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Naive Mathematics

Whether or not schooling is offered, children and adults all
aver the world develop an intuitive, naive mathematics. As
long as number-relevant examples are part of their culture,
people will learn to reason about and solve addition and
subtraction problems with positive natural numbers. They
also will rank order and compare continuous amounts, if
they do not have to measure with equal units. The notion of
equal units is hard, save for the cases of money and time.
Universally, and without formal instruction, everyone can
use money. Examples abound of child candy sellers, taxicab
drivers, fishermen, carpenters, and so on developing fluent
quantitative scripts, including one for proportional reason-
ing., Of note is that almost always these strategies use the
natural numbers and nonformal notions of mathematical
operations. For example, the favored proportions strategy
for Brazilian fishermen can be dubbed the “integer propor-
tional reasoning”: the rule for reasoning is that one whole
number goes into another X number of times and there is no
remainder.

Intuitive mathematics serves a wide range of everyday
math tasks. For example, Liberian tailors who have no
schooling can solve arithmetic problems by laying out and
counting familiar objects, such as buttons. Taxicab drivers
and child fruit vendors in Brazil invent solutions that serve
them well (Nunes, Schliemann, and Carraher 1993).

Two kinds of theories vie for an account of the origins
and acquisition of intuitive arithmetic. One idea is that
knowledge of the counting numbers and their use in arith-

metic tasks builds from a set of reinforced bits of learning
about situated counting number routines. Given enough
learning opportunities, principles of counting and arithmetic
are induced (Fuson 1988). Despite the clear evideuce that
there are packets of early mathematical competence, young
children are far from perfect on tasks they can negotiate.
Additionally, the range of set sizes and tasks they can deal
with is limited. These facts constitute the empirical founda-
tion for the “bit-bit” theory and would seem to constitute a
problem for the “principle-first” account of intuitive mathe-
matics, which proposes an innate, domain-specific, learn-
ing-enabling structure. Although skeletou-like to start, such
a structure serves to draw the beginning learner’s attention
to seek out, attend to, and assimilate number-relevant data—
be these in the physical, social, cultural and mental environ-
ments—that are available for the epigenesis of number-
specific knowledge.

True, there are many arithmetic reasoning tasks that
young children cannot do, and early performances are shaky.
But this would be expected for any learning account. Those
who favor the principle-first account (Geary 1996; Gelman
and Williams 1997) point to an ever-increasing number of
converging lines of evidence: animals and infants respond to
the numerical value of displays (Gallistel and Gelman 1992;
Wynn 1995); retarded children have considerable difficulty
with simple arithmetic facts, money, time, and novel count-
ing or arithmetic tasks—despite extensive in-school practice
(e.g., Gelman and Cohen 1988); preschool children distin-
guish between novel count sequences that are wrong and
those which are unusual but carrect; they also invent count-
ing solutions to solve arithmetic problems (Siegler and
Shrager 1984, Starkey and Gelman 1982); and elementary
school children inveut counting solutions to solve school
arithmetic tasks in ways that differ from those they are taught
in school (Resnick 1989). Moreover, there is cross-language
variability in the trausparency of the base rules for number
word generation. For example, in Chinese, the words for 10,
11,12, 13...20,21...30,31 ... and so forth, translate as
10, 10-1, 10-2, 10-3, ... 2-10s-1 ... 3-10s-1 . .. 3-10s,
and so forth, English has no comparable pattern for the teens.
This difference influences the rate at which children in dif-
ferent countries master the code for generating large num-
bers although it does not affect rate of learning of the count
words for 1-9. American and Chinese children learn these at
comparable rates and use them equally well to solve simple
arithmetic problems (Miller et al. 1995).

Almost all of the mathematics or arithmetic revealed in
the above examples from divergent settings, ages, and cul-
tural conditions map onto a common structure. Different
count lists all honor the same counting principles, and dif-
ferent numbers are made by adding, subtracting, com-
posing, and decomposing natural numbers that are thought
of in terms of counted sets. The favored mathematical enti-
ties are the natural numbers; the favored operations addition
and subtraction, even if the task is stated as multiplication or
division. The general rule seems to be, find a way to use
whole numbers, either by counting, decomposing N, sub-
tracting, or doing repeated counting and subtraction with
whole numbers. Notions about continuous quantity usually
are not integrated with those about discrete quantities,
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where people prefer to use repeated addition or subtraction
if they can. This commonality of the underlying arithmetic
structure and reliance on natural numbers is an important
line of evidence for the idea that counting principles and
simple arithmetic are universal. The reliance on whole num-
ber strategies, even when proportional reasoning is used, is
consistent with this conclusion.

Understanding the mathematician’s zero, negative num-
bers, rational and irrational numbers, and all other higher
mathematics does not contribute to the knowledge base of
intuitive mathematics. The formal side of mathematical
understanding is outside the realm of intuitive mathematics
(Hartnett and Gelman 1998). Even the mathematical concept
of a fraction develops with considerable difficulty, a fact that
is surely related to the problems people have learning to
measure and understand the concept of equal units. Reliance
on intuitive mathematics is ubiquitous, sometimes even to
the point where it becomes a barrier to learning new mathe-
matical concepts that are related to different structures (Gel-
man and Williams 1997). A salient case in point is the
concept of rational numbers and the related symbol systems
for representing them. Rational numbers are not generated
by the counting principles. They are the result of dividing
one cardinal number by another. Nevertheless, there is a
potent tendency for elementary school children to interpret
lessons about rational numbers as if these were opportunities
to generalize their knowledge of natural numbers. For exam-
ple, they rank order fractions on the basis of the denominator
and therefore say 1/75 is larger than 1/56, and so on. There is
a growing body of evidence that the mastery of mathematical
concepts outside the range of those encompassed by intuitive
mathematics constitutes a difficult conceptual challenge.

See also DOMAIN SPECIFICITY; HUMAN UNIVERSALS;
INFANT COGNITION; NATIVISM; NUMERACY AND CULTURE;
SCIENTIFIC THINKING AND ITS DEVELOPMENT

—Rochel Gelman
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Naive Physics

Naive physics refers to the commonsense beliefs that people
hold about the way the world works, particularly with
respect to classical mechanics. Being the oldest branch of
physics, classical mechanics has priority because mechanical




