often graded responses found
in subject data. Previous nonprobabilistic models often only con-
verge on one particular grouping hypothesis (e.g., Williams &
Jacobs, 1997), or are unable to assign graded degrees of belief to
different grouping hypotheses at all (e.g., Compton & Logan,
1993). Second, Bayesian inference makes optimal use of available
information modulo the assumptions adopted by the observer
(Jaynes, 2003). In the context of perceptual grouping, this means
that a Bayesian framework provides the optimal way of grouping
the image, given both the image data and the particular set of
assumptions about object classes adopted by the observer. The
posterior over grouping hypotheses, in this sense, represents the
most “reasonable” way of grouping the image, or more accurately,
the most reasonable way of assigning degrees of belief to distinct
ways of grouping the image.

Conclusion

In this article we have presented a novel, principled, and math-
ematically coherent framework for understanding perceptual
grouping. Bayesian Hierarchical Grouping (BHG) defines the im-
age as a mixture of objects, and thus reformulates the problem of
perceptual grouping as a mixture estimation problem. In the BHG
framework, perceptual grouping means estimating how the image
is most plausibly decomposed into distinct stochastic image sour-
ces—objects—and deciding which image elements belong to
which sources, that is, which elements were generated by which
object. The generality of the framework stems from the freedom it
allows in how objects are defined. In the formulation discussed
above, we used a single simple but flexible object definition,
allowing us to apply BHG to such diverse problems as contour
integration, dot clustering, part decomposition, and shape comple-
tion. But the framework can easily be extended to other problems
and contexts simply by employing alternative object class defini-
tions.

BHG has a number of advantages over conventional approaches
to grouping. First, its generality allows a wide range of grouping
problems to be handled in a unified way. Second, as illustrated
above, with only a small number of parameters, it can explain a
wide array of human grouping data. Third, in contrast to classical
approaches, it allows grouping interpretations to be assigned de-
grees of belief, helping to explain a range of graded percepts and
ambiguities, some of which were exhibited above. Fourth, it pro-
vides hierarchically structured interpretations, helping to explain
human grouping percepts that arise at a variety of spatial and
structural scales. Finally, in keeping with its Bayesian roots, the
framework assigns degrees of belief to grouping interpretations in
a rational and principled way.

Naturally, the BHG model framework has some limitations. One
broad limitation is the general assumption that image data are

independent and identically distributed (i.i.d.) conditioned on the
mixture model, meaning essentially that image elements are ran-
domly drawn from the objects present in the scene. Such an
assumption is nearly universal in statistical inference, but certainly
limits the generality of the approach, and may be especially inap-
propriate in dynamic situations. We note a few additional limita-
tions more specific to our framework and algorithm.

First, in its current implementation, the framework cannot easily
be applied to natural images. Standard front-ends for natural im-
ages (e.g., edge detectors or V1-like operator banks) yield ex-
tremely noisy outputs, and natural scenes contain object classes for
which we have not yet developed suitable generative models.
(Algorithms for perceptual grouping are routinely applied to real
images in the computer vision literature, but such schemes are
notoriously limited compared to human observers, and are gener-
ally unable to handle the subtle Gestalt grouping phenomena
discussed here.) Extending our framework so that it can be applied
to natural images is a primary goal of our future research.

Second, broad though our framework may be, it is limited to
perceptual grouping and does not solve other fundamental inter-
related problems such as 3D inference. Extending our framework
to 3D is actually conceptually simple, albeit computationally com-
plex, in that it simply requires the generative model be generalized
to 3D, whereas estimation and hypothesis comparison mechanisms
would remain essentially the same. Indeed in recent work (El-
Gaaly et al., 2015), we have taken steps toward such an extension,
allowing us to decompose 3D objects into parts.

Finally, it is unclear how exactly the framework could be carried
out by neural hardware. However, Beck, Heller, and Pouget (2012)
have recently derived neural plausible implementations for varia-
tional inference (a technique for providing Bayeisan estimates of
mixtures; Attias, 2000) within the context of probabilistic popula-
tion codes. Because such techniques allow mixture decomposition
by neural networks, they suggest a promising route toward a
plausible neural implementation of the theoretical model we have
laid out here.

We end with a comment on the “big picture” contribution of this
article. The perceptual grouping literature contains a wealth of
narrow grouping principles covering specific grouping situations.
Some of these, such as proximity (Kubovy et al., 1998; Kubovy &
Wagemans, 1995) and good continuation (e.g., Feldman, 2001;
Field et al., 1993; Parent & Zucker, 1989; Singh & Fulvio, 2005),
have been given mathematically concrete and empirically persua-
sive accounts. But (with a few intriguing exceptions such as Zhu,
1999; Geisler & Super, 2000; Ommer & Buhmann, 2003; Song &
Hall, 2008) similarly satisfying accounts of the broader overarch-
ing principles of grouping—if indeed any exist—remain compar-
atively vague. Terms such as Prägnanz, coherence, simplicity,
configural goodness, and meaningfulness are repeatedly invoked
without concrete definitions, often accompanied by ritual protes-
tations about the difficulty in defining them. In this article we have
taken a step toward solving this problem by introducing an ap-
proach to perceptual grouping that is both principled, general, and
mathematically concrete. In BHG, the posterior distribution quan-
tifies the degree to which each grouping interpretation “makes
sense”—the degree to which it is both plausible a priori and fits the
image data. The data reviewed above suggests that this formulation
effectively quantifies the degree to which grouping interpretations
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make sense to the human visual system. This represents an impor-
tant advance toward translating the insights of the Gestalt psychol-
ogists—still routinely cited a century after they were first intro-
duced (Wagemans, Elder, et al., 2012; Wagemans, Feldman, et al.,
2012)—into rigorous modern terms.
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Appendix A

Delaunay-Consistent Pairs

Bayesian hierarchical clustering (BHC) is a pairwise clustering
method for which, at each iteration, merges between all possible
pairs of trees Ti and Tj are considered. Given a data set D ! {x1 . . .
xN}, the algorithm is initiated with N trees Ti each containing one
data point Di ! {xn}. As N increases, the number of pairs to be
checked during this first iteration increases quadratically with N or,
more specifically, as follows from combinatorics #pairs ! (N2 –
N)/2 (Figure A1), resulting in a complexity of !$N2%. In each of the
following iterations, the hypothesis for merging only needs to be
computed for pairs between existing trees and the newly merged
tree from iteration t * 1. However, computing the hypothesis for
merging p$Dk"H0% for each possible pair is computationally ex-
pensive. Therefore, in our implementation of the BHC, we propose
limiting the pairs checked to a local neighborhood as defined by
the Delaunay triangulation. In other words, a data point xn is only
considered to be merged with data point xm if it is a neighbor of
that point. To initialize the BHC algorithm, we compute the
Delaunay triangulation over the data set D. Given this, we can then
compute a binary neighborhood vector bn of length N for each data
point xn indicating which other data points xn shares a Delaunay
edge with. Together these vectors form a sparse symmetric neigh-

borhood matrix. In contrast, when all pairs were considered this
matrix would consist of all ones except for zeros along the diag-
onal. Using this neighborhood matrix, we can then define which
pairs are to be checked at the first iteration. The amount of pairs
checked at this initial stage is considerably lower than when all
pairs are to be considered. Specifically, when simulating the
amount of Delaunay-consistent pairs checked at this first iteration
on a randomly scattered data set, the amount of pairs increased
linearly with N (Figure A1). This results, when combined with the
complexity of Delaunay triangulation !$Nlog$N%%, in a computa-
tional complexity of !$Nlog$N%%. In all of the following iterations,
the neighborhood matrix is updated to reflect how merging trees
also causes neighborhoods to merge. In order to implement this,
we created a second matrix, D, called the token-to-cluster matrix
of size N 0 ([N * 1] 2 N). The rows indicate the data points, and
the columns, the possible clusters they can belong to. Given this
matrix and the neighborhood matrix, we can then define which pairs
to test in each of the iterations following the initial one. Note, when
all Delaunay-consistent pairs have been exhausted, our implementa-
tion will revert to test all pair-wise comparisons.
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Figure A1. Difference between checking all pairs and only Delaunay-consistent pairs at the first initial iteration
of the Bayesian hierarchical grouping. As the number of data points, N, increases, the number of pairs increases
differently for the Delaunay-consistent (green) or all pairs (blue). See the online article for the color version of
this figure.

(Appendices continue)
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Appendix B

B-Spline Curve Estimation

Within our approach it is necessary to compute the marginal
p$D"%% ! &$ p$D"$%p$$"%%. For simple objects such as Gaussian
clusters, this can be solved analytically. However, for the more
complex objects discussed here, integrating over the entire param-
eter space becomes rather intractable. The parameter vector for our
objects looks as follows: " ! {q, #, +}. Integrating over the
Gaussian part of the parameter space (# and +) is straightforward
and can be computed analytically. On the other hand, integrating
over all possible B-spline curves as defined by the parameter
vector q is intractable for our purposes. We therefore choose to
pick the parameter vector q that maximizes Equation 15, while
integrating over the Gaussian components. In what follows, we
will describe how we estimate the B-spline curve for a given data
set D.

B-spline curves were chosen for their versatility in taking many
possible shapes by only defining a few parameters. Formally, a
parametric B-spline curve is defined as

g(t) ! #
m!1

M

Bm(t)qm, (12)

where Bms are the basis-functions and qms are the weights assigned
to these (also called the control points). The order of the B-spline
curve is defined by the order of the basis functions; we used cubic
splines. In the simulations above, the number of basis functions
and control points was set to M ! 6. This number is a good
compromise between the number of parameters that govern the
B-spline and the flexibility to take a wide range of shapes. From
this curve, we state that data points are generated perpendicular
according a Gaussian likelihood function over the distance be-
tween a point on the curve g(tn) and the projected data point xn (see
Equation 9), also referred to as the riblength.

Given a data set D ! {x1 . . . xn}, we would like to compute the
marginal p(D|%). In order to do so, we first need to define the prior
p("|%) and likelihood function p(D|") inside the integral:

p(D"$) ! '
n!1

N

"(dn"-, .), (13)

p($"%) ! exp(F1"01)exp(F2"02)"1)2(-, ."-0, 20, .0, 30),

(14)

where dn ! !g(tn) * xn!. The likelihood function is the same as the
generative function defined in Equation 9. The last factor in
the prior is the conjugate prior to the Gaussian distribution in the
likelihood function, the Normal-inv(32), allowing for analytical
computation of the marginal over parameters # and +. The first
two factors define the penalties on the first and second derivative
of the curve, respectively. Unfortunately, these are not conjugate
priors to the distribution over different curves. Hence, integrating
over all possible curves would have to be done numerically and is
computationally intractable. Therefore, when computing the mar-

ginal, we choose to only integrate over the Gaussian components
of the parameter vector " and select q as to maximize

p(D"%, q) ! &-,. '
n!1

N

p(xn"-, ., q)p($"%)d-d.. (15)

In order to maximize this function, we followed a simple
expectation-maximization (E–M) like algorithm traditional to
parametric B-spline estimation (for a review, see Flöry, 2005).
This algorithm has two stages. In the first stage (similar to expec-
tation stage in E–M), each data point xn is assigned a parameter
value tn such that g(tn) is the closest point on the B-spline curve to
xn, that is, xn’s perpendicular projection to the curve g. Finding
these parameter values tn is also called footpoint computation (the
algorithm for this stage is described in Flöry, 2005). In the second,
maximization, stage we maximize the function in Equation 15 given
these [xn, tn] pairs using unconstrained nonlinear optimization (as
implemented through the function fminsearch in MATLAB). Com-
puting the value if this function, given a specific value of q, first of all
involved computing the values for F1 and F2 in order for us to
compute the prior on the curve shape. Both values are formally
defined as

Fi ! &t
! Dig(t)!2dt, (16)

where i stands for the ith derivative. This integral was computed
numerically by computing the ith derivative of g(t) at 1,000
equally sampled points along the curve. With these values in hand,
the marginal in Equation 15 can now be computed analytically by
integrating over the Gaussian components:

p(D"%, q) !
+(3n ⁄ 2)

+(30 ⁄ 2)(20

2n

(v0.0)
v0⁄2

(vn.n)
vn⁄2

1

,n⁄2exp(F1"01)exp(F2"02),

(17)

with,

-n !
20-0 ( Nd!

2n
,

.n ! 20 ( N,

3n ! 30 ( N,

.n !
1

3n
)30.0 ( #

n
(dn ) d!)2 (

N20

20 ( N
(-0 ) x!)2*,

(18)

where d! !
1

n#n dn. The two stages just described are then re-

peated until convergence of the function in Equation 15.
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