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ALAN M. LESLIE, C. R. GALLISTEL, AND ROCHEL GELMAN

Where Integers Come From

f the primitive preverbal symbols for numbers are noisy mental magnitudes, what
Iis the preverbal foundation for our concept of an integer? We argue that the es-
sential problem is to answer the question where our notion of exact equality or
 perfect substitutability comes from. In practice, real valued variables are never ex-
. actly equal; nor is it easy to specify an algorithm for establishing exact equality (in
; the limit) between two random Gaussian variables. Furthermore, because number
. concepts must support arithmetic inference, a necessary part of the psychological
foundations is the integer concept ONE. ONE is required because it is the multi-
plicative identity element for which no other value, approximate or exact, can be
. substituted. Moreover, ONE is required by the successor function, which generates
. all the other positive integers. We further argue that an essential constraint on any
. proposal for discrete (integer-valued rather than real-valued) mental symbols is com-
putational compatibility with the real- (or rational-) valued mental magnitudes that
. Iepresent continuous quanﬁty. These constraints rule out most current proposals
 that postulate systems of discrete numerons or other symbols representing only very
" small numbers. We consider alternative proposals.

Die ganze Zahl schuf der liebe Gott, alles Ubrige ist Menschenwerk.
—Leopold Kronecker

1 Introduction 4

Among the earliest quantitative concepts that we have language for are the first few
counting numbers, {one, two, three}. They appear in development long before other
types of number concepts, such as fractions, decimals, and complex nusmbers. When
preschool children begin to count, these are the numbers they use (R. Gelman and
- Gallistel, 1978). Only much later, under formal instruction, and with considerable
difficulty, do children learn about the mathematical concept and notation for fractions
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10 Innateness and Cognitive Development

(R. Gelman, 1991; Hartnett and Gelman, 1998), and, following that, about real num-
bers. People in most cultures use counting numbers, whereas the discovery of the
reals appears to have required a series of historical singularities. If a language provides
any explicit number words, these almost always! will denote at least the first few count
numbers. Why is this? Where da integer concepts come from?

For us, it is critical that number concepts support arithmetic inference. This
means that the concept must denote an entity over which arithmetic operations can
operate. We do not require that an individual who possesses the concept must actu-
ally be able to perform a given arithmetic operation over that concept—performance
and developmental constraints may prevent that. However, among the individuation
conditions on numeric concepts is that they support arithmetic inference
(R. Gelman, 2006). This rules out considering notions such as “a” or “few” as number
concepts because they can never support arithmetic inference. Thus the sentence (a+
afew) is not interpretable and it is an unnatural utterance in everyday speech.

2 Number Words

In alanguage like English, the words encoding natural number concepts are everyday
words with mundane uses, such as counting, and languages that have such words are
quite common. The natural number concepts support arithmetic operations and intu-
itions, and they denote exact integer values. The word “three” in English, for example,
does not ordinarily refer to a range of real values or to a stochastic function over real
values; in general, natural number words do not refer to entities such as “value(s) in
the range 2.5 to 3.49” or “a Gaussian with mean 2.0”. Instead, words such as “one, two,
three” refer to exact values, such as 1, 2, 3, and do not mean 1-ish, 2-ish, 3-ish.?

This factabout adult usage presumably reflects the fact that children are disposed
to learn that “one” means 1 (exactly), “two” means 2 (exactly), and so on. If children
were not so disposed, but were disposed instead to learn that “one” means 1-ish, “two”
means 2-ish, and so on, then presumably number words in natural languages would
commonly denote ranges of real numbers. The predominant disposition, in turn,
reflects the fact that children tend to entertain and settle on integer-valued hypoth-
eses in preference to other possibilities such as “vaguely 2-ish,” “Caussian with mean
2.1,” “values in the range 1.5 to 2.49,” and so on. In this regard, the natural number

1. But see Flegg (1989) on the early widespread use of Purez Counting in parts of Africa, South America,
Australia, and New Guinea. In Purez Counting, there are distinct words for one and two; the rest of the
count words are derived by combining these words. The count list urapon, ukasar, ukasar-urapon, ukasar-
ukasar, ukasar-ukasar-urdpon, used by the Gumulgal of Australia, is but one example of such counting
lists: It is ot clear how many groups still use this or the more complicated version of Neo-2 systems. It is
. uoteworthy that the system is generative. This is not so for the initial count words in English and many
¢ other lauguages. Nothing about the sound “one” predicts that “two” will be next.
. 2. However, Fox and Hackl (z006) argue that many facts about implicature imply that the mental scale to
. which even the counting numbers map is dense, that is, continuous, like the mental magnitude system.
- They atgue on purely linguistic evidence that the scales underlying all mental quantification, whether of
+ discrete or contituous quantity, are dense.
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words are strikingly unlike color terms, which do refer to ranges of values in color
space or to stochastic functions over such ranges. The word “red” does mean red-ish;
“green,” green-ish; and so on. Adult color terms presumably have such inexact mean-
ings just because, as children learning the meanings of those sounds, they were dis-
posed to entertain, and settled on, hypotheses that referred to inexact regions of color
space, perhaps because the brain may be incapable of remembering exact locations.
Furthermore, the count number words are not “vague” in the technical sense
studied by logicians. Words whose meaning is vague in this sense are quite com-
mon. For example, bald applies to someone who has no hair on his head, and also
to someone who has one hair on his head, and to someone with two hairs. ..and so
on. But the number of hairs a head must have in order to stop being bald and start
being hirsute cannot be specified, thus qualifying the meaning of the word as vague.
Interestingly, many words for quantities are also vague in this sense. What does a rock
have to weigh to be considered “heavy”? What's the cutoff point for being “tall”? How
many people are required for there to be “many” people? And so on. By contrast,
the meanings of the words one, two, three, ... are not vague; indeed, they are the very
paradigms of precision and exactitude when applied to discrete entities: They mean
1, 2, 3. Hurewitz, Papafragou, Gleitman, and Gelman (2006) provide evidence that
the distinction between linguistic quantifiers (“some,” “all,” for example), which are
vague, and cardinal values, which are not, is available to young language learners.
We are not claiming that words whose meanings are real values are impos-
sible to learn, nor that integer words are mandatory in all human languages. The
first claim is obviously false (for example, pi), and the second is an open question
with some evidence to suggest it, too, may be false (Gordon, 20043, 2004b; but sce
Gelman and Butterworth, 2005).> What we do wish to claim is the following: When
preschool children identify that the meaning field for a given lexical item may be a
numerical value —as they might, for example, in an activity such as counting—they
expect that word to denote some positive integer value. To say that they expect such
words to denote the natural numbers means that they draw their hypotheses regard-
ing possible numerical values from a restricted hypothesis space, namely, the space
of (the furst few) positive integers. Indeed, the adult number words “one, two, three”
come to refer to exactly 1, 2, 3, respectively, just because children entertain hypoth-
eses restricted to integer-valued referents. If children supposed, for example, that
real-valued referents or vague numerical referents approximately centered around
1, 2, 3, Tespectively, then that’s what these words would (come to) mean. There is
no immecdiately obvious reason why these are not the “correct” meanings if the
hypothesis space consists of noisy reals. In this case, integer-valued hypotheses would
have only an infinitesimal probability of being entertained, that is, would never be
entertained. This means that no language containing words for the natural numbers
would ever be learned. In fact, these are the first number words to be learned.

3. Gordon (20043, 2004b) reports that a small, isolated group of around 300 Amazonian villagers speak
a language that may lack any words for the natural numbers. There is considerable debate regarding
the reliability of the Gordon data. See R. Gelman and Butterworth (2005) for discussion of comparable
reports about other isolated groups.
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3 Exact Equality

One use we make of integers is counting things. A fundamental intuition here is that
if three things are counted, then the resulting cardinal value will be exactly equal to
the cardinal value that will result from counting them again. By contrast, two measure-
ments of the same continuous physical quantity will yield the same answer twice only by
error (for example, rounding error), because it is impossible in principle to determine
the value of a continuous (that is, real-valued) quantity such as length or duration with
perfect precision (zero residual uncertainty). By contrast, counting the members of a
set requires the use of integers; and this means that repeated counts should yield exact
equality unless there is counting error, as when an item is skipped or double-counted.

Exact equality has been taken unself-consciously for granted by cognitive theo-
rists. However, exact equality challenges most current models because the latter
relate basic human numerical concepts to an underlying analog representation
(Dehaene, 1997; Gallistel, 1g90; Gallistel and Gelman, 1992; Wynn, 19g2b, 1992c).
The essential idea of the magnitude representation is that the brain represents
numbers not as a series of discrete symbols such as the Arabic numeral system or
the binary digits in a computer, but as a continuous quantity, such as charge in a
capacitor, or water filling a test tube, or a needle moving along a linear scale (as in
a speedometer). In these models, counting a set is pictured as adding successive
drops of “water,” “charge,” or some other analog quantity, such that each drop corre-
sponds to a distinct member of the set to be counted. The quantities accumulate in
a “container,” raising its “water level,” or a needle is moved a regular distance along
a scale, so that each rise or movement corresponds one to one with the members
of the counted set. The final level or point on the scale reached thus represents the
cardinal value of the set counted. It is assumed that some analogous process of accu-
mulating physical quantities takes place in the brain as a person counts.

Dehaene (1997) discusses evidence from cognitive and neuroimaging studies
of human calculation that supports the existerice of an internal number contin-
uum (mental number line). For example, the time taken by adults to compare the
magnitudes of two numbers increases as the differences between the two numbers
decreases. There is also impressive evidence for the existenice of an analog magni-

tude representation in animals, suggesting a long evolutionary history of this basic

numerical capacity (see Gallistel, 1990; Gallistel and Gelman, zo0s, for reviews).
For example, Platt and Johmson (1971) trained rats to press a lever n times before
pressing a second lever to obtain a reward. Rats learned to press the first lever a
mean mumber of imes equal to n with variability (standard deviation) proportional
to the mean. In other words, as the target n increased, so did the rats’ bar pressing;
with an error rate that was a constant proportion of the size of the target. Numerical
estimation in human adults (Cordes et al. 2001), infants (Brannon, Abbott, and Lutz,
2004; Xu, 2003; Xu and Spelke, 2000), and children (Cordes and Gelman, z003), as
well as in animals, appears to respect Weber’s law. This supports the existence of an
underlying representation in the form of a noisy real-valued magnitude.

Dehaene (1997), after reviewing evidence on both infant and adult human
numerical abilities, suggests that we are endowed with a “continuous and approximate
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representation of quantities” (p. 86) and that, despite being able to “convey numbers
using. .. digits,” the brain always automatically converts into an “intemal analogical mag-
nitude” representation that he dubs the “number line” (p. 87). However, at the same
time that he adduces evidence that the brain uses an analog magnitude representation,
Dehaene also argues that our basic mumber concepts refer to integers, stating that the
“number line. .. clearly supports a limited form of intuition about numbers [in that] it
encodes only positive integers” (p. 87). Either of these claims can be argued for individu-
ally, but to say that the number line is both contimious (real-valued, hence dense) and
encodes only positive integers is a mathematical contradiction. The real-number line
has no special pit stops for integer values; they are just ordinary values among transfi-
nitely many other reals. It is extrernely puzzling how an analog magnitude representa-
tion could support only integer concepts. Indeed, given noise and considerations about
the impossibility of determining the exact value of a real-valued empirical quantity, it is
puzzling how analog mental magnitudes could directly represent integer concepts at
all. Thus, it is unclear how, exactly, an analog magnitude representation could be ident-
cal with our basic integer representations. Let us look at this more closely.

3.1 Analog Accumulations

The best-developed model of the magnitude representation is the “accumnulator”
model of Meck and Church (1983), depicted in figure 7.1. The accumulator can
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FIGURE 7.1 The accumulator model.



114 Innateness and Cognitive Development

measure continuous time intervals (in “run” mode) or count discrete entities (in
“event” mode). In run mode, pulses are gated into an accumulator at the beginning of
the interval, and continue to accumulate until the gate closes at the end of the inter-
val, preventing further accumnulation. The resulting magnitude is then read out into
memory. This real number represents the length of the time interval. In event mode,
pulses are gated into the accumulator for a fixed amount of time for each item to be
counted. In this case, the accumnulator is incremented by a discrete amount for each
item counted. At the end of the count, the accumulated level is again read out into
memory. This number is proportionate to the number of items in the set counted, and
thus represents the cardinal value of the set. Although the way gating works in event
mode means that the process picks out a sequence of next magnitudes (a hallmark
of the discrete), each increment is assumed to be a noisy real value. The gate is open
for a duration that has continuous value, and each of the gated pulses is a continuous
magnitude, so the sum of these must itself be a noisy real-valued magnitude.

The assumption that the noise (uncertainty) in the resulting magnitudes is pro-
portional to the sum is central to this model. It is this assumption that explains why
Weber’s law is observed to hold in a multitude of number and magnitude estimation
tasks in animals and humans. For example, in a classic study of counting in rats,
Platt and Johnson (1971) showed that the probability of breaking off a sequence of
lever presses when N was the number of presses reinforced was a distribution with
mean N and a variance proportional to N. The coefficient of variation was therefore
constant across the range of values for N. Human adults and children show the same
scalar variability in rapid counting and magnitude estimation tasks (Cordes et al.,
2001; Cordes and Gelman, 2004; Whalen, Gallistel, and Gelman, 1999), as well as
the size and distance effects in number order judgment tasks (Buckley and Gilman,
1974; Dehaene, Dupoux, and Mehler, 1990; Holyoak, 1978; Moyer and Landauer,
1973). Scalar variability is one explanation for these effects; logarithmic compression
with mean mental magnitude proportional to the logarithm of the number repre-
sented and variability-independent of it is another. In either case, the key explanans
is that the underlying representations are inherently continnous, and therefore noisy
and variable (for review, see Gallistel, Gelman, and Cordes, 2005). In short, there
is compelling evidence for a noisy analog continnous magnitude representation
underlying counting and other number tasks in animals and humans.

The strong point of the accumulator model, however, makes it hard to see why
our basic number concepts—the ones picked out by language —should be integers
rather than reals. One problem is that there is nothing in the account that explains
why each discrete value added to the accumulator should equal exactly 1 rather than
some real number (perhaps varying around 1). Similarly, accumulated values will
be noisy and will never be exactly equal to integer values.* Furthermore, the values
stored in memory will be noisy and continuously variable. Any numerical observa-
tions that a learner makes in the course of quantifying will therefore take place in a
vocabulary of the reals. One plausible explanation of why the colors designated by

4. “Never” in this context and throughout this chapter means with an infinitesimal probability.
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color words are understood as imprecisely specified is the noisy {(uncertain) values
of remembered coordinates in color space. The accumulator account predicts a
similar pattern for our basic number concepts. Therefore, nothing in the accumula-
tor account so far explains why our basic number notions are integers. Of course,
the Meck and Church model was developed to account for numerical capacity in
animals, and we don’t know whether the basic number concepts that animals may
have actually include the natural numbers. One powerful reason we have for believ-
ing that humans have integer concepts is our intuitions regarding what our natural
number words mean; moreover, the extensively documented history of mathematics
is clearly based on those intuitions (all of number theory, for one example). So, can
language learning come to the rescue of the accumulator model and show us how
we get integers? Perhaps accumulator magnitudes can be translated into or con-
strained to integer values. Could language learning perform this trick?

4 Leamning Number Words: Is This the Source of the Integer?

Gallistel and Gelman (1992) argued that children learn a bidirectional mapping
between the preverbal magnitudes produced by the accumulator and the number
words. They suggest that children recognize the formal similarity between the non-
verbal counting process proposed by Meck and Church (1983) and the verbal count-
ing process. Both produce a one-one correspondence between a stably ordered set
of symbols (successive magnitudes in the one case, successive count words in the
other) and the items in the to-be-counted set, and they both use the final symbol
to represent the cardinality of the set. Gelman has repeatedly emphasized that the
achievement of cardinal values is subject to arithmetic principles. In both the animal
and the human cases, the meaning and use of the symbols are subject to arithmetic
processing. Interestingly, young children who are still learning to count do better
at counting and show clearer evidence of understanding the numerical referents of
the count words when their counting is embedded in tasks that involve arithmetic
processing (R. Gelman, 2006).

Learning to map number words onto magnitudes accomplishes essentially what
our “speedometer” mechanism in figure 7.1a does: A labeled grid is Jaid alongside
the magnitude representation, calibrating it in terms of integer values. The particu-
lar integer values on the “dial” gain their sound labels from the language the child
is learning; if it is English, then “one,” “two,” “three,” and so on, in that order. The
underlying magnitudes, of course, remain noisy and real-valued quantities:

A pivotal assumption about mapping from digits to preverbal magnitudes is that there
is variability in the magnitudes to which a digjt maps and this variability obeys Weber's
law: the standard deviation of the distribution of magnitudes to which a digit maps
increases in proportion to the mean magnitude. (Gallistel and Gelman, 1992, p. 55)

Attractive as this hypothesis is, it does not give us everything we need. It does not
explain where the concept of the exact equality of two different instances of the
same integer comes from. Learning the meaning of a word is learning to associate a
sound with a meaning (concept). To do this, the learner must test hypotheses about
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what the concept might be that is encoded by the new sound. When a given hypoth- ‘

esis has been sufficiently confirmed, it is recorded in memory as the meaning of that
sound. As we saw carlier, the problem with count words is how to explain why an

integer hypothesis should be regularly entertained and confirmed, if the underlying -
space of available hypotheses is the real numbers. If the only underlying numerical

representation the pre verbal child has access to is a continuous magnitude, and
moreover a noisy continuous magnitude, the likelihood of entertaining a particular
exact value as a hypothesis will be infinitesimal. No child would ever entertain exact
integer values, and for jpst that reason no langnage would contain common words
for1, 2, 3; instead, one, two, three would be specialists’ words, like pi or e. Yet children

regularly do entertain integer hypotheses, and for just that reason, the count words -

(in langnages that have them) have integer values as their meanings. The underly-
ing hypothesis space for children learning count words is not a space of continuous
magnitudes, but is biased toward a space of integer values.s

Another possibility arises from the fact that the values obtained by repeated
counting of the same small numerosity would be strongly clustered. The empiri-
cally determined coefficient of variation (Weber fraction) for adult nonverbal
counting is in the range .12 to .15, so the distributions of values obtained for
repeated counts of a set of two objects would overlap with the distribution of val-
ues obtained for repeated counts of a set of only one object between the second
and third standard deviations. Language learners might parse the values obtained
by counting into clusters and assume that the words referred either to these distri-
butions implied by the clusters or to the intervals over which given distributions
dominated. However, this would not license the conclusion that two instances of
valid reference for the word “two” were perfectly substitutable. Values drawn from
a common continuous distribution are not substitatable, because they are never
exactly the same.

There is evidence that young children who are still learning to count can rea-
son about discrete numbers in a manner that respects substitutability. They seem
to recognize the existence of additive inverses. The additive inverse of a number is
the number that when added to a set whose numerosity has been altered by addi-
Hon restores the numerical value of the set. “Added” and “addition” are used here
in the technical sense that subsumes subtraction under addition. Thus, when a set
has been reduced by adding —3 to it (that is, subtracting 3), its numerical value can
be restored by adding 3 to it, because +3 and —3 are additive inverses; adding one
cancels the effect of adding the other.

This evidence first appeared in the behavior of children in the magic paradigm
(R. Gelman, 1972), who confronted a plate from which one mouse had been surrepti-
tiously added or subtracted, making it no longer a “winner” plate. Children noticed

the numerical change and saw it as central to the question of whether the plate was or

was not a winner (unlike, for example, changes in item identities, which were not scen

5. This last remark applies after the point the child has figured out (somehow) that the count words refer

to numerical values (that there are number words) and is now trying to figure out which values particular
words refer to.
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as critical). For present purposes, the most important result is that even the youngest
children believed that the plate could be restored to winner status by the addition of
one item (not some items, but one item). This suggests that they thought that add-

~ing 1 would cancel the effect of subtracting 1, and vice versa. It is not clear why they
~ would think this if their reasoning rested entirely on operations with noisy magnitudes,
- because adding a magnitude drawn from a distribution centered on 1 will generally not

exactly reverse the effect of subtracting a magnitude drawn from that same distribu-

~tion. Indeed, as already noted, it is not clear how in a system that processed only noisy
~magnitudes, one could even confirm a restoration to the status quo ante.

The evidence for the recognition of inverse problems was extended by the arith-

- metized counting experiments of Zur and Gelman (2004). They had children pre-

dict the result of adding or subtracting between one and three iterns, and then check

their predictions by counting. There was a marked tendency for the predictions to
- be more accurate when the children had already dealt with the inverse problem
. than when they encountered the problem without having already encountered its
- inverse. Thus, children were much more likely to say that 12 — 3 = g when they had

already dealt with ¢ + 3 = 12 than when they encountered 12 — 3 before encounter-
ing its inverse. This suggests that their reasoning assumes the existence of restorative
inverses, even for numbers greater than 1.

Could learning the number words be constrained to integer values because the
things that get counted with the number words are typically physical objects? Can
the discreteness of physical objects somehow be ported over into the magnitude rep-
resentation to yield integer values? For example, the child sees two cups and hears
Mother say, “Here are two cups.” Can the child use the fact that objects come only
whole, as it were, to constrain the hypotheses about the meaning of “two” to whole-
number integer values? This is so tempting, especially given how English conve-
niently uses the word “whole” for both cases! But notice that the “wholeness” of an
object reflects how we individuate objects, not how we individuate numbers: Chip
a little bit off a cup, and it is still the same old cup; “chip a little bit” off a number,
and the result is an entirely new number. Trading on the polysemies of English is
not helpful. In any case, the same problem arises as before. Whatever the discrete-
ness of a “whole” object meanms, it does not disclose a number: A child still has to
count objects to know there are two of them. But if the only counting-mechanism-
cum-number-representation the child has pre verbally is the accumulator, produc-
ing noisy real values, then again the child will obtain a noninteger value, such as

- 1.94 or 2.[053], whenever he or she counts, and never exactly the value 2. So again,

even in the co-presence of objects and the count words, children would entertain
noninteger-valued hypotheses for the meaning of the count words and would never
consider an integer value as a candidate referent. And again, as predicted by the
continuous-magnitude-only hypothesis, we should expect-that adult language com-
munities would have count words (the ones young children learn) that refer to non-
integer values, such as “Gaussian around 1.98,” instead of to integers. Since there
appear to be few or no such communities, it argues against the idea that magnitude
representations underlie—form the hypothesis space for—number word learning,
This in turn undermines the suggestion that such representations are the source of
the natural number concepts.
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To summarize so far, the evidence for the existence of an accumulator mecha-
nism and its associated continuous magnitude representation seems good for both
animals and humans. But, because this mechanism cannot produce integer values
on demand, it alone cannot be the source of the natural number concepts.

5 Can “Object Files” Do the Trick?

According to one current suggestion, the relation between the origin of natural num-
bers and verbal counting is quite different from the above. The basic idea is that, in
addition to an accumulator, young children are equipped with a second systermn with
quite different properties. As noted earlier, infants can estimate the number of objects
in sets as long as the sets contain four or more objects. But infants are also able to
track the numerosity of objects in sets of three or fewer. Furthermore, whereas dis-
crimination of large sets shows a classic Weber fraction, infant performance with set
sizes of three or fewer apparently does not; with small set sizes, numerosity appears
to be tracked exactly (although we note that the evidence for this claim of exactness
is not as strong as one could wish). This has led to the suggestion of two independent
systems (Carey, 2004; Feigenson, Carey, and Hauser, 2002; Feigenson, Dehaene,
and Spelke, 2004; Xu, 2003; Xu and Spelke, 2000). These authors, however, do not
propose that infants deploy natural number representations and count the number
of objects in small sets. Instead, following suggestions by T. Simon (1997), Leslie,
Xu, Tremoulet, and Scholl (1998), and Scholl and Leslie (1999a), they argue that
infants represent object numerosity via an attentional mechanism that concurrently
individuates multiple objects. This mechanism allows even young infants to track
the exact numerosity of sets of objects.

According to Feigenson, Dehaene, and Spelke (2004), because of the accu-
mulator, “humans are attuned to the cardinal values of arrays from the beginning
of life” and, because of the second system for representing numerically distinct
individuals, “concepts of ‘enumerable individual’ and ‘adding one’ are accessible
throughout our lifetimes” (pp. 312-13). According to Carey (2004), the accumulator
plays little role in the origins of integer concepts. Instead, she argues that the con-
current individuation of small sets of objects allows children to come to recognize
sets of one, and then sets of two, and then sets of three objects. At this point, fol-
lowing Wynn (1992b), a crucial role is assigned to learning language —specifically,
learning the meanings of what Carey calls the “count list,” the words, one, two,
three, ...

Carey’s proposal is that learning the count list focuses the child upon the differ-
ence between sets of one object and sets of two objects. The mechanism for concur-
rent individuation supplies the answer: The difference is adding (another) one. After
this the child not only recognizes sets of one and sets of two objects, but can grasp
what the relation between them is, namely, the successor relation. Subsequently,
the child works on the meaning of the next word in the list, three, and figures out
(thanks to the concurrent individuation mechanism) that the difference between
sets of two objects and sets of three objects is, again, adding another one. Following
this second discovery, children go on to generalize their induction to the entire
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count list: Each successive word in the list differs from the one before it by the addi-
tion of another one. Carey describes the way concurrent individuation and language
learning engage each other as a bootstrapping process. She then goes on to claim
that “coming to understand how the count list represents number. .. does nothing
less than create a representation of the positive integers where none was available
before” (Carey, 2004, p. 65; italics added).

Both Feigenson et al’s and Carey’s proposals afford a fundamental role to the
mechanism for concurrent individuation of physical objects. We therefore need to
examine this mechanism more closely. We turn to do this now before going on to
evaluate whether it can bear the weight assigned to it by these accounts.

5.1 Individuating Objects: Files, Bundles, and Indexes

Feigenson, Carey, and their colleagues have made extensive use of the idea of con-
current individuation by way of representations called object files. Kahneman and
Treisman (1984; Kahneman, Treisman, and Gibbs, 1992) introduced the idea of an
object file because they perceived a missing link in traditional accounts of object
perception. In traditional accounts, bottom-up sensory information is thought to
directly activate long-term semantic memory traces; once the appropriate semantic
categories have béen thus activated—and only then—can the objects in the scene
be identified and tracked. Traditionally, the task of keeping track of objects that
change location was conceived of essentially as a search task. [nitial contact with
an object results in a memory description combining the sensory information and
the semantic information it activates. When the object moves, the scene must be
searched to discover which item in the scene matches this object description. When
a matching item is found, then it must be the same object. Object representations,
in the traditional view, are essentially feature bundles of one sort or another, includ-
ing perhaps a semantic category label or a word, activated bottom up but imposed
top down on sensory input. For Kahneman -and Treisman this view missed impor-
tant phenomena. For example, objects can be tracked through space without being
identified (described); the same object can be tracked through changes in its iden-
tification (“It’s a bird! It's a plane!”); and two “identical looking” objects can be
perceived as distinct if there is a minute spatiotemporal gap between them, while
two radically different-looking objects can readily be seen as a single transforming
object (frog changes into a prince). ,

To accommodate such phenomena, Kahneman and Treisman introduced an
intermediate level of object representation, which they called the object file. Object
files are temporary object representations that interface between sensory informa-
tion and long-term semantic information. There are two basic functional parts to the
object file. The first, and in many ways more important, part of the object file is a con-
tinuously updated spatiotemporal code which locates the object corresponding to the
object file. This is the indexing function of the object file; the file points at the object
it refers to. We can think of this function as the file’s “folder” —a container with only
(continuously updated) spatiotemporal coordinates written on the folder’s tab.

The second basic function of an object file is that the folder can have further
information added, taken away, or changed. We can think of this as the sheets of
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paper that a folder might contain, each sheet having some property written upon
it, either from sensory input or from long- term semantic storage. Together, the
folder, plus any information it may contain, form an object file. In thinking about
object files, we need to keep clear these two distinct functions. The folder may be
empty, but it can still index and track an object without describing that object. In
this regard, object file theory distinguishes itself radically from traditional theory. In
traditional theory, an object representation just was a bundle of features; it consisted
of nothing but a sheaf of papers, as it were. Without features, there is no feature
bundle; without a bundle, there is no object representation. But an object file can
represent and track an object, even if its folder is empty.

The way that Kahneman and Treisman thought of an empty object file as track-
ing an object was analogous to the way that a finger might track a moving object.
One can pick out a particular object in a scene by touching it with one’s index
finger. Notice that the finger identifies the object without describing it. If you see
only the finger, you have no idea whether it is touching something red or round or
whatever. Instead, the touching finger helps you find the object without searching
the scene because it indexes the object’s location. Now imagine: When the object
moves, the finger sticks to the object and moves with it.

The concept of the sticky index was highlighted and developed in Pylyshyn’s
FINST (Fingers of INSTantiation) theory (Pylyshyn, 1989, 2000). Pylyshyn argued
that even spatiotemporal information does not have to be added to a folder; a coor-
dinate code does not have to be written on the folder’s tab. We can do without even
that much descriptive information. Instead, a simple winner-takes-all network can
solve the correspondence problem —matching the mental index to an item in the
visual world —without explicitly representing coordinates in the object file and with-
out requiring a top-down search (Pylyshyn, 2003).

5.2 Indexing Objects and Number .

Howsoever it is implemented in the brain, indexing is an important and necessary
function for any organism that tracks objects in real time. Leslie and colleagues
applied these ideas to the long-studied problem of how infants come to individuate
and track physical objects as they move and become occluded (Leslie, Xu, Tremoulet,
and Scholl, 1998; Scholl and Leslie, 1999a). They chose to use the term object
indexes in developing their approach to the infant object concept in order to empha-
size this crucial and novel aspect of both object file and FINST theories. An object
file may or may not contain a feature bundle, but it must minimally contain an
index. So, how can object indexes represent numerosity? For each object that is
attended in a set, there is a corresponding object file actively indexing its location. If
all the objects in the set are thus indexed, then the numerosity of the set of objects
will be mirrored mentally in the numerosity of the set of active object files. Not sur-
prisingly, there is a limit to the size of sets that can be so represented. The evidence
for a limit comes from multiple object tracking in adults where the limit is usually
around four (Pylyshyn and Storm 1988; Scholl and Pylyshyn 19gg; Trick and Pylyshyn
1994a, 1994b; but see Trick, Jaspers-Fayer, and Sethi, 2005) and from Feigenson’s
studies with infants (Feigenson and Carey, 2003; Feigenson, Carey and Hauser,
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2002; Feigenson, Carey and Spelke, 2002; reviewed in Feigenson, in press), where
the limit appears to be three.

One conclusion from the idea of object indexing under a limit is that infants
may track small sets of physical objects and detect numerosity changes (Wynn,
1992a) without actually counting, and without having any symbol that represents
or refers to the numerosity of the set of tracked objects. That is, they may detect
numerosity changes simply by disinctly remembering each individual in the set, in
which case all that is demonstrated is their commitment to object permanence. This
raises an alternative interpretation to the explicit representation of numerical value
that Wynn originally proposed. But that is all it does. Specifically, it provides no help
whatsoever in understanding where integers come from. Because our claim goes
against the claims of Feigenson and colleagues, and especially against the proposals
of Carey, let us look further into this issue. ‘

6 Implicit and Explicit Representation

Bootstrapping is an account of how a concept that, prior to the bootstrap, was not avail-
able to the learner can become available. Bootstrapping accounts should have two
properties. First, the concept that was not formerly available should not be expressible
by any combination of formerly available concepts. The new concept really should
be new (not just more accessible). Second, the account of the bootstrap must specify a
computational process that will take a combination of available concepts and yield a
new concept, in this sense. Without specifying the bootstrap process itself, we simply
have a claim that such an (unspecified) process is possible, but no way of evaluating
that claim. For the skeptic, an unspecified bootstrap is akin to the magician’s trick of
turning a glass of milk and a few cards into a rabbit; no matter how much it looks like a
rabbit has been pulled from a hat, without being able to imagine the natural process,
itisnotbelievable. As will become clear, we don't think that Carey has so far provided,
even in outline, a computational account of a bootstrap for number. .

It will help us to be clear if we establish some terminology. Marr (1982) intro-
duced a useful distinction between implicit and explicit representation. This distinc-
tion is not what has become the more common usage of these terms as synonyms for
unconscious and conscious, respectively. The popularity of the latter usage strikes
us as unfortunate because we already have perfectly good words for those senses:
unconscious, tacit, versus conscious, verbalized, and so on. By contrast, Marr’s dis-
tinction revolved around whether or nota given representation made a certain piece
of information available to other processes directly—without further inference being
necessary—in which case that representation represented that piece of information
explicitly. If a given piece of information could be recovered from a given repre-
sentation only by processing that representation further—for example, by drawing
inferences from it—then that piece of information is represented (only) implicitly by
that representation. Marr provides us with a simple terminology for a fundamental
property of computational systems.

Tt will also help if we are careful to mark when we refer to situations in the world
(that the child may be thinking about) versus when we refer to concepts or strings of
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concepts (thoughts) that the child may possess and use. Let us use italics for when
we describe situations in the world (that the child may in some manner be thinking
about). And let us use small capitals when we refer to the concepts or thoughts that
we believe the child uses to describe that situation. So, for example, when a child
sees a quantity of H,0 (situation as we describe it), he or she may think, THERE 1S
WATER (situation as child’s thought describes it).

6.1 Can Number Be Bootstrapped from Nonnumerical
Concepts?

With these distinctions and practices in mind, let us return to the claims that have
been made regarding object indexing and the origin of number concepts. Feigenson,
Dehaene, and Spelke (2004) conclude that the object indexing system

serves to represent numerically distinct individuals. ..and allows multiple compu-
tations over these representations. These computations include...representing
the number of individuals in an array. Because this second system is also active
in infancy, concepts of “enumerable individual” and “adding one” are accessible
throughout our lifetimes. (pp. 312-13; italics added)

In asimilar vein, Carey (2004) describes the object indexing system as a “system of rep-
resentations with numerical content” (p. 61; italics added). She then develops propos-
als regarding how the indexing systern’s numerical content can, together with learning
the list of count words in a langnage like English, allow the child to “bootstrap” his or
her way to the integer concepts. As we saw earlier, the proposed bootstrap hinges on
using collections of active indexes to represent sets of different sizes, then to have the
child observe that each of the sets can be ordered under the add another one relation,
and finally to see what Carey calls the “wild analogy” between this ordering and the

The first problem with this hypothesis is the assumption that the object-indexing
systern has numerical content. This assumption confuses properties of the symbols
themselves—the oneness, twoness or threeness of a set of object files in the mind of
the infant—with what those symbols refer to or represent. Having two object files
pointing to two perceived objects is not the same as having a symbol (or symbol
string) that refers to the numerosity of the set composed of the objects to which
those two object files individually point. The twoness of the set of object files does
not make that set a Two symbol any more than the twoness of the symbol string “12”
(the fact that the string is composed of two numerals) makes it a symbol for two. If

the child assumed that the word “two” had the same referent as the two objects to

which a particular set of two object files pointed, it would assume that the word was
a name for that particular pair of objects. This would rapidly lead to massive confu-
sion about what “two” could possibly refer to, because the child would hear it used
to refer to many different pairs of objects having nothing in common. A child (or
any other symbolic system) that lacked a symbol (or symbol string) that referred to
twoness could not entertain the hypothesis that what all those sets had in common
was their twoness. If the child has no symbol that refers to twoness, how can it learn
that that is what “two” refers to?
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The problem of inducing a word’s reference is hard enough, even when we
stipulate that the langnage learning system has symbolic resources that enable it to

. refer to whatever it is that the to-be-learned word refers to. On the face of it, it seems

impossible when the system lacks the symbolic resources to refer to that which the

“ word refers to. If one thinks, nevertheless, that bootstrapping can do this, then the

process must be specified. And, to repeat, sets of object files do not—and cannot—
refer to the numerosities that they instantiate. Conversely, if a set of two object files

. referred to twoness, then it could not refer to two particular objects. The essential

feature of twoness is that it is a property of any set of two objects; in short, twoness is
the cardinal value of a set, not something that refers to particular objects. Certainly,
twoness is a property both of the set of objects to which the object files point and
of the set of object files that point to those two objects; but the set of object files no
more refers to twoness than does the set of the objects themselves.

The very first step in the proposed bootstrap also seems to us to be deeply flawed.
In order to work, the bootstrap needs to assume what it sets out to explain, namely,

- how the child thinks thoughts such as ONE ADD ONE EQUALS TWO, especially when
the most reasonable gloss for “one , add one” is “add another one.” Notice, in regard
1o Feigenson and colleagues’ proposal, that there’s a big difference between an infant

thinking about two enumerable individuals and an infant thinking THOSE ARE TWO

" ENUMERABLE INDIVIDUALS. The first. might plausibly be true, for example, of an
" infant who has indexed, say, two apples sitting on a table. It has object files pointing to
* those two objects. But the second claims that the infant actually internally describes

the apples as “enumerable individuals” —in those very terms. Fortunately, the ambi-
guity is fairly harmless in this case, because the second reading is presumably so
implausible. But in the case of “add one” or “add another one” the ambiguity is quite
pernicious and leads to a fatal question-begging. Again, it is one thing for an infant to
be thinking about one individual added to another (situation as we describe it)—for
example, a situation in which one apple is placed in a location nearby another. So
far, nothing has been said about how the infant is thinking about that situation. It
is an entirely different thing to say that the infant is thinking ONE ADD ONE EQUALS

- Two. Of course, as soon as we do say this, we uncover another ambiguity, this time

the ambiguities in the English phrase “add one.” This phrase is commonly used to
describe the physical event of placing an individual (“one”) in some location along-
side other individuals. Indeed, the verb “add” is used for all sorts of events that are
not in the least arithmetic (e.g., “italics added”). But none of these other meanings
of the phrase are relevant to the issue of who thinks thoughts like ONE ADD ONE,
with the arithmetic reading 1 + 1. Thoughts like ONE ADD ONE (1 + 1) make numeri-
cal and arithmetic information explicit. By contrast, thoughts like PLACE OBJECT, IN
LOCATION X NEAR OBJECT, make spatial information explicit, but leave numerical
information at best implicit. Granted, a special class of inference process can operate
on spatial representations like this to make the numerical information explicit. For
example, applying an inference procedure such as counting to the objects in question
will result in a representation that makes the cardinality of the set explicit. But then
again, this assumes exactly what the bootstrap sets out to explain.

Even the English word “one” is multiply ambiguous. In the present context, the

i ambiguity of “one” meaning individual and “one” meaning 1 is particularly troublesome.
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We must be careful abont what we attribute to the child as explicit representations (as
always, in Marr’s sense). And indeed, we must extend this care to the notion of object files;
too. If one had to translate the indexical function of object files into English, it would
translate as a bare demonstrative, such as the word “that” when used on its own simply
to point at some individual object, event, or property (Leslie and Kaldy, 2001; Pylyshyn, -
2001). Using such a concept will provide something that could be counted (by someone
who can connt), but “that” does not mean 1, and “that and that” or “thatand another one”
does not mean cardinal number 2. When Carey describes the object indexing system as
a “systemn of representations with numerical content,” this is true only in the same and
unhelpful sense that the concepts APPLE and DOG have nuumerical content. One can use
APPLE to tefer to a situation with an apple and one conld, if one is able and so inclined;
count the apple to discover that one apple is present. Likewise, DOG can be used to refer
to dog situations that provide opportunities for counting, again if one is able and inclined
to count. But the fact that a dog may have one tail, two ears, three toes, and four legs does
not mean that the concept DoG has numerical content. Likewise, thinking THAT, (as refer-
ring to a specific object) is not at all the same as thinking ONE (1); nor is thinking PLACE
THAT; NEAR THAT; the same as thinking ONE ADD ONE EQUALS TWoO. A theory of boot-
strapping cannot rest peacefully on the polysemies of the English phrase “add one.”
Strip away the ambiguities of the English phrase “add one,” and neither Feigenson
nor Carey, we believe, offers an account of a process that will move the child from
noticing that PLACE THAT, NEAR THAT, CHANGES {THAT.} INTO {THAT,, THAT} to the
conclusion that ONE ADD ONE EQUALS TWO. Of course, if the child could already
think (grasp) ONE ADD ONE EQUALS TWO in the arithmetic sense, then the problem
becomes highly tractable. Already grasping the arithmetic concept ApD ONE, the
child conld entertain and confirm the hypotheses regarding set relations and the
meaning of the count words that Carey proposes. We could then imagine, in outline
atleast, a computational process underlying the “wild analogy” between physically
placing objects together in a scene and integer addition. According to this acconnt,
at the moment the child entertains the hypothesis of an isomorphism (parallel or
analogy) between placing objects together and arithmetic addition (or counting),
the child already has the successor function available; indeed, this is what allows
him or her to formulate hypotheses that mention ADDITION or ONE. But now there
is mo need for a bootstrap (cf. Rips, Asmuth, and Bloomfield, 2006, for related argu-
ments). Absent this crucial assumption, however, accounts like Carey’s and related
ones appear to us to pull a conceptual rabbit ont of a hat.
We conclude that there is no account on hand which shows how the young
child can inductively construct integer representations where none were available
before. We are skeptical as to whether there ever will be such an account. The reader

interested in a critique of the bootstrapping hypothesis is urged to consult Rips,
Asmuth, and Bloomfield (z006). '

~asetof lines or other marks. We suspect that this analogy in part motivated the Carey
‘hypothesis. Sets of hash marks do refer to numerosities and, indeed, to the numerosity
~that is instantiated by the number of symbols (marks) in the set. Thus I refers to one-
ness, II to twoness, III to threeness, and so on. Moreover, sets of hash marks support
saine arithmetic operations— ordination, addiion, subtraction, and, arguably, even
_multiplication—in an intuitively obvious and physically simple way. One constructs
the symbol string that refers to the next larger numerosity simply by adding one more
mark to the set that refers to a given numerosity. However, a set of hash marks refers to
“the numerosity of a set precisely because the individual marks, unlike object files, do
not refer to particular objects in the set. Which mark was paired with which object in
- the construction of a set of hash marks is irrelevant once the set has been constructed,
which is not in general the case when the set is composed of object files.

' One could salvage a part of the Carey hypothesis by abandoning the assump-
. tion that it is sets of object files that have numerical content, and by simply assuming
- that there is a hash mark system for representing small numbers, an assumption that
-seems implicit in the hypothesis (cf., LeCorre and Carey, in press). This, however,
separates the hypothesis from one of its principal empirical motivations. Because it
-is empirically well established that human adults can track only about four objects
at any one time, the assumption that sets of object files could refer to the numeros-
ity of the set of objects to which they pointed, explained the fact that the numbers
between 1 and 4 appear somehow privileged in a variety of behavioral tests of hnman
babies and monkeys. If we abandon the assumption that sets of objects files can
somehow do double referential duty—both pointing at particular objects and refer-
ring to the numerosity of the set of objects pointed to—then we can no longer link
the explanation of the privileged nature of mimbers between 1 and 4 to the limits on
the number of object files that can be open (pointing) at any one time.

There is a further problem with the hash mark hypothesis, which applies with
equal force to the widely entertained hypothesis that numerosities between 1 and 4
are apprehended through perceptual subitizing, a process supposed to be analogous
to the processes that form onr percepts of things such as cows and trees (R. Gelman
and Gallistel, 1978). In these models, oneness, twoness, threeness, and (perhaps)
fourness generate discrete percepts (e.g., twoness looks like a line, threeness like a
triangle, . . .). In such a model, the child learns that “one” is coreferential with its
percept of oneness; “two,” with its percept of twoness; and so on. The seemingly
special status of the numbers between 1 and 4 arises because, by assumption, only
these numerosities give rise to simple percepts. As with hash marks, these small
number percepts are inherently discrete. Unlike hash marks, they have no inherent
numerical content. That is, there is nothing in the percept of oneness that indicates
it is a proper subset of the percept of twoness or that it can be added to the percept
of twoness to get the percept of threeness. Just as there’is nothing about “cowness”
and “treeness” that renders them numerically ordered percepts, so there is nothing
about any percept of “twoness” that dictates that “threeness” stands for one more
than “twoness” (R. Gelman and Gallistel, 1978). Like the Arabic single-digit nnmer-
als 2 and 3, they are arbitrary discrete symbols for numerosities.

A problem with any hypothesis that posits a special discrete representation for the
integers, a representation that is fundamentally different from and unrelated to the

7 Computational Compatibility

It is tempting to think of sets of object files as analogous to sets of hash marks, that is, a
counting notation in which the cardinality of a set is represented by the cardinality of
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representation of continuous quantity, is the problem of computational compatibility,
which we take to be a fundamental consideration in any model of the mind’s repre-
sentation of discrete numerical quantity. Whether potential symbols for number have

inherent numerical properties or not, they are not in fact numerical symbols unless

they enter into arithmetic processing (Gallistel, 2001; Gallistel and Gelman 2005;
R. Gelman, 1990; R. Gelman and Gallistel, 1978; R. Gelman, 2006). Absent compu-
tational processes that exploit the subset structure of hash marks to draw conclusions
about the numerical ordering of the sets whose numerosity is said to be represented by
those sets of hash marks, the latter are not in fact numerical symbols. Similarly, absent a
list that orders our putative percepts of oneness and twoness in accord with the numeri-
cal ordering of the sets that generate those percepts and support order inference about
those sets, those percepts do not constitute a numerical representation; hence, they are
not in fact numerical symbols. The same definitional consideration applies to putative
representatives of continuous quantity: Mental magnitudes that are said to represent
quantities such as length, weight, and duration, are not symbols for quantity unless they
enter at least to some extent into arithmetic processing. We therefore state the follow-
ing principle: The computational compatibility constraint on putative representatives
(symbols) for discrete quantity is that they should be able to enter into the same arithme-
tic processes that operate on and produce symbols for continuous quantity.

As indicated earlier, the Gallistel and Gelman accumulator model is consistent
with this requirement. Although different generative procedures serve the calcula-
tion of natural number and continuous number, both are stored as quantities. It
would be problematic to have computationally incompatible symbols for discrete
and continuous quantities. There are many occasions—such as the computation of
rates by foraging animals and decision-making humans-—where rates must be com-
puted. The computation of a rate requires dividing a symbol that represents a discrete
quantity (number) by a symbol that represents a continuous quantity (duration) to
obtain a symbol that represents a different continuous quantity (rate). Moreover, the
arithmetic processing of symbols for discrete quantities leads to symbols for what are
(in effect) continuous quantities, namely, the proportions between numbers (1/2, 3/2,
etc.).® Both adult humans and animals do represent rates (number per unit time;
Leon and Gallistel, 1998; Gallistel, 2001), proportions between durations {Fetterman,
Dreyfus, and Stubbs, 19¢3), and proportions between numbers (Balci and Gallistel,

2006; Meck, Church, and Gibbon, 1985). Humans and nonhuman animals recog- -

nize the equivalence between a proportion instantiated by two durations and the
same proportion instantiated by two numbers (Balci and Gallistel, 2006; Meck,
Church, and Gibbon, 1985). Thus, a central consideration for any proposal about

6. The symbols that refer to the proportions between integers are the symbols for rational numbers. From
a purely formal standpoint, these do not form a system capable of fully representing a continuous variable
such as length, because there are lengths (e.g., the length of the diagonal of the unit square or the length
of the circumference of the unit circle) that cannot be so represented; they require symbols for irrational
numbers (V2 and =, respectively). As a practical matter, however, most irrational proportions are uncom-
putable (they cannot be physically represented with perfect accuracy). They must be approximated by
symbols for rational proportions, which can be done to whatever level of precision is required (short of
perfect precision).
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how the mind represents discrete quantity (number) is that the proposed system also
has symbols for continuous quantity (hence proportions), and that the symbols for
discrete and continuous quantity are computationally compatible. It rnust be possible
for the system to decide that the symbol for 7/3 represents a quantity (e.g., a rate) that
is greater than the quantity represented by the symbol for 2. It must be possible to add

-the symbols for 7/3 and 2 to get the symbol for 13/3, and so on.

- The problem of computational compatibility arises in a particularly acute form
when it is suggested that the symbols for the small numerosities between 1 and 4 are
discrete and noiseless, while the symbols for the large numerosities are continuous and
noisy. This is equivalent to suggesting that there is a computer that represents the num-
bers 1 through 4 by bit patterns (0o, 01, 10, 11) while representing larger numbers by volt-
age levels (an analog representation). How could such a device determine that 7 — 5 =2
(the difference between two noisy voltages) somehow becomes the bit pattem 107 How
could it compute 5 + 2 (the sum of a voltage and a bit pattemn)? It is possible to add and
subtract voltages or to add and subtract bit patterns, but it is not possible to subtract a bit
pattern from a voltage. Bit patterns and voltages are computationally incompatible.

We view with skepticism any proposal that makes the preverbal representatives
of discrete quantity—or of small discrete quantities— computationally incompatible
with the preverbal representatives of larger discrete quantities and the representatives
of continuous quantities. The proposal that noisy mental magnitudes are the symbols
for continuous quantities of all kinds and for discrete quantity regardless of mag-
nitude avoids the problem of computational incompatibility. However, as we have
repeatedly noted, it does not account for human adults’ unthinking and unshakable
commitment to the principle that i =1, for all i, where i is an integer (that is, the sym-
bol for a discrete quantity). So basic is this principle that in formal mathematics, it is
taken to be true not just for all integers but also for all real numbers, for instance, = =
=, an assumption for which it is hard to conceive of an empirical (inductive) basis.

8 Introducing Integers

.We now consider a proposal that, in addition to accumulator magnitudes and object

indexes, we should assume the existence of a third representational system which
represents only integer values. We will propose that the main role of the accumula-
tor in the development of human cognition is not as the ultimate source of the count
number concepts, but instead as the principal mechanism for rapid tacit numeri-
cal calculation and estimation (Dehaene et al., 199¢). For this purpose, the integer
representation.and the continuous magnitude representation have to be calibrated
with one another. Both the accumulator magnitude representation and the natural
number representation are innately specified. -

8.1 Next Number, Discrete Ordering, Exactness, and
the Count Numbers

Consider a common analog accumulator magnitude representation, the speedom-
eter (figure 7.2a). The typical speedometer combines two distinct representations:
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FIGURE 7.2 The typical speedometer (A) combines two distinct representations, a continuous
analog representation “meter” (B) and a discrete digital representation “dial” (C). The two
representations need to be carefully aligned and calibrated if the device is to be useful under
normal circumstances. ‘

one continuous and analogical (figure 7.2b), the other digital (figure 7.2¢). These
two representations are aligned and calibrated so that the position of the needle in
the meter can be aligned with a digit on the dial and a digital reading can be taken.
When these two representations are separated, as depicted in figure 7.2, it becomes
clear that they have very different properties.

The “meter” returns continuous values and thus represents real numbers. The
dial, by contrast, explicitly represents only discrete integer values. The dial lays out
these values in a certain spatial arrangement in order that they align with and cali-
brate the behavior of the meter needle. But, aside from calibrating the “meter,” this
spatial property of the dial is inessential, as long as the ordinal structure remains.
Absent the calibration, this structure could be represented quite abstractly (e.g., <1,
2, 3,...>), without any spatial structure.

Both the reals and the integers have ordinal structure, but only the integers sup-
port a well-defined notion of NEXT NUMBER. A well-defined NEXT NUMBER seems to
be part and parcel of our basic number intuitions. When we count, we pick outa first,
then a second, ..., member of the set to be counted; intuitively it makes no sense to
pick outa “second point one-th” member or that there is a place between second and
third. Gallistel and Gelman (1992) point out that the accumulator model provides
an effective procedure for picking out a next mental magnitude. This is the mental
magnitude you get when you add “1” (the unit magnitude) to the mental magnitude
in question. The resulting next magnitude, like all mental analog magnitades, is,
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from a psychological point of view, only stochastically differentiated from the other
mental magnitudes that represent numerosity. Thus, any two samplings from the
distribution of mental magnitudes for the next integer will never be exactly equal.
However, it was argued that the mechanism for deciding whether one mental mag-
nitude is greater than another should be assumed to have provision for giving “effec-
tively equal” (~) as a result. Such a mechanism will return “~” just as often in the
case of a comparison between the next integer and a separately generated mental
magnitude (intended to refer to the same next numerosity) as it will in the case of
two mental magnitudes generated by two counts of the same set. This brings us back
to the question of exact equality and away from the issue of discrete ordering. An
accumulator-continuous-magnitude counting mechanism with the assumption of
an ~ operation can discretely order the magnitudes it generates.

However, there is more at stake in the notion NEXT NUMBER than simply dis-
crete ordering and exactness. Recognizing what more Is at stake, beyond order and
exactness, is critical to understanding the nature and origins of our number con-
cepts. Counting is not simply a matter of identifying some discrete value “mini-
mally” greater than the current accumulator-counter magnitude or some discrete
value “minimally” greater than a value “effectively equal” to the current accumula-
tor value. Some value will just not cut it. The NEXT count value can be obtained only
by adding the integer valuer.

The accumulator account given by Gallistel and Gelman (1992) of course had
to stipulate that the count value to be added is (effectively) equal to 1. But in a con-
tinuous magnitude representation this value is not only unobtainable with exact-
ness, it is also ad hoc. Why should the “unit” magnitude in an accumulator count
be ~ 17 Why couldn’t it happen to be ~ 0.67, say, or ~ 1.134, or any other real value
that would discretely order the magnitudes the accumulator generates? Such values
would give you the NEXT stochastic magnitude, nicely ordered; but they wouldn’t
give you the count values, which “happen” to be integers. Moreover, no other value
than exactly 1 will function as the identity element in multiplication. Support for
arithmetic inference imposes heavy constraints on number representation.

This line of thought leads to the realization that the mapping from discrete
quantiies (numbers) to the mental magnitudes that represent them is constrained
by formal considerations in a way that the mapping from continuous quantities to
the mental magnitudes that represent them is not. This constraint, together with
the necessity of computational compatibility, imposes a system of natural units on
mental magnitudes. Suppose that we knew what the physical (neurobiological)
implementation of mental magnitudes was, and could therefore measure mental mag-
nitudes in physical units. For the sake of concreteness, suppose that mental magni-
tudes are realized by amounts of some intraneuronal substance, which we will call
numerin. Thus, a particular mental magnitude would-be physically realized by the
synthesis of n picograms of numerin in some neuron. We could then ask what the
constant k is relating the n to, for example, D, where D is duration measured in, say,
seconds. There is, so far as we can see, no constraint on k other than that it be small
enough so that the number of picograms of  required for even a very long duration
could be comfortably contained in one neuron. We could determine k empirically
only by manipulating D while measuring n.
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“This lack of constraint on k does not apply when we ask how much numerin
represents the number (discrete quantity) 1. If quantities of numerin are really the
physical realization of mental magnitudes, then they must enter into the arithmetic
processes, including multiplication. Mental magnitudes are, by definition, those
things in the brain that (a) are causally connected to the quantities they refer to and
that (b) mediate arithmetic reasoning about those quantities. In that processing,
there will be 2 unique quantity of numerin that corresponds to the multiplicative
identity element. That is, there must be a quantity, n, that, when entered into one
“side” of the multiplier (one functional slot in the multiplication process) together
with any other quantity, n,, entered into the other side, gives, as a result of the mul-
tiplication, the exact same quantity as was entered into the other side. That s, there
must be a quantity, n,, such that n, x n, = n,, for arbitrary n,. Put another way, mult-
plication by any quantity less than n, will diminish the other quantity (forn, <n,n,
X 11, <n,), and multiplication by any quantity greater than n, will augment the other
quantity (for n,, > n,, n,, x n, > n,). Thus, to determine the k for the representation
of discrete quantity, we do not have to manipulate or measure anything outside the
brain itself. In particular, we do not have to manipulate N, the numerosity of a set
represented by some amount of numerin. All we have to do is study the process
that combines two amounts of numerin multiplicatively and determine the amount
of numerin that functions as the identity amount in this process. That amount of
numerin must be the amount that represents the numerosity of a set with only one
member.

Moreover, knowing that amount would establish natural units for all of the
brain’s systems of mensuration—that is, the neurobiological mechanisms that caus-
ally connect objective quantities to mental magnitudes, thereby determining the
amount of numerin that refers to a given amount of some objective quantity. Thus,
the natural unit for the mental magnitudes (amounts of numerin) that represent,
for example, duration would be the amount of numerin that functions as the multi-
plicative identity. However many seconds of duration that amount of numerin rep-
resented would be the mentally natural unit of physical duration, which we might,
somewhat whimsically, call the mentsec.

In short, the intervals on the mental number line that correspond to succes-
sive increments in the counts that map discrete quantity (numerosity) to mental
magnitudes are determined by the formal consideration that these intervals must be
exactly equal to the interval that functions as the multiplicative identity. Otherwise,
the whole system of arithmetic reasoning will not work.

8.2 A Minimal Innate Basis for the Natural Numbers

We have argued that basic number representation in humans is not limited to the
reals but primitively includes the natural numbers. The natural numbers are exact
values, the representation of which poses major difficulties for any system whose
representations are inherently noisy, vague, or “fuzzy.” The natural numbers are
ordered values in which the notion NEXT NUMBER is well defined. Over and above
all this, however, the natural numbers are not simply any sequence of well-ordered
exact values, such as 0.67, 1.34, 2.01,...; they are integer values. Finally, children
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access integer values when they entertain hypotheses regarding the meaning of the
count words.

What would the required learning mechanism look like? What properties
should a mechanism have in order that it learn meanings for count words that des-
ignate integer values (as opposed to discrete reals, stochastic functions over reals,
vague values, etc.), so as to order integer values according to a next relation, support
arithmetic reasoning, and allow related magnitude estimation judgments? What
properties should such a learning mechanism have in order that it can be guaran-
teed to complete its task in real time, that is, within the finite learning trial oppor-
tunities available to real learners? What is the minimal structure such a mechanism
could have?

To reiterate, we take it as fundamental that numerical concepts must support a
system of arithmetic reasoning. From this perspective, it might appear that the idea
that the concept of any particular number may develop before the concept of other
numbers of its class makes no sense. For example, one might argue that this makes
no more sense than saying that the third pawn from the right is the first concept to
develop in chess. However, whereas we agree that the concept ONE depends upon a
system of arithmetic reasoning, and more generally that the meaning of mathemati-
cal concepts depends upon the formal system they are embedded in, it remains an
open question what this means for the psychological conditions for concept posses-
sion. For example, how much of the system of arithmetic needs to be internalized
for the system to possess the concept oNE? How high should one set the knowledge
bar, and how does one motivate whatever bar setting one proposes? If mathematics
is a closed deductive system, then ultimately every part is related logically to every

- other part. Does this mean that one must possess knowledge of all of mathematics

to possess any of it, including (say) the concept ONE? If so, then no one possesses
the concept onE. We reject this precious view as prejudicial to the existence of
an empirical science of concepts. However, if something less is required for con-
cept possession, then what is that and what is the principle for determining what
is required? If numbers are mind-independent properties of the world (objective
properties of a formal system or of sets), and number concepts are mental symbols
that refer to these properties, then what is minimally required for concept possession
is a mental mechanism that can reliably lock the reference of a given number con-
cept to its referent number. The general answer to these larger questions remains
unclear. What we propose in the present case is a minimal mechanism that will
generate the entire integer series and support arithmetic inference.

One ‘part of our proposal is the distinction between a generative system and a
realized systém. A generative rule system specifies the derivation of an infinite set of
symbols in the present context, a notation for denoting numbers. A realized system
refers to those symbols that have actually been produged by running a derivation
and storing the result in memory (for a longer or shorter period). To say that a system
of arithmetic reasoning and ONE are mutually supportive is not to say that realized
symbols for (infinitely) many numbers must exist in memory —nor, indeed, that any
symbol in the series other than ONE has, as a practical matter, actually been derived
and stored in memory by a given subject. It is only to say that there must be a rule of
derivation and a procedure for creating those symbols (concepts) as they are needed.
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Understanding cognitive development entails understanding both generativity and
practical realization.

The accumulator is an example of such a generative procedure; it realizes men-
tal magnitudes to represent real-valued numerosities, as needed.

We postulate, first, an integer generator that, like the accumulator, functions as a
mechanism of domain-specific leaming. Second, the integer generator has the prop-
erty that the values it generates can be calibrated to accumulator values. Third, itallows
an unbounded set of discrete values to be represented; it either provides or leams a
notational system with an unbounded set of symbols. Fourth, it is constrained to repre-
sent only integer values. Fifth, it must guarantee an ordering of values under the NEXT
relation. These basic requirements can be met by the following assumptions:

1. There is atleast one innately given symbol with an integer value, namely,
ONE = 1.

2. There is an innately given recursive rule S(x) = x + ONE. The above
two assumptions are similar to Peano’s primitives, except we have 1
where Peano had o; the rule S is also known as the successor function
(e.g., Boolos and Jeffrey, 1989). _

3. There is a regular grid that is commensurate with, and can be calibrated
to, accumulator values.

The rule generates a grid alongside the accumulator magnitude representation as
in figure 7.3. The grid calibrates integer symbols to noisy magnitudes, allowing the
accumulator to be used in calculations and magnitude estimates whose results can
be rounded to integer values.

The grid itself could conceivably provide “detachable” symbolic objects to
represent integer values. If they could be detached from the accumulator and used
outside of the module, general thought processes could access these symbols. For
example, the symbol | would represent 1, | | would represent 2, | | | would represent
3, and so on. However, this kind of notation has a property that severely limits its
usefulness. As the n to be represented grows in size, the “physical size” or length of
the symbols themselves grows linearly with n. It’s as if the word for elephant had to
be thousands of times bigger than the word for bacteria, not a welcome property.
In fact, the accumulator magnitude representation itself has this same unwelcome
property, and in both cases there is a problem of how an unbounded or even a large
bounded set can be represented. This suggests that in addition to the grid there
should be a compact notation. A compact notation is one which provides symbo]s
whose length does not grow with the size of the integer represented.

To provide a compact notation, an unbounded set of symbols must be gener-
ated, with a one-to-one correspondence between symbols and integer values, so that
each symbol functions as a unique identifier for some unique integer value. Each
symbol is bound to a unique rung on the grid, the ordinal position of which deter-
mines the meaning of the symbol (that is, its specific integer value). At the same
time, a given symbol is also provided with an interpretation (calibrated) in terms
of an (approximate) continuous accumulator magnitude. Finally, these compact
symbols can be “detached” and can compose in centrally constructed and centrally
processed thoughts, namely, in thoughts involving integer values.
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FIGURE 7.3 A model for number leaming and representation, combining continuous mag-
nitude and integer representations with three kinds of leaming; that in which integer values
are recursively realized by computing the function S (realization leaming); that calibrated
against continuous magnitudes by stretching or compressing the length of the grid relative to
the accumulator magnitude (calibration learning); and that mapped to a compact notation
(compact notation leaming). A compact notation can be provided through learning 2 natural
language with count words. Accumulator magnitudes are depicted as noisy. At least three
variants of this model are possible: that in which only the symbol ONE is innate, or oNE and
TWO, Or ONE, TWO, and THREE are innate.

8.3  Where Does the Compact Integer Notation

Come From?

Minimally, the concept of and symbol for 1 must be innately realized because the
recursive rule S that generates the grid requires that concept and symbol. S also
requires that the addition operation +, the identity relation =, algebraic variables,
and a recursive capacity (minimal algebraic notions) also be innately realized.

Many variants on this proposal are possible; for example, variant 1: the innate inte-
ger notation also includes a realized symbol TWO (= 2); variant 2: the innate integer
notation also includes a realized symbol for THREE (= 3); and so on. However, given
that the set of natural numbers is unbounded, not all of them can be represented by
realized symbols, and thus not all can be innately realized. Nonetheless, the entire set
can be represented in the sense that it is generated recursively by S. One way to think
about S is that it generates the meanings for the entire set of integers, using finite means.
Because the means for generating the set are finite, namely S, it can be innately real-
ized. However, for realizing an unbounded or even large bounded set of symbols, where
each syrnbol uniquely carries an individual integer meaning, a notation is required
whose symbol length does not grow monotonically with the magnitude of the value
represented (as a grid or an accurnulator representation does). Notably, the count word
list in a natura] language such as English has a notational system for integers with just
this property: For example, English uses just two words & represent 1,000,000.

Conceivably, the brain may have an innate compact integer notation, for example,
produced recursively or by a cascading notation for orders of magnitude. Altematively,
the notation for values larger than ONE may simply co-opt natural language itself and
acquire that compact notational system. In this case, the detachable unique identifiers
designating integer values larger than 1 will be drawn from a learned notation, namely,
the natural language expressions of the leamer’s first language.
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"Notice that this proposal has nothing whatsoever to do with acquiring inte-

ger concepts by learning a count number word list. Under this proposal, natural

language provides only a (compact) notation for prior existing integer concepts.
Indeed, it would be impossible to learn what this lexical subsystemn encodes without
having the corresponding integer concepts available, since these concepts constitute
the required hypothesis space for the learning process. The calibrated and ordered
grid and the specific rung on the grid are realized internally by running the recur-
sive function S. The ordinal position of a given rung in the grid fixes the meaning of
the unique identifier bound to it. Whereas the meanings themselves do not have to
be learned, the notation for the unique identifiers (except for ONE; and for Two in
variant 1; and for THREE in variant 2) is learned.

The integer grid, together with the innate unique identihier symbol, forms the
language learner’s hypothesis space for mapping sound forms onto meanings (i.e.,
integer values). An open empirical question in this account concemns the role of
adult-demonstrated counting rituals. Does such a ritual itself provide the occasions
on which a child will call the function S? If so, the adult will teach the child to
count by actuating the child to realize the next step or steps in the integer grid. If a
child does not belong to a language community that has count words, does the grid
remain unrealized in such a child? Or will a preverbal infant routinely call function
S in situations not involving verbal counting, for example, in spontaneously tracking
the numerosity of sets of physical objects? Does verbal counting provide the only
actuating circumstances or only one of a number of actuating cucurnstances? These
questions remain entirely open.

In summary, the basis of our natural number concepts is hypothesized to be the
innate representation S that recursively defines the positive integers and the con-
cept next. The basis of these concepts cannot be a system of continuous magnitude
representation, accumulator or connectionist, noisy or not, without a system that
can represent exactly the value 1. Moreover, the integer representation becomes
calibrated to accumulator magnitudes, allowing integer calculation and magnitude
estimation. The brain may generate its own compact code for representing integer
values and then learn the appropriate mapping from that internal compact code to
the corresponding compact code in natural language. Alternatively, the brain may
simply co-opt the compact code of a natural language. This latter account would
afford an important role to language learning without embracing Whorfian claims.
‘What natural language cannot do is determine or teach de novo the meanings
of integer concepts. These meanings are known in an important sense innately:
namely, as generated by S (and perhaps even calibrated against the magnitude
representation).

8.4 Another Proposal

An alternative to positing a separate notation for the integers (albeit a notation cali-
brated to the mental number line, the system of mental magnitudes) is to assume
that there is (in addition to the accumulator mechanism for generating magnitudes
that refer to numerosities and enter into arithmetic operations) some innate alge-
braic principles that mediate or govern reasoning about discrete numerosities (cf.
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R. Gelman and Gallistel, 1978, pp. 227ff). This additional symbolic system has sym-
bols that do not enter into arithmetic operations that determine numerical values.
Unlike the mental magnitudes, they are not used for arithmetic computation.
Rather, they are used to draw conclusions about the outcomes of computations, by
licensing symbolic substitutions. In. this view, the essential function of testing for
equivalence is to license substituting one course of action for another, whether overt
action or symbolic action.

As we have already noted, on the assumption that the arithmetic operations
operate on noisy magnitudes, it is difficult to specify a mechanism that would
license the conclusion that two such magnitudes are equal, and hence substitut-
able, one for the other. It is not hard to specify a mechanism that decides whether
one magnitude is less than or greater than another. The sequential sampling dif-
fusion model first suggested by Buckley and Gilman (1g74; see also Gallistel and
Gelman, 2005), which has also been proposed (and extensively tested) as a model
for making nonnumerical decisions (Ratcliff and Smith, 2004), gives us a plausible
model for making decisions about greater than or less than. Imagine two magni-
tudes that are to be compared as two speedometers, A and B, with jittering needles.
The comparing mechanism takes readings, ¢, and b, from both speedometers;
computes the difference, a, — b, tests whether it exceeds either a positive or a
negative threshold. If it exceeds the positive threshold, the mechanism decides that
A > B; if it exceeds the negative threshold, it decides that A < B; if it exceeds neither
threshold, the mechanism takes another two samples, computes their difference,
adds it to the previous difference, and tests whether the sum of the two differences
exceeds either threshold. That is the essence of a sequential sampling decision
mechanism. Proposed mechanisms of this kind include, for obvious reasons, a time
limit on the sampling, at the end of which, if neither threshold has been crossed,
the mechanism reports that it cannot decide. Such a report cannot, however, be
taken as a decision that the two magnitudes being compared are equal, because
it does not guarantee a fundamental property of the equals relation, namely, that
when equals are added to equals, the results are equal. Such a mechanism is per-
fectly capable of reporting that it cannot decide whether A <> B nor C < D and
then reporting that A+ C> B + D.

In short, it is not clear how to specify an effective procedure for determining
whether two noisy magnitudes (two noisy, real-valued variables) are equal. Hints of
the difficulty will be familiar to those who have run computer simulations in which
integer values have been computed from floating point values and then compared.
It sometimes happens that the computer decides that 1 = 1, because it internally
represents one of the two instances of 1 as .9999999999999999. When mental mag-
nitudes represent estimates of continuous quantities such as duration, the inability
to determine equality is arguably a feature, not a biig. The values of continuous
empirical quantities cannot be known with perfect precision; therefore, the question
of whether two such quantities are exactly equal is moot. But when noisy continu-
ous quantities are used to represent numerosities, this inability is clearly a bug, at
least on the realist assumption that number, as commonly conceived, is an objective
property of sets, and that two sets can have exactly the same number of members; oz
indeed, on the assumption that « = x.
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One solution is to posit an additional mechanism that mediates algebraic rea-
soning about discrete quantity. For drawing inferences about discrete quantities,
there may be innate mechanisms that in effect define the relationship of exact equal-
ity and mediate reasoning in which it plays a central role. On this hypothesis, the
magnitude symbols might be supplemented by an adjunctive symbol system with
two symbol categories, I and n. A symbol in the category I refers to the magnitude of
a cupful in the Meck and Church accumulator machine. These symbols are gener-
ated as needed and discarded as soon as they have been used. A symbol in the cate-
gory n refers to any magnitude generated by using the accumulator in the count
mode. Symbols in this category are also generated as needed. Neither the
I symbols nor the n symbols are mental magnitudes: The relation between them
and the mental magnitudes is the same as the relation between the letters in alge-
braic strings (x, y, k, 1, etc.) and numbers; the letters refer to arbitrary instances of the
numbers, but are not themselves numbers; the numerical value they refer to is left
unspecified. We further postulate the existence of rewrite mechanisms or substitu-
tion licensing mechanisms operating on these two categories of symbols in accord
with the principles that for arbitrary distinct instances a and b of I, a = b (all instances
of I refer to equal magnitudes, that is, interchangeable magnitudes), and for arbi-
trary instances a, b, ¢, and d of n, if a = b and ¢ = d, then aoc¢ = b od, where o; refers
to any one of the arithmetic operations +, ~, x, and +. In other words, all instances
of one are interchangeable, and whenever interchangeables combine arithmetically
with interchangeables, the results are interchangeable. One may also need to assume
an Archimedean principle to the effect that for any instance, a, of n, al = a. In
words, any (natural) number may be generated by pouring cups that number of
times.

In order to explain where the integers come from, this proposal blatantly posits
innate mechanisms of deduction that embody defining principles of the integers. In
doing so, it avoids the problem of computational incompatibility, because the sym-
bols on which these deductive mechanisms operate are not the symbols that enter
into arithmetic computations. Rather, they are symbols that enter into Teasoning
about the outcomes of arithmetic computations on magnitudes generated by the
accumulator when operating in the counting mode. In positing these principles, we
explain why the child can assume that “one,” “two,” and so on refer to specific men-
tal magnitudes generated by the accumulator, and further believe that the property
of a set thereby referred to may satisfy an equivalence relation.

Our solving the problem with these assumptions will remind many readers of
the maxim that postulation has the advantages of theft over honest toil. In order to
explain where our concept of the integers comes from, we have assumed that it is
built into an innate mechanism for reasoning in the abstract about the outcomes
of numerical manipulations of sets. It would be nice to be able to motivate these
assumptions by considerations other than those that pose the puzzle we are trying
to solve. We confess that we cannot at this ime do this, which is why we put this
particular proposal forward in a tentative voice. Still, it is well to keep in mind the
fact that three- and four-year-old children have little difficulty switching between
an approximate and an exact system, the latter being preferred when the task is an
arithmetic one (Zur and Gelman, zo004).
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- 9 Conclusions

The lengths to which we find ourselves driven serve, if for nothing else, to highlight
the central features of the problem: (1) There is abundant evidence for, and consid-
erable theoretical consensus, that discrete and continuous quantities are represented
preverbally by computationally compatible symbols. (2) These symbols enter into at
least some of the operations that define the system of arithmetic: namely, ordering,
addition, subtraction, multiplication, and division, which is why they can be said
to be numerical symbols. (3) These symbols obey Weber's law in that the confus-
ability of two symbols or the uncertainty regarding the value to which they refer is
proportional to that value. (4) This is widely assumed to imply that these symbols are
analogous to noisy magnitudes. (5) The symbolic size and distance effects are gener-
ally taken to imply that judgments about the ordering of the referents of arbitrary
culturally determined symbols for quantity such as “1,” “2,” “3,” “4,” and the like are
mediated by order-deciding operations on the preverbal mental magnitudes that
represent the quantities referred to by these symbols. (6) This implies that in learn-
ing the meaning of these symbols, verbally competent subjects take them to refer
to the same properties that are referred to by the symbols in their preverbal mental
magnitude system. (7) This explains why verbally competent subjects understand
these arbitrary symbols to refer to properties that can be arithmetically processed. (8)
However, it does not explain why subjects believe that exact equality (interchange-
ability) is a potentially applicable property of the quantities that these symbols refer
to. In the case of continuous quantity, it is doubtful that they should believe this, and
perhaps they do not. But it seems beyond argument that most adult humans believe
that the positive integers (the natural numbers) represent a property of sets such that
it can satisfy an equivalence relation: The numerosity of two different sets or of the
same sct at different times may be interchangeable; any symbol that exactly refers
to the numerosity of one of the sets refers just as exactly to the numerosity of the
other. (9) With discrete symbols, the determination of exact equality reduces to the
determination of the identity of the symbols. (10) With noisy magnitude symbols,
the determinatiou of exact equality is much more problematic. Thus, the hypoth-
esis that arbitrary culturally determined symbols for discrete quantity acquire their
meaning from the assumption that they are coreferential with the noisy preverbal
mental magnitudes that refer to those quantities fails to explain why adult humans
believe in the potential exact equality of the magnitudes referred to. (11) Positing a
fundamentally different discrete symbolic system that represents discrete quantity
or small discrete quantities raises the problem of computational compatibility. (12)
Bootstrapping models that attempt to use language to somehow create concepts that
do not exist in the preverbal system for representing quantity seem always to beg the
question, tacitly assuming that the concept already exists in the process of explaining
how it is created (Rips, Asmuth, and Bloomfield, 2006).

In short, there does not appear to be any way to derive the integers from non-
integers (reals) or from non-numerical symbols (object files, linguistic quantifiers).
We have integer concepts either because there is a mental notation specific to the
integers, but calibrated to the corresponding mental magnitudes, or because there
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is a system of algebraic reasoning abont operations on discrete quantity, a system
that allows the deduction of relations between computations without requiring that
those computations in fact be carried out, Either way, it is hard to resist the conclu-
sion that the generative concept of an integer is innate.

9.1 Inthe End, One Proposal?

Finally, Hartnett and Gelman (1998) report that children aged five to seven years
found it surprisingly easy to articulate the idea there is a never-ending sequence of
unique natural numbers, that every natural number has a successor. We say “surpris-
ingly easy” for two quite different reasons; first, becanse children found this idea
about infinjty easier to grasp than the concept of a fraction; and second, because it is
unclear what the principle of induction is that would yield this conclusion—except,
of conrse the principle of mathematical induction itself, which wonld have to be
taken as innate. Instead, the intuition of a discrete infinity surely is an intuition
about the structure of the successor function itself—an intuition of its integer-closed
recursion. This is evidence, then, for the psychological reality of the successor func-
tion; evidence for a little piece of intuitive algebra. When viewed this way, we can
see that the two accounts we have outlined here are really one.




