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Abstract
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We describe the preverbat System of counting and arithmetic reasoriing revealed by
experiments on numerical representations in animals. In this Systemt. numerosities
are represented by magnitudes, which are rapidly but inaccurately genterated by the
Meck and Church (1983) preverbal counting mechanism. We suggest the following.
(1) The preverbal counting mechanism is the source of the implicit principles that
guide the acquisition of verbyl counting. (2) The preverbal Systemm of arithmetic
computation provides the framework for the assimilation of the verbal system. (3)
Learning to count involves. in pari, learning a mapping from the preverbal
numerical magnitudes to the verbal and written number symbols and the inverse
mappings from these symbols to the preverbal magnitudes. (4) Subitizing is the use
of the preverbal counting process and the mapping from the resulting magnitudes to
number words in order to generate rapidly the number words for small
numerosities. (5) The retrieval of the number facts, which plays a central rote in
verbal computation, is mediated vig the inverse mappings from verbal and writen
numbers o the preverbal magnitudes and the use of these magnitudes 1o find the
appropriate cells in wabular arrangements of the answers. (6) This model of the fact
retrieval process accounts for the salient features of the reaction time differences
and error patterns revealed by experiments on mental arithmeric. (7) The applica-
tion of verbal and written computational algorithms goes on in parallel with, and is

to some extent guided by, preverbal computations, both in the child and in the
adult.
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Introduction

The guif between the experimental and theoretical analysis of human cognition on
the one side and the experimental and theoretical analysis of animai cognition on
the other is not consistent with an evolutionary perspective. The foundations of
human preverbal cognition presumably lie for the most part in animal cognition,
that is, in mental processes that were already present in the remote non-human
ancestors from which we and pylogenetically rather distant genera like rodents
and birds both descend. Yet, there are few attempts to link the extensive
literature on animal cognition to human cognition (see, however, Diamond &
Goldman-Rakic, 1989; Premack & Woodruft, 1978). Cognitive processes for
dealing with numerosities and magnitudes have been extensively studied in both
the common laboratory animals (rats and pigeons) and in man. Thus, in this
domain, there is an experimental basis for a rapprochement. In this paper, we
suggest that the foundations of human numerical competence lie in preverbal

mechanisms for counting and arithmetic reasoning that we share with genera at
least as distant as rodents and birds.

Numerical competence in animais

The category-concept distinction

[n discussing numerical competence, it is useful to distinguish between processes
such as counting that map from numerosities to mental representatives of
numerosities (symbols) and processes such as mental addition that operate on the
mental representatives of aumerosity. Gelman and Gallistel (1978) called this the
estimator-operator distinction. Estimator processes. such as counting, produce
the mental representatives of numerosity (termed numerons by Gelman &
Gallistel, 1978). They determine the mapping or reference relations between
mental entities (numerons) and the numerosities to which they refer. By contrast,
Operator processes, such as mental addition, process one numeron (unary
operators) or two {binary operators) numerons to produce another numeron.
The estimator-operator distinction corresponds to the distinction between
lumerons as categories and numerons as concepts (Gallistel, in press). While
category and concept have often been treated as synonyms, we believe that there
are good reasons to distinguish between them, at least in the number domain. A
aumeron qua category refers to all sets of a given numerosity. By contrast, a
fumeron qua concept plays a unique role in a system of mental operations
isomorphic to at least some of the arithmetic operations. The numerical concept
“three” is defined by the role it plays in the mental operations isomorphic to the
operations of arithmetic, not by what it refers to, Just as a bishop in chess is
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Preverhal and verbal counting and computanon 15

defined by its role in the game. not by its ecclesiastical referent. “The smallest
prime number greater than one™ uniquely identifies “three™ without saying
anything about the referent of “three." just as “the piece that moves along the
diagonals™ uniquely identifies the bishop without reference to anything external to
the game itself.

[t may help to emphasize the importance of this distinction to note that the
history of mathematics has been driven in no small measure by the tension
between the conceptual and the categoricat use of numbers. Conceptual manipu-
lations such as subtracting a bigger from a smaller number or taking the square
root of a negative number produced symbols with no apparent referent. symbols
like *=2" and "V ~1." [t was initially thought that these symbols could not stand
for anything outside the symbol system. There were no categories of non-symbolic
entities (e.g., numerosities or magnitudes) to which these symbols could refer.
Hence. the manipuiations that produced them were either forbidden or only
allowed as intermediate steps on the way to an expression that did not include
such ““nonsensical” numbers. In time, however. mappings from these symbois to
non-numerical entitics such as bank bafances. directed magnitudes, and points in
the plane were discerned. The discovery or invention of categories of things 1o
which these symbois could refer brought these symbols and the conceptual
operations that produced them out of the mathematical closet. This history also
led mathematicians to realize the importance of distinguishing between numbers
as concepts and numbers as categories,

Animals may be said to have number catcgories insofar as they can be shown
to base their behavior on the numerosity of a set independent of its other
attributes. Such an ability suggests that they map from all instances of a given
numerosity to & mental representative of that category of sets, a numeron that
represents that category. This numeron makes it possible for the animal to
respond in the same way to all instances of a given numerosity, even to instances
never before encountered. By contrast, animals may be said to have a concept of
number insofar as they may be shown to mentaily manipulate numerons in
processes that are isomorphic to some or ail of the operations that define the
system of arithmetic: ordering, addition, subtraction, multiplication, and division.

Analog isomorphisms

The things we are most apt to think of as representatives of numerosity are sound
patterns like /three/ or ink patterns like 3" or the patterns of on and off states in
the bit registers of a digital computing device. The physical characteristics of these
symbols are not generally such that simple physical operations performed on the
symbols themselves can be isomorphic to arithmetic operations. No simple
physical operation with the ink pattern 3" and the ink pattern 2" yields the ink
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44 C.R. Gallistel and R. Getman

pattern “5" - the pattern that represents the combined numerosity of the two
numerosities to which “3™ and 2" refer. Thus, these symbols do not readily or
transparently become entities in a physical system whose operations are iso-
morphic to the arithmetic operations. In this sense, the numerical symbols we are
most familiar with are arbitrarily related to their referents. But symbols need not
be as arbitrarily related to what they symbolize as are the bit patterns in digital
computation, let alone the ink patterns for the arabic numerals. In analog
computation, the symbols, which are generally magnitudes such as currents or
voltages, are chosen because they readily enter into physical processes isomorphic
to the arithmetic operations.

A histogram is a familiar example of the use of magnitudes to represent
numerosities: the higher the column in a histogram, the greater the numerosity of
the set represented by that column. Like all magnitudes, these magnitudes are
readily incorporated into a system of operations isomorphic to the system of
arithmetic. The column that represents the combined numerosity of sets 1 and 2 is
the column you get by placing the column for set 1 on top of the coiumn for set 2.
The column that represents the more numerous of two sets is the first column
contacted by a horizontal line lowered from the top of the graph. If you form a
rectangle whose height is that of column | and whose width is the height of
column 2, then hold constant the area of the rectangle white adjusting its width to
the standard column width, You get a column whose height represents the
numerosity of the set formed by muitiplying the numerosities represented by
columns 1 and 2.

The system just described - histogram arithmetic or the histogrammic cal-
culator - is an analog system isomorphic to arithmetic. Its symbols are mag-
nitudes, the heights of the columns. Its operations are processes involving those
magnitudes - processes chosen to be isomorphic to the arithmetic operations. It
and other analog computers are just as much symbol-processing devices as are the
more familiar digital computers. We want to suggest, on the basis of both animal
and the human data, that the preverbal processes that underlie both the animal
and the human capacity to represent numerosities and reason arithmetically are
analogous to histogram arithmetic, These preverbal processes generate analog
mental variables (ultimately, of course, neurophysiological variables) that func-
tion as the mental/neura representatives of numerosity (numerons). These
analog variables participate in mental/neurai processes that were chosen, we
believe, via natural selection during a remote epoch in evolutionary history
because their isomorphism to arithmetic operations conferred decisive adaptive
advantages on their possessors. Arithmetic is fundamental to the scientific de-
scription of the word in which animals attempt to survive and reproduce. It seems
reasonable to suppose that the ability to create similar descriptions of the world
within the organ that governs animal actions would confer substantial competitive
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advantages on the possessors of those abilities. The question is. do the experimen-
tal data support such a supposition?

Animals categorize sets on the basis of their numerosity

Number discrimination

Several different experimental paradigms have been developed to test the
ability of an animal to discriminate on the basis of the numerosity of a set. In
some. the set whose numerosity is the basis of discniminative behavior is the set of
fesponses the animal has made since the last reward. In others. it is the number of
clements in a set of simultaneously or sequentially presented stimuli. In 2
paradigm developed by Mcchner (1958), on some percentage of the trials a rat
had to leave off pressing one lever (the A lever) and press another lever (the B
lever) to get its reward, but only after making a required number of consecutive
presses on the A lever. Premature abandonment of the A lever incurred a
penalty. For a block of trials in which some number. M. of presses on the A lever
was required to arm the B lever, Mechner plotted the rat's probability {relative
frequency) of abandoning the A lever as a function of the number of consecutive
presses it had made on that lever (Figurc la), The resulting plots were approxi-
mately normally distributed around a number somewhat higher than the number
of required presses. The difference between the modai value of the distribution
and the requircd number of presses was a systematic function of the penalty: the
greater the penalty, the larger the difference. However, for any given penalty, the
differcnce remained constant as Mechner increased N. the required number of
presses. Of course, time on the A lever covaried with the nymber of presses of
that lever. However, in a subsequent experiment. Mechner and Guevrekian
(1962) showed that doubling the rat's rate of responding by increasing their state
of food deprivation had no effect on the modes of these distributions. If the
abandonment of the first lever were based on the time spent on that lever,
doubling the rate of responding would double the modal value of the distribution.

Platt and Johnson (1971) used a paradigm in which rats pressed a lever that
silently armed a feeder after some number, N, of presses. The value of V was
constant within a block of trials but varied between blocks. The armed feeder was
activated when the rat broke off pressing the lever and poked its head into a
feeding alcove, interrupting a photocell beam. If the rat interrupted the beam
before making the requisitc number of presses on the lever. there was a penalty:
the response counter was Teset 1o zero. The data in Figure 1b show the rats’
probability of interrupting the beam at the entrance to the feeding alcove as a
function of n, the number of presses on the lever, for various values of V. the
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Figure L. Evidence that both animels and humans represent numerosities by mental magnitudes. (a)
Rat data: the probability of a run of length n on lever A prior 10 a switch to lever B, as a
function of the number. N. of consecutive presses on A required to arm B. (Redrawn from
Mechner, 1958, p. 113. by permission of the author and the publisher.) (b) Rat data: the
probability of breaking off io enter the food delivery area as a function of n. the number of
presses made since the initializanon of the response counter. for various values of N, the

required number of presses. -~ wn from Platt and Johnson. 1971, by permission of the
authors end the publisher.) (- n data: reaction time (left panel) and error rates (right
panel) in judging which of 5 is larger, as functions of their numerical difference.

(Redrawn from Moyer and _..iauer. 1967, by permission of the authors and the
publisher.) (d) Human data: reaction time (filled circles) and error rates (bars) in judging
which of two digits is larger, as functiors of the numerically smaller digit (left panel).
Residual reaction time (after factoring out the contribution from the magniude of ihe
smaller digit) in judging which of two digits is larger, as a function of their numericai

difference (right panel). (Redrawn from Parkman, 1971, by permission of the author and
the publisher.)

required number of presses. The modal value of n matches N from N = 4 to
N =24, the full range tested.

Both data sets in Figure | show two characteristics. The distributions have
appreciable spread, even for numerosities as small as 4. No matter how smalil the
numerosity, the likelihood that a rat will confound it with a nearby numerosity is
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not negligible. Secondly, animal number discrimination conforms at least quali-
atively to Weber's law. The greater the reference numerosity. the more impre-
cisely the rats distinguish between it and nearby numerosities.

These Weber characteristics of animal number discrimination data are reminis-
cent of magnitude discrimination data, both human and animal. The striking
similarity between number discrimination data and magnitude discrimination data
is demonstrated in an experiment by Meck and Church (1983), in which rats
discriminated on the basis of the number of elements in a stimulus set or the
duration of the sequence of elements. Meck and Church trained rats to choose
between two levers on the basis of the sound sequence heard just before the
levers appeared. One $equence consisted of 2 half-second of white noise. a
half-second of silence. a second half-second of noise and a second half-second of
silence, followed by the appearance of the two levers. Thus. this sequence
consisted of wo cycles (two noises), with a total sequence duration of 2s. The
other training sequence consisted of eight of these same noise-silence cycles, so
that the duration of the sequence was 8s. Note that on training triais the number
of sounds in the sequence and the duration of the sequence covaried. Following
the 2.sequence. one lever (the “2-lever) was “correct:” following the 8-
sequence, the other lever (the “8-lever™) was. A press on the incorrect lever was
never rewarded, but a press on the correct lever was only rewarded 50% of the
time. By accustoming the rats to trials on which even correct choices were not
rewarded, Meck and Church could interpolate test trials on which neither lever
was correct (neither lever was rewarded), without disrupting the performance of
the discrimination. ‘

After the discrimination between the two training sequences had reached
asymptote, two different series of never-rewarded test trials were interpolated
among continued training trials, In one series, sequence duration was constant at
4s. while the number of cycles varied between two and eight. The rats’ choice of
the 8-lever was plotted as g function of the number of cycles (filled circles in
Figure 2). In the second series. the number of cycles was constant at four. while
the duration of the Séquence varied between 2 and 8s. The rats choice of the
8-lever was plotted as a function of the duration of the sequence (open circles in
Figure 2). The two plots in Figure 2 - the numerical discrimination plot and the
duration discrimination plot-are statistically indistinguishable and they are
cqually well fit by the same model of the underlying process. The model is
Gibbon's (1981) “sample known exactly with similarity decision rule,” which
generated the curve through the data in Figure 2.

The data in Figure 2 show, first, that in a training regime in which stimulus
duration and stimulus numerosity covaried, the rats learned the relation between
both variables and the correct lever. When sequence duration could not be used
to predict the correct lever, they chose on the basis of the number of cycles in the
sequence. When the number of cycles could not be used, they chose on the basis
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model. { Redrawn from Meck and Church. 1983, p. 323, by permission of the authors and
the publisher )

of sequence duration. Thus, the data confirm many other results showing that
both duration and numerosity are salient aspects of a stimulus (Gallistel. 1990).
Second, the results show that the rat's representation of the numerosity of the
cycles in the sequence and its representation of the duration of the sequence are
indistinguishable from a psychophysical standpoint. Meck and Church (1983)
explain this by a model, to be presented in more detail shortly, in which it is
assumed that numerosity is represented by the same mental magnitudes that
represent temporai durations (just as the columns in a column graph may
represent either numerosity or duration). Their model further assumes that the
mental magnitudes representing numerosity (the columns) have the same scalar
variance property as the mental magnitudes representing duration. The standard
deviation of the population of magnitudes that represent a given numerosity (or a
given duration) increases in proportion to the mean of the population.

Transfer on the basis of numerosity

The numerosity of a set is independent of the sensory attributes of its
members. This is why, in empiricist theories of mind, number is a highly abstract
and therefore derivative property of a set. Indeed, if Locke was correct in
claiming that there is nothing in the mind that was not first in the senses. then it is
unclear how number ever comes into the mind, because the numerosity of a set is
not something that acts on a sensory receptor. Do the experimental results on
animal number discrimination suggest that animals categorize sets on the basis of
their numerosity independent of the sensory attributes of the elements in the set?
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Fernandes and Church (1982) taught rats to choose between levers on the basis
of the number of noise bursts they heard just before the levers appeared. When
they substituted light flashes for noise bursts. the discrimination transferred.
Church and Meck (1984) taught rats to choose one lever following either a 2-Bash
Sequence or a 2-burst sequence and the other following either a 4-ash or 4-burst
Sequence. When they interpolated never-rewarded test trials on which the rats
were given 2 flashes and 2 bursts in tandem, the rats chose the d-lever. that is.
they chose on the basis of the numerosity of the set of 4 elements composed from
tWo subsets of 2 elements, even though each subset alone induced the apposite
choice on training trials, When the rats heard one burst and saw one fash in
tandem. they chose the 2-lever. even though the compound set and both of its
subsets (single flash and the single burst) did not figure in training. Both of these
results are striking examples of transfer of training based on the numerosity of the
stimulus sequence, without regard to the sensory characteristics of the members
of that sequence. Capaldi and Mitler (1988) trained rats to adjust their runway
performance on the basis of the number of rewarded trials in a sequence and
showed that performance was unaffected by substituting novel rewards, even
though the rats could be trained to discriminate solely on the basis of the number
of sequential rewards of 2 particular kind. Matsuzawa (1985) taught a chimpanzee
to chioose the arabic numeral representing the numerosity of a set of red pencils,
then tested transfer to sets composed of other items. Transfer was immediate and
total. In short, there are numerous demonstrations that animals abstract the
Rumerosity of a set independent of the sensory attributes of its members.

The preverbal counting model

Meck and Church (1983) proposed and tested a model of the mechanism that
maps from the numerosity of a set to the mental magnitude that represents it.
Their counting mechanism s diagrammed in Figure 3. It is composed of a source
for a stream of impuises, a pulse former that gates the stream of impulses to an
accumulator for a fixed duration (the duration of the counting pulse) whenever an
event or object is counted. an accumulator that sums the impulses gated to it, and
a readout mechanism that dumps the magnitude in the accumulator to memory
when the last event or object has been counted. The operation of this mechanism
conforms to the principles that define counting processes (Gelman & Gallistel,
1978). The mechanism pairs states of the accumulator (numerons} with the itemns
in the set being counted. The pairing is one—one, because the pulse former gares a
burst of impulses to the accumulator once and only once for each item in the

stable (does not vary from one count to the next), because the ordering of

magnitudes is isomorphic to the ordering of numbers. The final state of the
accumulator - the final numeron in the sequence of numerons used in a count - is
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Figure 3. The model for the animal counting mechanism proposed and experimenally rested by Meck
and Church (1983) and Meck. Church. arid Gibbon (1985). Each closing of the gare
tncrements the magnitude in the accumulator. The magnitude in the accumulaior ar the end
of the count is the menal representative of the numerosity of the counted ser.

used as a representative of the numerosity of the set (the cardinal principle).
Also, the current content of the accumulator is used as a representative of the
numerosity of the set so far counted in decision processes that involve comparing
a current count to a remembered count. In these processes, the magnitudes
previously read out of the accumulator into long-term memory represent previ-
oOusly experienced numerosities, while the magnitude currently in the accumulator
represents the currently experienced numerosity.

The counting mechanism in Figure 3 is a minor modification of the timing
mechanism proposed by Gibbon (1981), which generates the mental magnitudes
that represent temporal duration., When the mechanism is used to generate
magnitudes that represent the duration of an interval, the gate closes at the
beginning of the interval and opens at the end. so that the magnitude in the

ac Hdator is proportionate to the duration of the interval. Meck and Church
( sall this the “Run” mode. This timing mechanism becomes a counting
m 1sm when the gate closes for a short fixed interval once for each stimulus

in the sequence being counted, so that the magnitude in the accumulator at the
end of the sequence is proportionate to the number of elements in the sequence.
(Meck and Church call this the “Event” mode.)

Meck and Church estimated that the duration of a closure in the Event mode
was about 0.2s. This set the stage for an audacious experimental test of the
hypothesis that both numerosity and duration were represented by the same kinds
of mental magnitudes. The idea was to train rats on a duration discrimination.
then present them with stimulus sequences whose durations lay far beyond the
range of durations on which the rats had been trained, but whose numerosities
were such as to generate mental magnitudes estimated to be of the same size as
the magnitudes generated during duration training. The experiments tested for
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transfer from the duration training to the numerosity tests based on similanty in
the mental magnitudes used 10 represent these two different aspects of a stimulus.
That is, would rats base their decision on the magnitude of the representatives
independent of what those representatives represented? To return to the column
graph analogy for a moment: when rats had been taught to respond one way for a
certain mental column height and another way for a different mental coiumn
height, under conditions where those mental columns represented durations,
would they then read the column heights the same way when the columns
represented numerosities rather than durations® The answer. surprisingty, was yes
(Meck & Church, 1983; Meck. Church & Gibbon. 1985). This is strong evidence
that the preverbal representatives of numerosity are magnitudes.

Animals reason arithmerically

When we say that animals reason arithmeticaily we mean that their brains process
numerons {representatives of numerosity) in operations isomorphic to the oper-
ations of arithmetic. {f the magnitudes that represent numerosities enter into
processes equivalent to ordering, addition, subtraction, multiplication and divi-
sion. then, by our definition. the animals reason arithrﬁetically. Evidence for
these kinds of operations with numerons come from the analysis and modeling of
the decision processes that underlie performance in more complex discrimination
tasks involving number, duration and rate (number divided by duration).

For example, in the data from Mechner (1958) shown in Figure la. there is a
fixed numerical difference between the median number of presses at which the
animal broke off to try the other lever and the number of presses required to arm
the other lever. Under the particular conditions that generated the data in Figure
la, the median number of presses was aiways three more than the required
number. When Mechner manipulated the probability that the rat would have to
abandon lever A and move to lever B to collect its food. this difference changed.
When the probability was high, this difference was low; when the probability was
low, this difference was high. Thus, the decision process underlying this behavior
appears to invoive computing the difference between the current number of
presses and the required number, then comparing this difference to a criterion
(subtraction followed by ordering). On the other hand, in the data from Meck
and Church (1983) shown in Figure 2, where the rat was asked in effect to which
of two training numerosities (2 and 8) the numerosity presented on a test trial was
more similar, the rats’ decision process apparently rested on the computation of
two ratios and their comparison (ordering). The indifference point, where the
animals’ choices split fifty-fifty between 2 and 8 was 4, which is the geometric
mean or equiratio point. When the ratio between 8 and the test number was
smaller than the ratio between the test number and 2, the rats preferred the
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8-lever; when the first ratio was greater than the second. they preferred the
2-lever. The model that generated the curve in Figure 2 is based on the
assumption that the animals decision process involves the comparison of these
ratios. It is also based on the scalar variance assumption, the assumption that the
standard deviation of the population of magnitudes assigned to represent a given
numerosity is proportionate to the mean magnitude, as is evident in the discrimi-
nation data in Figure la and 1b.

In their numerous studies of duration discrimination, Gibbon, Church, and
Meck (1984) have used a variety of tasks involving different, often complex
decision processes, and they have extensively analyzed their data from the
standpoint of different models of the underlying deciion processes. The models
required to explain their data invoive the addition, subtraction. division, and
ordering of the mental magnitudes representing durations. As we saw above.
there is evidence that the same magnitudes are used to represent numerosity. It
secms reasonable to suppose that the same arithmetic operations may be applied
to these magnitudes when they represent numerosity as are applied when they
represent duration.

A reason for assuming that the same set of arithmetic operations are available
for processing both the magnitudes that represent numerosity and the magnitudes
that represent duration is that many behaviorally important computations involve
the arithmetic combination of the mental representations of these two different
variables, as, for example. in the computation of rate of return. There is a
well-documented tendency for animals to apportion their time between different
foraging locations in proportion to the relative rates of return that they have
experienced from these locations (Godin & Keenleyside, 1984; Harper, 1982;
Herrnstein, 1970; Smith & Dawkins, 1971). The rate of return from a foraging
patch is the number of morsels obtained while in that patch divided by the
duration of one’s stay and multiplied by the average magn:: ‘de of the morsels.
Attempts to model the sensitivity to the rate of returr  -m a patch with
“rule-of-thumb™ mechanisms that do not involve the perfor. .ace of the compu-
tation just spelled out have not been successful (Galiistel, 1990, Ch. 11; Lea &
Dow, 1984). The successful models of this phenomenon explicitly or implicitly
assume that the animal accurately represents the (local) rate of return (Gallistet,
1990, Ch. 11).

The most direct demonstration of arithmetic competence with numbers in a
nonverbal animal is the experiment of Boysen and Berntson {1989). Like
Matsuzawa (1985), they taught a juvenile chimpanzee to choose the arabic
numeral corresponding to a given numerosity of oranges in the range from 1 to 5.
When she was induced to search in several different sites for oranges and then
pick 2 numeral, she spontaneously picked the numeral that specified the total
number of oranges she had seen. This might simply mean that she continued her
count from site to site. However, when they put arabic numerals in the hiding
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sites in lieu of oranges, the chimpanzee spontaneously picked the numeral that
represented the sum of the values represented by the numerals she had seen.

Implications for adult numerical competence

Having briefly surveyed the evidence on animal numerical competence and the
mechanisms thought to underlie it, we now develop several hypotheses about the
relevance of this preverbal numerical competence to human verbal competence
with numbers and the acquisition of that competence by children. In this section.
we suggest that when we learn to count, we also learn a bidirectional mapping
between the preverbal magnitudes that represent numerosity and the number
words. We use this mapping. we suggest, in every aspect of verbally assaved
numerical competence: in subttizing. in judging the order of two digits. and in
retrieving the digit addition and digit multiplication facts.

The bidirectional mapping hypothesis

The important churacteristics of the bidirectional mapping between the digits and
the coresponding preverbal magnitudes are portrayed in Figure 4. The preverbal
magnitudes arc represented by the black columns immediately above the quoted
digits. The digits arc in quotes because this is a mapping from the numerals or
words for these digits. not from the numerical values to which they refer. The
mapping from preverbal magnitudes to digits is given by the digitally labeled
intervals on the mental number line to the left of the columns. The interval within
which the top of a column fails determines the digit that a subject will produce if
he is required (by. for example, time fimitations) to produce a digit on the basis of
a preverbal representation of numerosity rather than on the basis of a verbal
count. In other words, a numerically competent human must not only learn to
generate or find a preverbal magnitude appropriate to a given digit (the mapping
from digits to preverbal magnitudes), he must learn to partition the range of
preverbal magnitudes and assign the appropriate digits to the resulting intervals
(the mapping from preverbal magnitudes to digits).

A pivotal assumption about the mapping from digits to preverbal magnitudes is
that there is variability in the magnitudes to which a digit maps and this variability
obeys Weber's law: the standard deviation of the distribution of magnitudes to
which a digit maps increases in proportion to the mean magnitude. In Figure 4,
the fade from black to white ar the top of a column represents the variability in
the magnitudes to which the digit at the bottom of the column maps. There is
negligible probability that the magnitude to which the digit maps will be less than
the level at which the column begins to fade. There is a 50% chance that the
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Figure 4. Schemanc ilustration of the bidirectionaf mupptng hypothesis. Preverbal magnitudes are
represented by the lengihs of the black columns. Spoken or written digits are represenied by
the dignts in quotes, The fading of the columns at their 10ps represenis the variability in the
magniiudes 1o which u digu mups. The reduciion of the intervals over which this fading
occurs between the " Eurly™ and * Larer™ panels represents the speed-accuracy trade-off.
The more time ullowed for the mupping. the less variability in the resulting magnitudes. The

mapping from magnitudes 1o digits o mediared by the partition of the mental number line {at
left) into segmenus tubeled by digus,

magnitude wiil be less than the level at which the column has faded to 50% gray.
(This level - the mean of the magnitudes to which a digit maps - is marked by a
gray crossbar in Figure 4.) There is negligible probability that the magnitude will
exceed the level at which the bar fades to white. Notice that the interval over
which a column fades increases in proportion to the mean magnitude. This
proportionate increase in variability is presumably what underlies Weber's dis-
crimination law. It is what Gibbon {1977) has termed the “scalar variance”
property of the mental magnitudes that represent numerosity, duration, and other
physical magnitudes. The term “'scalar variability”” is perhaps preferable, because
it is the standard deviation, not the variance, that scales with the mean mag-
nitude.

The scalar variability assumption about the mapping from number words to the
mental number line may be contrasted with the compressive mapping assumption
made by Dehaene and Mehler (1992). They assume that for a given difference
between two numbers, the greater their mean numerical value, the smaller the
difference between the mental magnitudes to which they map (the smaller their
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subjective difference). This would be the case, for exampie, if the mapping from
numerical value to mental magnitude were logarithmic. In our model, the
mapping from numerical value to mental magnitude is linear (indeed, nearly
scalar). Hence, for a given difference between two numbers, the difference
between the mental magnitudes to which they map (the subjective difference) is
independent of their mean numerical value. The discriminability of the two
numbers decreases as their mean numerical value increases, not because they are
subjectively closer together, but because the variability (noise) in the mapping is
scalar. To put the same point from a somewhat different perspective, in the
Dehaene and Mehler model, the subjective difference between two equally
discriminable numbers is a constant, whereas in our model, the subjective
difference between two ¢qually discriminable numbers increases in proportion to
their mean numerical value.

We prefer the scalar mapping assumption to the logarithmic {or, more weakly,
the compressive) mapping because we assume that the magnitudes to which
external number symbols map are the same magnitudes with which the brain
performs both preverbal addition and preverbal multiplication, and we assume
that these magnitudes are the magnitudes generated by preverbal counting
mechanisms in both humans and other animals. If the mapping from numerical
* value to mental magnitude is scalar. then the concatenation of mental magnitudes
is isomorphic to the addition of the corresponding values and the area-generating
algorithm described above for histogram arithmetic is isomorphic to their multipli-
cation. If the mapping from numerical value to mental magnitude is logarithmic,
then concatenation of the magnitudes becomes isomorphic to multiplication of the
numerical values, but it is more cumbersome to construct a mental operation that
is isomorphic to addition of the numerical values. Also, as already noted, the
psychophysics of number and duration discrimination appear to be identical in
animals (Figure 2), and Gibbon and Church (1981) have shown that subjective
duration in animals is a linear, not a logarithmic function of objective duration.

A second pivotal assumption about the mapping from digits to preverbal
magnitudes is that there is a speed-accuracy trade-off: the longer the time
allowed for generating the preverbal magnitude that corresponds to a digit, the
less the variability in the magnitudes generated. [n Figure 4, the effect of time on
the variability in the magnitudes assigned to a given digit is indicated by the
contrast between the panel labeled “Early,” which shows the distributions if the
mapping process is terminated carly on, and the panel labeled “Late,” which
shows the distributions if the mapping process is terminated later on. In the latter
panel, the mean magnitudes are the same but the intervals over which the
columns fade are narrower by a factor of 3. Alternatively, the Early and Late
panels can be understood as referring to different stages in the child's develop-
ment of numerical competence. We assume that if the time allowed to generate
the magnitude that corresponds to a digit is held constant, then the older, more
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practiced child will make a less variable mapping than the vounger. less practiced
child.

Subin’zing

Gallistel and Gelman (1991) propose that the subitizing process - the rapid
preverbal or nonverbat estimation of numerosity - is. in essence. the animal
counting mechanism plus the learned mapping from the preverbal magnitudes to
the digits. The learned mapping between preverbal magnitudes and digits gives us
an aiternative way of obtaining the word that represents the numerosity of a set.
Instead of. or in addition to. verbally counting the set, we can count it preverbally
and use the resulting mental magnitude to generate the corresponding verbal
represcntative.

We suggest that the advantage of this second route is speed. Rapid subvocal
verbal counting in adults has a slope of greater than 300ms per item. The
preverbal counting process may be much faster. Pigeons, for example. can count
their pecks (up to numerosities at least as great as 30) when pecking at foster than
6 pecks per second (Rilling. 1967; Rilling & McDiurmid. 1963). The disadvantage
of preverbal counting. at least when performed very rapidly, is inaceuracy. For
sets with numerosities greater than 4 or 3, rupid preverbal counting frequently
generates the wrong digit because of the inherent variability of the magnitudes
generated by the preverbal counting mechanism. The preverbal counting mecha-
nism may generate a magnitude with its terminus (top) in an adjacent or nearby
segment of the number line rather than in the segment labeled the correct digit.
The probability of these kinds of errors increases as the numerosity of the counted
set increases (scalar variability in the mapping from numerosity to preverbal
magnitudes. sce Figure la and 1b). The increasing probabilitv of generating an
erroneous digit limits the usefulness of this second route to the small
numerosities. To reduce the probability of an erroneous answer based on the
subitizing strategy onc has to reduce the variability in the magnitudes generated
by the preverbal counting mechanism. The requisite reduction in variability may
only be purchased by an increase in preverbal counting time. That is, we assume
that the mapping from Numerosity to preverbal magnitudes done by the preverbal
counting mechanisms shows a speed-accuracy trade-off like that portrayed in
Figure 4. Because the requisite increase in preverbal counting time renders the
subitizing strategy slower than the verbal counting strategy, skilled performers
might be expected to limit their use of preverbal counting. We argue that more
often than not. when adults are in timed tasks. they use the subitizing strategy for
numerosities of 4 or fewer, because the probability that rapid subitizing will

produce an erroneous number word is sufficiently small to favor its use over a
stower verbal counting mechanism.
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Judgments of digit order

The hypothesis that mental operations with verbally or visually presented digits
depends on a mapping to mental magnitudes goes back to the seminal expen-
ments of Moyer and Landauer (1967) and Restle (1970). If humans use mental
magnitudes to rcpresent numerosities when they judge which of two digits
represents the greater numerosity, then our judgments of numerical inequality
should obey Weber's law. The more nearly equal the numerosities specified by the
two digits, the harder it should be to determine which is larger (or which is
smaller). And, for a given difference in the specified numerosities, the larger they
both are, the harder it should be to determine which is larger. It comes as a
distinct surprise to most people to learn that both of these results have repeatediy
been experimentally demenstrated since they were first reported by Moyer and
Landauer (1967). When subjects of any age and any degree of mathematical
education are shown a pair of digits and asked to press one of two buttons as
quickly as they reasonably can 1o indicate which is larger (or which smaller). they
react more quickly and make fewer errors as the difference between the specified
numerosities increases (Figure lc and 1d, right panel). Also, the greater the
specified numerosities both are, the longer it takes to say which is larger (or
smaller). and the more likely a subject is to err (Figure 1d. left panet).

When humuns are asked to judge which of two physical magnitudes (line

segments, pitches, etc.) is greater (longer, higher, etc.), the reaction time data are
well represented by the empirical equation

RT=a+klog[LI(L - §)]

with RT the reaction time, L the larger physical magnitude, S the smaller physical
magnitude, and 2 and k constants (Welford, 1960). The same equation accounts
for more than 80% of the variance in the reaction time data shown in Figure l¢
and 1d (Moyer and Landauer, 1973), suggesting that *‘the decision process . . . is
one in which the displayed numerals are converted to analogue magnitudes, and a
comparison is then made between these magnitudes in much the same way that
comparisons are made between physical stimuli such as loudness or length of line”
(Moyer & Landauer, 1967, p. 1520).

The hypothesis that ordination is mediated by a mapping from verbal or
written numbers to preverbal magnitudes does not, by itself, deal adequately with
the behavioral data on the ordination of double-digit numbers. Suppiementary
hypotheses or perhaps entirely new explanatory frameworks are required. The
extensive literature on the so-called split and magnitude effects in the judgment of
numerical order with double-digit numbers are treated at length by Dehaene
(1989), Dehaene, Dupoux, and Mehler {1990) and Link (1990).
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Retrieving the number facis

Given that the verbally mediated computation of sums and products depends on
verbally taught number facts and algorithms, one might assume that the verbal
combinatorial operations were not dependent on a mapping from the verbal to
the preverbal representation of numerosity. We wish to suggest, however. that the
reaction time data suggest that the retrieval of the single-digit addition and
multiplication number facts. which is central to these verbal algorithms, is
mediated by the same mapping to preverbal magnitudes that makes the ordina-
tion of the digits psychologically possible.

The extensive experimental literature on the chronometry of number fact
retrieval in adults is reviewed by Asheraft (this issue) and McCloskey (this issue).
The most salient finding is that there are similar magnitude effects (probiem size
effects) for both addition and = dtiplication. The bigger the numerosities repre-
sented by a pair of digits. the :  or it takes to recall their sum or product and the
greater the likelihood of an erroneous recall. The same is true in children
(Campbell & Graham, 1985). For both scts of number facts, there is a glaring
éxception to this gencralization (and some less striking exceptions). The glaring
exception is that the sums and products of number twins {for example. 4+ 4 or
9 x 9) are recalled much faster than is predicted by the regressions for non-twins
{although ties. oo, show a magnitude effect: Miller er af.. 1984). A third finding
of theoretical importance is the striking similarity in the effect of problem size on
the reaction times for both addition and multiplication, The slopes of the
regression lines (reaction time vs. the sum or product of the numbers involved)
are not statistically different {Geary, Widman, & Little. 1986). More importantly,
Miller, Perlmutter, and Keating (1984) found that the best predictor of reaction
times for digit multiplication problems was reaction times for digit addition
probiems, and vice versa. In other words. the reaction time data for these two
different sets of facts, which are rr :red at different ages. show very similar
microstructure.

The following hypothesis about the mechanism underlying the retrieval of the
digit addition and multiplication facts explains these three aspects of the
chronometric data. Following Restle (1970), we assume that the results of digit
addition are recalled by mapping the addends to positions on the mental number
line, preverbally adding the magnitudes thus demarcated to obtain a new mag-
nitude that is their (preverbal) sum, then mapping from this new magnitude back
to the verbal domain. The magnitude effect in addition is explained in the same
way as the magnitude effect in judging numerical order. Itis a consequence of the
speed-accuracy trade-off in the mapping from the verbal domain to the preverbal
number line. The greater the variability in the magnitudes assigned to each
addend, the greater the likelihood that the magnitude that is their sum will magp
back to the wrong number word. Since the variability in the inverse mapping
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shows the Weber characteristic - it increases in proportion to the flumerosity
represented - the greater the numerosities represented. the longer the process
must wait in order 10 obtain a mapping of acceptable reliability. The reason twins
are so much faster is that the mapping to the number line is only done once: the
same magnitude represents both addends.

This model may be extended to the retrieval of multiplication facts by assuming
that mapping from the preverbal to the verbal domain is a mapping from a
two-dimensional mental field (rather than a one-dimensional mental line. as in
addition). The field is divided into non-overlapping subregions that fill the feld
(tile the plane). Each product in the multiplication table is associated with one
and only one subregion in this mental field, and vice versa. In short. the mental
field is isomorphic to the multiplication table. The number word that is retrieved
as the product of two digits is determined by the locus of activity in this mental
field. The locus of activity is determined by the mental magnitudes to which the
digits to be multiplied map. The distance of this activity from one boundary of the
field is determined by the magnitude to which the multipiier has been mapped and
the distance of this activity from the orthogonal boundary is determined by the
magnitude to which the multiplicand has mapped. Therefore. the two-dimensional
probability density function for the locus of activity.in this field at a given moment
after the retrieval process been initiated is determined by the time-dependent
probabitity density functions for the mappings from the digits to be multiplied to
their corresponding preverbal magnitudes. At a fixed time after the initiation of
number-fact retrieval, the greater the product of the two numbers, the more likely
it is that the locus of activity in the multiplication field will fall within an
erroneous subregion. However, the longer the retrieval process is allowed to work
before a decision is made, the less the likelihood that the locus of activity will be
in an erroneous subregion at the moment of decision. The hypothesis is iilustrated
in Figure 5,

The magnitude effect in the retrieval of the multiplication facts is explained in
the same way as the magnitude effect in numericai comparison and in the retrieval
of the addition facts. All three are consequences of the scalar variability in the
mapping from verbal and written digits to preverbal magnitudes and the trade-off
between speed and accuracy in the determination of these magnitudes. The
quicker reaction to number twins is explained in the same way as it is in the case
of addition: only one magnitude needs to be determined. The similarity between
the reaction time function for addition and the reaction time function for
multiplication follows from the assumption that both functions are determined
primarily by systematic variations in the temporal intervals required to achieve an
acceptably accurate mapping to preverbal magnitudes. Miller et al. (1984) argued
that this similarity in the reaction time patterns for addition and multiplication
was reason for rejecting analog models of these processes, but this similarity is a
necessary property of our model for number fact retrieval, as are the magnitude
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Figure 5. Schemanc rlustration of the model [or the retrieval of the multiplication number facis. Each

product is assumed (0 be associated with g subregion of the number field. When the product
of a pair of digits is 10 be retrieved. each digit evokes a corresponding preverbal magniiude.
There is a ume-dependent decrease in the variability in the magnitude assigned to a digit and
the siandard deviation of the probabrlity density function for this assignment is a scalar
function of ihe numerosity represented by the digit (as illusirated in Figure 4). The
magnitudes to which the two digits map determine the coordinaies of the locus of activity in
this field. The resuliing time-dependent two-dimensional probability density function for the
tocus of activity is indicated by the shaded oval blur; the darker the shading, the greater the
probability density. The number in any square that is at least parily shaded has some
probability of being retrieved as the product.

effect and the shorter latencies for number twins. In associative network models
of number fact retrieval, all three predictions depend on ad hoc, not very
plausible assumptions about the frequencies with which people have experienced
correct and incorrect pairings of the operands and their sums or products.

Our model of number fact retrieval also explains salient aspects of the error
patterns. When adults respond with an erroneous product, the great majority of
these errors are numbers from the multiplication table, rather than numbers like
11, 13, and 20, which are not in the multiplication table (Campbell, 1987; Miller
et al., 1984), even though there are slightly more of the latter numbers in the
range from 1 to 81. Moreover, table errors are usually products located close to
the correct product in the table, most often a neighboring product along a row or
column (so-called operand errors, because the product retrieved shares an
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operand with the product sought). As is evident in Figure 5, our model predicts
this error pattern. [t predicts that when the magnitudes used to retrieve a product
diverge by 100 much from their correct values, the coordinates of the resulting
activity will fall most often in the subregions for products that are adjacent along
a row or column of the table.

Another, suprisingly common error is the retrieval of the sum in place of the
product and vice versa. This is part of the evidence that the retrieval of the
product and sum of two numbers, like the reading of a word. is psychologically
obligatory in adults (LeFevre, Bisanz. & Mrkonjic, 1988). Thus. in our model.
one would imagine that after the two magnitudes have been generated, they are
laid end to end on the mental number line to determine their sum and they are
used to mark off orthogonal coordinates on the multiplication field to determine
their product. The answer from the wrong operation is retrieved if a subsequent
decision process fails to filter the obligatorily produced answers properly.

While our model explains both the effect of ties and the strong correlation
between the speeds of retricving the addition and multiplication facts for a given
digit pair - both of which have been seen as incompatible with “‘structural™
models (Miller et al., 1984) - there remain aspects of the reaction time data that
it does not explain. The average rcaction times across all combinations involiving a
given operand (ties excluded) do not increase monotonically with the magnitude
of the numerosity specified by the operand, as our model predicts they should.
For example, combinations involving 5 are on average considerably faster than
problems involving 4 and 6 (Figure 6). One is tempted to explain this with an
assumption that the magnitude for 10 is g fixed referent with low or no variability
and that the magnitude for 5 may be gencrated rapidly from it by bisection.
Problems involving 7 are also somewhat easier than one would predict. Why this
should be so is obscurc.

Our model is at least compatible with the evidence from cognitive neuropsych-
ology (see McCloskey. this issuc) in that it is clear how one could get selective
impairment in the retrieval of specific number facts, The association between a
magnitude on the number line or a position in the number fieild and the
corresponding number or word could be weakened by a pathological process,
resulting in a diminished ability to retrieve a particular sum or product. in other
words, patterns of fact-weakening that are patchily distributed within the multipli-
cation table are explained on this model by patchy damage to the number line or
the number field.

Dehaene and Cohen (1991) report a study of an acalculic patient that seems to
support the idea that we map from verbal and written number symbols to
magnitudes and back again, although the details are puzzling. The patient was
almost normal in both reaction time and error rate when judging whether a
visually presented number was greater or smaller than a fixed reference vaiue (5
for single-digit sessions, 53 for 2-digit sessions). He was very poor at producing
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Figure 6. (a} Mean voice-onser reaction time 10 give the answer to a digit muitiplication problem.
averaging across all the probiems involving a given operand (ties excluded). as a function of
the operand, for operands from 2 10 9. (Redrawn Jrom Campbeil and Graham. 1985, p.
348, by permission of the authors and the publisher.) (b) Perceni errors in giving (verbally)
the produces of digit multiplication problems presented on a video monitor for 2nd. 3rd, 41th

and Sth graders. and for adults. { Dota from Table |. p. 347. of Campbel! & Graham,
1985.)

the correct answer to single and double-digit addition, subtraction and multiplica-
tion problems and at verifying a proffered answer (2 +2=13?), bue, at least for
addition, he clearly knew the ball park of the correct answer. He was not at all
sure whether 2 + 2 equaled, 3, 4, or 5 and he was apt 1o produce any one of these
numbers as an answer, but he was sure the sum did not equal 9 and never
produced a number that large as an answer. There are many puzzling details of
this complex case, one of which is that in verifying addition problems he showed a
strong split effect but no problem-size effect. The bigger the difference between
the correct answer and the proffered answer, the more readily he rejected the
latter, but his ability to reject an error of a given size was not a function of the
size of the two operands or their sum. Nonetheless, the case clearly suggests that

operations with numbers are aided and abetted, if not mediated, by a mapping to
mental magnitudes.
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Developmental implications
The acquisition of verbal counting

We (Getman, 1990; Gelman & Gallistel, 1978), have argued that the acquisition
of verbal counting is made possible by implicit principles, which define what
constitute acceptable instances of counting and direct or organize the learning of
the conventional verbal counting sequence. When we first put forward this
hypothesis, we were not aware of the experimental evidence for counting
Processes in animals; hence, we had little to say about the provenance of the
implicit principles. We now suggest that the preverbal counting process is the
source of these principles. In particular, we argue that what guides the acquisition
of verbal counting is the isomorphism between the preverbal counting process and
the verbal counting process — the similar formal structure of the two processes,

The preverbal process provides a framework that makes the verbal counting
process intelligible, hence learnabie. Children assimilate verbal counting because
it maps onto the unconscious preverbal counting process. The count words map to
the preverbal magnitudes. The one-one constraint on the use of count words
corresponds to the fact that in the preverbal process the pulse former gates a burst
of impulses to the accumulator once and only once for each item in the
to-be-counted set. The constraint on the order of the count words — that they
should always be used in the same sequence - replicates the ordering of the
preverbal magnitudes. The accumuiation process passes through the intervening
magnitudes en route to the cardinal magnitude just as the verbal counting process
passes through the intermediate count words en route to the cardinal count word.
The fact that the last count word used represents a property of the set corre-
sponds to the fact that the final magnitude in the accumulator is read out into
long-term memory, where it represents the numerosity of the set that was
counted.

Implicit in our suggestion is, of course, a more general theory about verbai
learning, namely, that verbal learning is possible insofar as there are nonverbal

models or mental representations that mediate the interpretation of verbal
reference (see also Carey, 1991},

The development of verbat arithmetic reasoning

Gelman and Gallistei (1978) argued that the development of the child's ability to
reason verbally about numerosity, numerical relations, and operations that affect
numerosity was made possible by implicit domain-specific principles. We now
suggest that the preverbai system for reasoning about numerosity provides the
framework - the underlying conceptual scheme - that makes it possible for the
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young child to understand and assimilate verbal numerical reasoning. We suggest
further that the mapping from preverbal magnitudes to digits and the inverse
mapping from digits to preverbal magnitudes, together with the primitive ability
10 carry out arithmetic operations with these mental magnitudes, play a fun-
damental role in the development of mastery over the verbally based algorithms
that every school child must learn. We suggest that the preverbal anithmetic
computations go on in parallel with the verbally mediated computational al-
gorithms in adult arithmetic, providing a check on whether the results arrived at
verbally are in the right ball park. We suggest also that the ability to get
approximate results nonverbally via the mapping from verbal numbers to nonver-
bal magnitudes and the nonverbal arithmetic operations performed with these

magnitudes makes it possible for the child to assimilate the verbal system of
arithmetic reasoning.

Verbal and preverbal addition. subtraction. and ordination in young children

For preschool children (3-year-olds), as for aduits. the closer the two numbers
are together, the longer the reaction time in judging which is bigger {Schaeffer.
Eggleston, & Scott, 1974; Sckuler & Mierkiewicz, 1977 Siggler & Robinson.
1982). As Resnick (1983. p. 113) points out. this result seems to imply that we
can auribute to children entering school “the ability to directly enter the
positional representation for a number upon hearing its name (i.e.. without
counting up to it).” In other words. it impiies the preschoolers have already
learned the mapping from the digits to the corresponding preverbal magnitudes.,
although this mapping is in all likelihood slower and more variable in younger,
less practiced children.

Preschool children generate verbal answers to verbally posed addition and
subtraction problems using vocal or subvocal counting algorithms of their own
devising (Gelman & Gallistel. 1978; Ginsburg, 1977. Groen & Resnick. 1977).
Reaction time studies show that the subvocal use of verbal counting algorithms
continues through the early school years (Groen & Parkman, 1972; Groen & Poll,
1973; Groen & Resnick, 1977; Resnik, 1983: Svenson & Broquist, 1975, Svenson
& Sjoberg, 1983; Woods, Resnick. & Groen, 1975}, when students are required
to “do it in the head” without overt counting,

However, one remarkable finding from research on subtraction algorithms in
elementary school children is that the most common way of doing subtraction is
Dy the “choice™ algorithm (Resnik. 1983; Woods et al., 1975). In this algorithm.
the child obtains the correct number word either by counting the number of steps
required to get up to the minuend from the subtrahend or by counting down from
the minuend a number of steps equal to the subtrahend. The child computes the
difference 7 - 5, by saying (overtly or covertly), “*Six, seven - two." [It takes two
counts to get up to “'seven” from *five.”]. The same child computes the difference
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7= 2 by saying, “Six, five - five" [Counting down two steps from “seven" brings
you to “five™.] The evidence from reaction times that children routinely use this
either/or choice strategy is confirmed by the results of interviews (children say
that is what they are doing) and by the occasional avert use of this algorithm
(Resnick, 1983 and citations therein). The choice algorithm minimizes the number
of counting steps that must be counted. If the subtrahend is smaller than the
answer sought {as in 7-2=5, 2<5), then the child counts down from the
minuend by the number of steps specified by the subtrahend. If, however, the
answer sought is smaller than the subtrahend (@sin 7-5=2, 5>2), then the
child counts up from the subtrahend.

What is remarkable about the choice aigorithm is that it presupposes that the
child computes the relative magnitudes of the subtrahend and the answer sought,
before it chooses how to compute the verbal form of the answer (the requisite
number word). Thus, before it computes the verbal answer. it must compute
(preverbally) the magnitude of the difference between the minuend and the
subtrahend and compare this magnitude to the magnitude of the subtrahend. The
outcome of this preverbal computation determines which verbal count will be
used to obtain the verba] representative of the difference. The recursive use of
verbal counting (counting the steps in a count) is apparently difficult and error
. Prone. so the child uses preverbal subtraction and Comparison ¢ minimize the
number of steps that will have to be counted in its verbal computation,

We take the evidence that children use the choice algorithm in subtraction as
support for our hypothesis that the acquisition and performance of verbal
arithmetic s mediated by the preverbal system for represented numerosity and
doing arithmetic computation, the system that we share with the nonverbal
antmals.

Children in elementary school compute some products by repeated addition,
but this is painfully slow and error prone. The algorithms for doing verbal
muitiplication and division in the absence of useable knowledge of the digit
multiplication facts are unsatisfactory, at least without long practice. More
commonly, in the extended period before they can reliably retrieve all the
products of single-digit numbers, children rely on counting up from or adding 1o
products that they can retrieve (Siegler, 1988). The teaching of the algorithms for

on a video monitor is more than 4 s when one of the operands is 6 or greater, and
about 50% of the Tesponses given are erroneous (Figure 6). For adults (college
students), the average reaction time for problems with an operand greater than or
equal to 6 is 0.8-0.9s and about 14% of the responses are erroneous.
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We think that our model renders some commonly known facts about the
pedagogy of mathematics at the elementary level more intelligible than other
models of the process for learning the number facts. If learning the number facts
depends on the same general-purpose associative process that other kinds of
learning are supposed to depend on, then it is not clear how it is possible for some
otherwise inteltigent children to have so much difficulty mastering the number
facts, particularly the multiplication table. Why should it take several years for
children to master the 8! multiplication facts (Figure 6), when those same
children learn the meanings of hundreds of words every month? And why should
learning the multiplication table be so much harder for one child than for another
child of comparable inteiligence? And why should the speed with which number
facts can be retrieved increase throughout the elementary school grades. only
reaching an asymptote after puberty (Figure 6)? Our proposal that number fact
retrieval depends on a domain-specific mechanism - the mapping from digits to
the preverbal magnitudes that represent numerosity and the mapping from the
preverbal magnitudes back to digits (via the multiplication field) - makes these
selective learning difficulties, wide individual differences, and prolonged develop-
ment more intelligible. These may all be explained in part by assuming that there
are wide individual differences in the speed-accuracy functions for these map-
pings at a given age and that the trade-off between speed and accuracy improves

steadily with age, either from constant practice, or from maturation of the neural
mechanisms, or for both reasons.

The difficulty in learning fractions

Part of the evidence that it is the availability of an isomorphic preverbai counting
model that makes it possibie to assimilate the verbal system of number is the
difficulty children have in learning those parts of the modern number system that
are not modeled by the preverbal system. Although the representatives of
numerosity in the preverbal system are magnitudes and hence continuous vari-
ables, the preverbal system for representing numerosity is rendered discrete by
the discrete gating of bursts of impulses to the accumulator, one burst for each
item in a set of discrete items. There is no provision in this system for generating
representatives for fractional numerosities, despite the fact that the representation
of numerosity by magnitudes makes it in principle possible to represent inter-
mediate, that is, fractional, numerosities. The concept of a fractional numerosity
is counter-intuitive, because there is no provision for it in the preverbal scheme
for generating representatives of numerosity.

The principles implicit in the structure of the preverbal counting mechanism
enable the initial mastery of the verbal system of number. Most Down's syndrome
children do not seem to have access to this system and they find learning to count
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and add all but impossible, even with the aid of highly structured input and much
opportunity for rote learning practice (Gelman & Cohen, 1988). However, there
are reasons to expect that these initial principles hinder later progress almost as
much as they promote initial progress. Much of mathematics involves operations
such as multiplication and division for which algorithms based on counting are
extremely cumbersome and error prone. and it involves the manipulation of
numbers that cannot be generated by counting processes. The first such numbers
the child must come to terms with are the fractions. The fractions, of course, are
generated by the unconstrained use of division, an operation for which algorithms
based on counting are singularly cumbersome. The positive and negative frac-
tions, together with the positive and negative integers and zero, constitute the
so-called rational numbers.

Teachers in the elementary schools have always known that the teaching of
fractions is a major pedagogical challenge (e.g., Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1980). Gelman (1990) argues that this is to be expected
because fractions cannot readily be assimilated into a system in which numbers
are defined as “‘what one gets when one counts”. Within this conceptual frame-
work, common classroom inputs for learning about fractions cannot be inter-
preted correctly because counting algorithms are useless, both for generating the
proper number words and for ordcring.\-adding and subtracting the numbers, One
cannot count things to answer “Which is more, 1/2 or 1/4? or 1.5 or 1.07” But if
children cannot answer these questions, then they should not be able to place
fractions properly in relation to the whole numbers on the number line - and,
indeed, they cannot (Gelman, Cohen, & Hartnett, 1989). Young children may
know how to divide a circle or a rectangle and call the pieces “halves” and still
not appreciate the numerical meaning of ““half”. They need to understand that a
fraction is the number one gets when one number is divided by another and that
all such numbers (the numbers that result from arbitrary divisions) may be
ordered, added, subtracted, muitiplied and divided right along with the numbers
that one gets by counting. Without this kind of understanding they cannot make
sense of the claim that “two halves” means the same as “three thirds”, “four
fourths”, “‘one hundred one hundredths”, and so on.

As we would expect, young learners have a robust tendency to “overgeneral-
ize" their counting principles in assimilating the instructional data on fractions
(Geiman, 1991; Gelman et al., 1989). For example, they “read” fractions, or
non-integer numergraphs, as if these are novel representations for the counting
numbers. Most 6- and 7-year old children misread 1 and § as “one and four” and
“one and two™, although some preferred other interpretations, including turning
the task into an addition problem and answering **one plus four; one plus two” or
“five, three”. Further, although these children had jearned the correspondences
between a few verbal and written expressions for fractions (they knew that g
corresponds to “one half” and “1" 10 “one fourth™), they had not learned to
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order these same fractions: they choose | as more than §. When asked to place 1!
circles on a number line, they placed the display at the position for 2 on the line
(because the display had two parts, a whole circle and a half circle). Attempts to
verbally guide the interpretation of displays intended to instantiate fractions may
make performance worse. Children told to place a circle divided into three
wedges on a number line along which were arrayed patterns of circles instantiat-
ing whole numbers {one circle, two circles, and three circles) often placed the
three-wedge display correctly at the same locus as the one circle, but when they
were told that the item had “three thirds" on it they most often placed the
three-wedge display at the same locus as the three circles. Better performance in
the condition where the stimulus was not labeled as a fractional entity was due to
children’s tendency to apply the perceptual principle of closure and therefore to
treat the display of three wedges forming a circle as one thing. Describing the
stimuius as three thirds cailed attention to the three wedges rather than to the one
circle they formed.

Thus, as predicted children misinterpret inputs designed to support learning
about fractions. They do so, we suggest, because their counting principles do not
provide the conditions for accurate uptake of the data; there is no isomorphism
between the preverbal system and the relevant characteristics of the data~ As a
result. they find a way to assimilate these inputs to the counting principles implicit
in the preverbal system for generating representatives of numerosity. As creative
as these are. they are nevertheless wrong; they do not lead to the growth of an
understanding of why fractions are numbers.

Although many children have potent tendencies to misinterpret fraction data.
not all do. Some students do acquire an understanding of what it means to say
that fractions are numbers. Some clues on how they might do this come from
Gelman’s (1991) work on the problem. She reports that, with development,
children start to behave as if they think the count list has more entries than they
knew, for example that one can count “1, 13, 2, 24, 3, 34", etc. Still, at this
stage, the children seem not to recognize the pseudodensity of the rational
numbers, the fact that the gap between any two numbers, such as 1 and 14, is
occupied by other fractions. And, curiously, they do not recognize the elementary
or noncompound fractional numbers as numbers at this stage. [n the words of one

~year-old: “*You can count one, one and half, two, two and half, but you can't
count zero, zero and a haif”.

The fact that children come to talk of numbers between “one" and “two™ is
significant, even if they do not know the mathematical meaning of the terms they
use. At least the talk is consistent with the induction that more “numbers” could
come between each of those in the extended list. As children continue to add
names of this kind, they also create a database that could support relevant
inductions, for example that “‘numbers” could even come between each of thase
in their extended count list, and so on. This in turn could lead on to the
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realization that there is no referent for “the next number after one and a half", in
other words to the realization that the property of the natural {counting) numbers
that every number has a specifiable next number does not hold when one extends
the number system to include fractions. Another way to put these developments is
to note that they resemble developments in the history of science and mathe-
matics. Although, as just indicated, the meanings of the term “number” in the
system of natural numbers and in the system of rational numbers are incommen-
surate, the meanings of the count words themselves are not incommensurate in
the two systems; the integers have the same properties in the system of rational
numbers that they have in the system of natural numbers. If one takes advantage
of these local commensurabilities, one gets a foot in the door that opens to the
new concept. Remarkably, some children do just this. They find piaces where
what they know and what they have to learn in school are at least locally
commensurate and try to build from there.

Conclusions

We propose that the development of the ability to deal with numbers at the verbal
level depends on a preverbal system for representing numerosity and for carrying
out simple computations with numerons (our generic term for representatives of
numerosity). The preverbal system uses magnitudes to represent numerosities.
These magnitudes are continuous variables. By means of a slightly different
mapping mechanism, these same magnitudes may be used to represent a continu-
ous variable like the duration of temporal intervals. However, the mapping
mechanism that assigns magnitudes to numerosities — the preverbal counting
mechanism - is a discrete process rather than a continuous process.

The preverbal system for deriving a representation of numerosity ~ the prever-
bal counting mechanism - renders the verbal system intelligible by providing a
domain-specific isomorphic system to which the verbal system may be mapped.
The principles that govern verbal counting are the principles implicit in the
structure of the preverbal counting mechanism. The extent to which the principles
of counting implicit in the structure and functioning of the preverbal counting
mechanism determine what can readily be assimilated at the verbal level is shown
by the remarkable difficulty children have in learning the numbers that cannot be
generated by counting, namely the fractions. We believe that the essence of their
difficulty is that in the absence of a suitable counting algorithm they cannot
readily learn to map the fractions to the appropriate preverbal magnitudes and
hence to their appropriate positions along the mental number line. As a result,
they cannot order them or add them.

Similarly, the preverbal system for computing with magnitudes renders the
verbal system of arithmetic reasoning intelligible to the child. The preverbal
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process for comparing magnitudes (preverbal ordination) renders the ordering of
the verbal numbers intelligible. We suggest aiso that the preverbal processas for
combining mental magnitudes to obtain the magnitudes equal to their sum or
difference provides the foundation for the assimilation of verbal mastery of
addition, which begins before children enter school and begin receiving instruc-
tion in mathematics. The case for multiplication is less clear, because it is not
clear how well children understand multiplication in the absence of lengthy
instruction.

The data on reaction times and error patterns in the judgment of numerical
order and in the retrieval of the addition and multiplication facts implies, we
believe, that a learned mapping from the verbal and written representatives of
numerosity to the preverbal magnitudes mediates order judgments and the
retrieval of sums and products. The verbal system and the mechanisms that
mediate basic operations in the verbal system, such as the retrieval of the number
facts, are erected on a foundation provided by the preverbal system, which, we
believe, is one of the foundations of animal mentation.

The system of number is remarkabie both for its simplicity and its representa-
tional power. It is, on the one hand, a system whose rudiments appear to be
present in the mental functioning of a wide range of animals, while, on the other
hand. it is a vehicle for the most profound and abstruse aspects of human thought.
We believe that by studying the ontogeny of the number concept, we may begin
to discern the means by which language permits human thought to transcend

some of the limitations imposed by the preverbal representations (conceptions)
that make language intelligible in the first place.
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