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Humans appear to share with animals a nonverbal counting process. In a nonverbal counting condi-
tion, subjects pressed a key a numeral-specified number of times, while saying “the” at every press. The
mean number of presses increased as a power function of the target number, with a constant coeffi-
cient of variation (c.v.), both within and beyond the proposed subitizing range (14 or 5), suggesting
small numbers are represented on the same continuum as larger numbers and subject to the same noise
process (scalar variability). By contrast, when subjects counted their presses out loud as fast as they
could, the c.v. decreased as the inverse square root of the target valne (binomial variability instead of
scalar variability). The unexpected power-law relation between target value and mean number of
presses in nonverbal counting suggests a new hypothesis about the development of the function relat-

ing number symbols to mental magnitudes.

Humans appear to share with animals a nonverbal count-
ing process that generates mental magnitudes represent-
ing numerosities (both small, < 5, and large; Gallistel & Gel-
man, 1992, 2000; Gelman & Cordes, 2001). In Meck and
Church’s (1983) model of nonverbal counting, each enu-
merated unit is represented by an additional fixed incre-
ment of magnitude in the contents of a mental accumula-
tor. The cardinal value of the counted set or sequence is
represented by the final magnitude, which is read into mem-
ory (Figure 1).

These magnitudes in memory are noisy, like the magni-
tudes that represent continuous quantities. Following Meck
and Church (1983), we assume that the mean value and the
variability of the mental magnitude distribution for a nu-
merosity are proportional to the numerosity. We further make
the standard signal-detection assumption that discrimina-
tion failures occur to the extent that the signal distributions
for nearby numerosities overlap.

Other accumulator models have been proposed. Reyn-
voet and Brysbaert (1999), as well as Dehaene, Dupoux, and

The research and preparation of the manuscript was supported by
NSF Grants SRB-97209741 to R. Gelman and C. R. Gallistel and DFS-
9209741 to R. Gelman. We thank reviewer Lana Trick for her helpful
comments and suggestions on an earlier version of this manuscript, We
also thank Osnat Zur, Girlie Delacruz, Denise Pifién, Alyssa Lafosse,
and Beth Lavin for helpful comments on earlier versions. Correspon-
dence should be addressed to either S. Cordes or R. Gelman, Rutgers Uni-
versity Center for Cognitive Science, 152 Frelinghuysen Road, Psych
Building Addition, Busch Campus, Piscataway, NJ 08854-8020 (e-mail:
scordes@ruccs.rutgers.edu or rgelman@ruccs.rutgers.edun).

Mehler (1990), hold that the mental magnitudes are pro-
portional to the logarithm of the objective magnitudes and
have constant variability (signal noise independent of sig-
nal magnitude). However, this logarithmic explanation is in-
consistent with results that implicate the ability to men-
tally subtract with both durations and numerosities (Brannon,
Wusthoft, Gallistel, & Gibbon, 2001; Gibbon & Church,
1981). The Brannon et al. (2001) results imply that the
mental magnitudes in memory are proportional to the ob-
Jjective magnitude of the numerosities they represent.

The magnitude model explains a variety of human data,
including the Weber-law characteristic of numerical order
judgments—namely, the accuracy and rapidity with which
the numerical order of two numerals may be discriminated
is determined by their ratio (e.g., Fetterman, 1993; Moyer
& Landauer, 1967, 1973; see Dehaene, Dehaene-Lambertz,
& Cohen, 1998; Galliste! & Gelman, 1992, for reviews). The
effects of numerical size and distance on the speed and ac-
curacy of human order judgments have also been observed
in primates (Brannon & Terrace, 2000; Rumbaugh, Savage-
Rumbaugh, & Hegel, 1987; Washburn, 1994). Results like
these fit well with Moyer and Landauer’s (1967) proposal
that judgments of numerical order are represented by noisy
mental magnitudes. On this hypothesis, the discriminations
obey Weber’s law because the overlap between two signal
distributions with scalar variability is determined by the
ratio of their means.

The importance of scalar variability and, more gener-
ally, the Weber-law characteristic in numerical estimation
and discrimination is that scalar variability and Weber’s law

Copyright 2001 Psychonomic Society, Inc. 698




At end of count,
accumulator

One cup empties into memory

per item
counted

memory
is noisy

Accumulator

Grapheme Memory

& Word

Memory Magnitude Memory

Bidirectional
mapping

—“NWAIONDO
A AAAAAAAA

memry
for 5 for 8

Noise Proportional
to Magnitude

for 2

Figure 1. The accumulator model. A magnitude representing
a numerosity is formed through accumulation of “cup fulls” of
activation, one cup for each item or event enumerated. Accamu-
lated magnitudes from an ongoing count may be compared to a
magnitude stored in memory or may be mapped to symbols for
quantities, However, magnitudes read from memory have inher-
ent scalar variability that may result in errors, The greater the
magnitude, the more likely an error.

are not predicted by another obvious source of variability
in numerical estimation and discrimination—counting er-
rors. Counting is a multistep process, with the number of
steps proportional to the numerosity counted. If there is
some probability of error (either skipping an item or count-
ing it twice) at every step, then the more steps there are, the
greater the expected accumulation of miscounts. The vari-
ability in counts from this source should, however, obey bi-
nomial statistics; it should grow in proportion to the square
root of the numerosity. Thus, the coefficient of variation,
the ratio of the standard deviation to the mean, should be
negatively correlated with target number. Discriminations
should get relatively better as numerosities increase. That
is, the discrimination of 30 from 20 should be more accurate
than the discrimination of 3 from 2, contrary to Weber’s law.

Whalen, Gallistel, and Gelman (1999) provided some ev-
idence that adults use a nonverbal counting mechanism that
generates magnitude representations with scalar variabil-
ity. In their key press task, subjects were presented with an
odd Arabic numeral from 7 to 25 and were asked to rapidly
press a key, without counting, until they felt they had ar-
rived at that number. Results paralleled the animal count-
ing data (e.g., Platt & Johnson, 1971); the number of presses
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increased in proportion to target number, as did the trial-
to-trial variability in the number of presses.

To assess whether subjects responded on the basis of
duration rather than numerosity, Whalen et al. (1999) had
subjects attempt to reproduce time intervals. The coefficients
of variation for subjects” duration estimates were much
higher than the coefficients for their key press responses.
Whalen et al. also asked subjects to estimate the amount
of time a given number of presses took. These estimates
were grossly inaccurate.

To counter the hypothesis that their subjects counted
subvocally, they adduced results from an analysis of in-
terresponse intervals and other arguments. Still, this is a
somewhat indirect line of evidence. Because this is a key
point, we wanted to strengthen the case for the nonverbal
nature of the counting process used under their conditions.
To prevent our subjects’ use of subvocal articulation of count
words, we had them say out loud the word “the” coincident
with each press, while they pressed a key as fast as they could
to generate a target numerosity specified by a numeral.
Data from this condition contrasted with those from two
verbal counting conditions, where subjects explicitly
counted their presses. In these latter conditions, the coef-
ficient of variation declined as the inverse square root of
the target number (binomial variability).

We also extended the range of target numbers into the
so-called subitizing range to look for evidence of discon-
tinuity in variability around the transition from subitizing
to nonverbal counting. Many authors have argued that in this
range, numerosity is directly given by low-level percep-
tual mechanisms that yield discrete (as opposed to mag-
nitude) representatives of numerosity and that do not em-
ploy a serial counting process (e.g., Simon, 1999; Spelke,
2000). If the mental representatives of numerosities less
than or equal to 5 are discrete-valued variables rather than
real-valued magnitudes, then we should not observe scalar
variability in this range.

METHOD

Subjects

Eight adult volunteers (2 males, 6 females) from the University of
California, Los Angeles, participated in the “The” (nonverbal count-
ing) condition. Two subjects participated twice.! Six of these volun-
teers also participated in the full count and tens count (verbal count-
ing) conditions. One of these subjects participated twice in each of
these conditions.? (The distribution of subjects across conditions and
stimuli is summarized in Table 1.)

Apparatus

Stimulus presentation and response input were similar to those of
Whalen et al. (1999). A Macintosh G3 computer and Psyscope stim-
ulus presentation software were used to present the stimuli, A com-
puter joystick connected to a Psyscope Buttonbox recorded both re-
sponses and latencies.

Procedure

Each trial began with a “Ready?” message in the center of the com-
puter screen. After subjects pressed a button on the computer joy-
stick to start the trial, an Arabic numeral appeared on the screen, spec-
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Table 1
Distribution of Subjects Across Conditions and Presented Stimuli
Condition
Stimuli “The” Full Count Tens Count

(3,5, 8,13,20,32) $100 S100 S100
S101 $101 (excluded) $S101

(2,3,4,5,8,13,20,32) S102* S102* S102*
$103*
S106
S109

(7,9,11,13,15,17,19, 21, 23, 25) S102* S102* S102*
S103* $103 $103
S104 S104 S104
S105 $105 S105

*Denotes subjects participating in more than one session within a given condition.

ifying the target number of key presses for that trial. The range of
target stimuli tested varied somewhat across subjects (Table 1).
Subjects were told to press the left key on the joystick with their
preferred hand as fast as they could until they felt they had arrived
at the target number of key presses. In the “The” (nonverbal count-
ing) condition, subjects were instructed not to count their presses,
but instead to repeat the word “the” at every press. By contrast, in
the full count and tens count conditions, subjects were told to count
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their presses out loud. In the full count condition, they were told not
to count by tens and not to shorten the count words (e.g., say “twe-
four” for “twenty-four™). In the tens count condition, they were told
to count alond by tens (e.g., 1,2, ... 9,10, 1,2, ...).3 Subjects signaled
completion of a sequence of presses by pressing the right key once.

From each subject, we obtained 20 data points per target number.
The total number of trials per subject varied from 120 to 200, de-
pending on the number of targets they had. An experimental session,
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Figure 2. Mean number of key presses and the standard deviation in the distribu-
tion of presses as a function of target number for each subject in the “The” condition.
Note that different y-axis scales are used to depict the data for Snbjects 101, 102, 106,

and 109.
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Figure 3. Mean number of presses as a function of target number for each
subject in both verbal counting conditions (full count and tens count).

hawever, did not last more than 15 min. In order to ease performance
anxiety, subjects were told that responses were not expected to be
campletely accurate. To ensure compliance with instructions, the ex-
perimenter sat nearby, monitored performance, and audio-recorded
the sessions.

RESULTS

Audio recordings and experimenter observation verified
compliance with instructions by all subjects in both the
“The” and tens count conditions, and by 5 of the 6 subjects
in the full count condition. One subject was unable to syn-
chronize each count word with one and only one key press
and so data from this session were excluded from analyses.

In all three conditions, the mean number of key presses
increased in proportion to the target number, with a near one-
to-one correspondence in both verbal counting conditions
(Figures 2 and 3).4 The standard deviations of the response
distributions also increased with target number in all con-
ditions. This pattern was most evident in the “The” (nonver-
bal counting) condition, where distributions were notably
wider and more drastically dependent upon target number
than in the other two conditions (Figures 2 and 4). (Although
less apparent, regression analyses did reveal an increase in
variability with target number in every subject in the full
count and 5 of 6 subjects in the tens count experiment.)

Because the variability in the estimates of means and
standard deviations increases with target number, so does
the variability in their ratio. Thus, simple regression

analyses cannot be used to test hypotheses about the rela-
tion between this ratio and 7. Logarithmic transformation
equates variability in the estimated coefficient of varia-
tion, o,/7, at different values of n. Thus, to test hypothe-
ses about the relation between the coefficient of variation
and the mean, we plotted log(o) — log(#).? For the scalar
variability hypothesis (the nonverbal counting hypothe-
sis), the slope of this relation should be zero. For the bi-
nomial variability hypothesis (the verbal counting error
hypothesis), the slope should be —.5. [The hypothesis is that
o, = kn =5, Dividing through by 7 gives 6,/ n=kn =3 n-1=
kn -3, and so log(o,/ n) = log(k) — 0.5log(7).]

In the “The” condition, for 5 of the 8 subjects, the slope
of the plot did not differ significantly from zero (p > .05),
whereas for 7 of them, it differed significantly from —.5
(p <.05). The mean of these regression slopes (one slope
per subject, M = —0.06) did not differ significantly from
zero [t(7)=0.39, p > .05] but did differ significantly from
~5[t(7)=2.72, p <.05). These results are consistent with
the scalar variability hypothesis and inconsistent with the
hypothesis that verbal counting errors are the principal
source of variability in the “The” condition.

By contrast, for 3 of the 5 subjects in the full count con-
dition and 5 of the 6 subjects in the tens count condition,
the slope of the plot differed significantly from zero (p <
.05), although only 1 subject in each condition obtained a
slope differing from —.5 (p <.05). In addition, in the tens
count condition, the mean slope of the regression (—.69)
differed significantly from zero [¢(5) = 3.04, p <.05]. The
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Figure 4. The cumnlative normalized distributions of the nnmber of presses made
by 2 representative subjects (Subjects 102 and 103) for selected target numbers in the
“The” (nonverbal counting), full connt (verbal connting), and tens count (verbal

counting) conditions.

difference between the mean slope (—.51) and a zero value
also approached significance in the full count condition
[¢(4) =2.42, p= .07], suggesting that verbal counting did
not produce scalar variability. Neither mean slope, how-
ever, differed significantly from —.5 [#(5)=0.83 and #(4) =
0.05, p > .05, respectively], the value expected by the bi-
nomial variability hypothesis. Thus verbal counting and
nonverbal counting are distinguished by the manner in
which variability increases with the mean count: It in-
creases in accord with the binomial law in the first case
and in accord with the scalar law in the second. (The co-
efficients of variation are plotted against the mean num-
ber of presses in Figure 5.)

Graphs of mean interresponse times versus press num-
ber indicated a constant linear relationship with a slope
near zero in the “The” condition. For example, the amount of
time between the 4th and 5th key presses was the same as
that between the 16th and 17th key presses. There were no
observable patterns in the data to suggest the use of chunk-
ing strategies by the subjects. These low, flat interresponse
times were also observed in the tens count condition, but

they were not observed in the full count condition. As ex-
pected, given the requirement to count out loud as fast as
possible for values into the thirties and not “cheat” by drop-
ping the decade term, interresponse times in this condi-
tion increased at each decade boundary (Figure 6).

To address the subitizing questions, we examined data
from the “The” condition for evidence of a discontinuity
at the limits of the supposed subitizing process. A paired
compatisons f test revealed no significant difference be-
tween the regression slopes of the data for target numbers
in the subitizing range (2-5) and the slopes of the data for
targets beyond that range [¢(5) = 0.486, p > .05]. This re-
sult was also obtained using a more conservative subitiz-
ing range (2—4) as well as when the examination was con-
fined to data from those subjects presented with the full
range of targets, from 2 to 32. Thus our data are consistent
with the hypothesis of quantitative continuity between the
range in which subitizing is supposed to operate and the
range beyond that: Scalar variability is seen both within and
outside the putative subitizing range, and the coefficient of
variation is the same both within and outside that range.
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Figure 5. Coefficients of variation versus mean number of
presses on double-log coordinates for all three conditions. The
lines drawn through these group data have the mean slope and
mean intercepts of the population of slopes and intercepts ob-
tained from the subject-by-subject regressions.

DISCUSSION

Evidence for a Magnitude-Based Representation
of Remembered Number and a Nonverbal
Counting Mechanism

Our results give further evidence that adult humans
have access to a system of noisy magnitudes as a form of
nonverbal number representation, as first suggested by
Moyer and Landauer (1967), and that they have a nonver-
bal counting mechanism that generates magnitudes, as
first suggested by Meck and Church (1983). We believe that
requiring subjects to talk out loud while pressing at faster
than five presses per second a target number of times ef-
fectively precluded their using verbal counting, including
subvocal counting. Nonetheless, subjects in the “The”
condition were able to approximate the target number of key
presses.

The nature of the variability in their approximations re-
inforces the hypothesis that they were not verbally count-
ing. When subjects counted under conditions intended to
suppress verbal counting, the variability in the achieved num-
bers of presses was proportional to the mean for a given
target (scalar variability). By contrast, when the same sub-
jects counted verbally, the variability was proportional to
the square root of the mean number achieved for a given
target (binomial variability).

Experimenter observation, subject reports, and re-
sponse time data further reinforce the conclusion that the
verbal rehearsal of the word “the” coincident with each press
prevented subvocal connting. The results of an eatlier sim-
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ilar study by Logie and Baddeley (1987) are consistent
with this interpretation, They had subjects count a sequence
of fast aperiodic flashes while rapidly repeating “the” out
loud. This greatly reduced correct counting; subjects got
the correct count less than 50% of the time as the number
of flashes increased beyond 6 or 7. However, Logie and
Baddeley noted that the mean number that subjects re-
ported after a count was proportional to the true number.
Moreover, the average magnitude of the errors increased
in proportion to the target number (see Logie & Baddeley,
Figures 5 and 7). Logie and Baddeley did not consider the
possibility of a nonverbal counting process, but they rec-
ognized that their data were difficult to explain in terms of
subvocal counting using an articulatory loop. Our interpre-
tation is that under their conditions, subjects used a non-
verbal counting mechanism and that the variability in their
responses arose from a noisy mapping within memory be-
tween the nonverbal magnitude and the verbal symbols for
numerosity (the bidirectional mapping hypothesis, Whalen
etal., 1999).

Magnitudes are formally equivalent to the real numbers.
[t is because discrete, like continuous, quantities (Meck &
Church, 1983) are represented by magnitudes that we
argue the nonverbal real numbers are the foundation of nu-
merical representations (Gallistel & Gelman, 1992, 2000,
Gallistel, Gelman, & Cordes, in press). This hypothesis
counters a widely held assumption: Numerical represen-
tations are based on the integers and that the problem for
development and learning is to construct the real numbers
from them (Carey, 1998, 2001; Hauser & Carey, 1998,
Leslie, Xu, Tremoulet, & Scholl, 1998; Spelke, 2000).

Scalar variability is inconsistent with models that posit
a mental representation of numerosity lacking the proper-
ties of the system of magnitudes (real numbers). Propor-
tions cannot be defined in symbolic systems with only or-
dinal or weaker properties. Thus, any model in which the
mental representation of numerosity lacks numerical
structure altogether or has only ordinal structure (more/
less) cannot explain why numerosities separated from tar-
get numerosities by a fixed proportion are equally likely
to be confounded with (or given in place of) the target nu-
merosities. That is why scalar variability is such a theo-
retically important empirical property.

Our results extend the earlier results of Whalen et al.
(1999) in another theoretically important direction by
showing quantitative continuity between the so-called
subitizing range and a range of numbers that, by general
agreement, lie beyond the reach of any subitizing mecha-
nism so far hypothesized. The subitizing range is the range
within which many researchers have hypothesized a direct
perception of numerosity. This perception is assumed to
yield a discrete symbolization of numerosity rather than
an analog symbolization by mental magnitudes (Mandler
& Shebo, 1982; Trick & Pylyshyn, 1994). 1t is also gener-
ally assumed that these numerical percepts (“twoness,”
“threeness”) are not generated by any form of counting, ver-
bal or nonverbal (Butterworth, 1999; Starkey & Cooper,
1995). On this hypothesis, it is unclear why the represen-
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tation of the numbers between 2 and 5 should exhibit
scalar variability. Indeed, a lack of variability is often
taken to be a signature of this mechanism (Carey, 2001;
Spelke, 2000). It is even less clear why the constant of pro-
portionality relating the variability to the mean should be
the same for numbers inside and outside the subitizing
range. (For more on this topic, see Gelman, 1993; Gelman
& Cordes, 2001; Gelman & Meck, 1992.)

In our task, a numeral indicated a target numerosity and
subjects tried to produce a correspondingly numerous se-
quence of responses. The behavior-controlling represen-
tation of numerosity may have different properties when
sets are small, presented simultaneously, and with differ-
ent task demands, which is usually the case where subitiz-
ing has been posited (e.g., see Trick & Pylyshyn, 1994). We
do not think, however, that data from numerosity-naming
reaction time studies and symbolic distance and size stud-
ies support such a hypothesis. Rather, they suggest a com-
mon mode of representation throughout the single-digit
range (see Balakrishnan & Ashby, 1992; Moyer & Landauer,
1967). In short, several lines of evidence favor the view
that, at least in adults, numerosities of all sizes are repre-
sented by mental magnitudes, whether those magnitudes

are evoked by number words, numerals, sequentially oc-
curring events, or simultaneously presented sets.

The Quantitative Relation Between Symbolic
Numerosity and the Mental Magnitudes

Our task requires the comparison of a magnitude sum-
moned from memory by a numeral (Process 1) and a magni-
tude generated, we suppose, by a nonverbal counting process
(Process 2). For the number of presses made to approximate
the number signified by the numeral, both processes must
yield roughly similar magnitudes for similar numerosities—
and they do, as Figure 2 shows, However, a close look at
the plots shows interesting systematic departures from the
expected relation, In particular, some subjects show a ten-
dency to make an ever-increasing excess of presses over
the number signified by the numerals (e.g., Subjects 102
and 109). This could be scalar memory error, which is well
documented in the psychophysics of duration memory (Gib-
bon, Church, & Meck, 1984). However, it is also possible
that there is a systematic distortion in Process 1 that is not
present in Process 2. It is conceivable that the mapping be-
tween the objective dimension along which numerals are
appropriately arrayed (the objective number line) and the




100
50

S100

<

A
2z

v
-

2O
20}
10}

5 best fit lin

-

VARIABILITY SIGNATURES 705

100

Mean Number of Presses

100

i

10 20

50 100 2 5

10 20

Target Number

Figure 7. Mean number of key presses for each snbject in the “The” (non-
verbal counting) condition as a function of target number on double loga-
rithmic coordinates. While most subjects produced data with slopes not sig-
nificantly different from one, the data from 2 subjects (Subjects 102 and 109)
are best fit by lines whose slopes are significantly greater than 1.

mental continuum that gives their numerical meaning (the
subjective number line) obeys the power law that Stevens
and his colleagues argued was characteristic of the map-
pings between objective stimulus dimensions and their
mental counterparts (Stevens, 1956; Stevens & Harris,
1962).

The linear—linear plots in Figure 2 are not well suited to
reveal subtle departures from linearity because the ran-
dom (unsystematic) scatter in the means increases as the
target number increases. Log—log plots are more likely to
reveal subtle departures from linearity because they equate
scatter about the regression line. Moreover, if the relation
between the dimension of the numerals and the mental
magnitudes generated by nonverbal counting is a power
relation (the Stevens hypothesis), then log—log plots of the
data will yield straight lines, with slopes equal to the power.

A scalar function is a power function with exponent 1.
Thus, if the magnitudes that numerals summon from
memory are proportional to the magnitudes generated by
nonverbal counting, then the slopes of these log-log re-
gression lines will not deviate significantly from 1. If the
magnitudes summoned from memory are logarithmically

compressed (Process 1 logarithmically compressed), but
successive increments in nonverbal counting are equal
(Process 2 linear), then this plot will not be straight, but
will be downwardly accelerated.

The log-log plots of the mean number of key presses
for each subject in the “The” condition are shown in Fig-
ure 7. In the majority of cases, they are well approximated
by straight lines, and there are no trends discernible in the
residuals. In no case does one see the strong downward
curvature to be expected on the logarithmic compression
hypothesis. For 2 subjects (Subjects 102 and 109), how-
ever, the slopes are slightly but very significantly greater
than 1, consistent with the Stevens hypothesis.

Like scalar variability, the power-law departures from
linearity in our data extend into the subitizing range—
another example of quantitative continuity. Like the con-
tinuity in measured variability, this continuity is not conso-
nant with the hypothesis that small numbers are represented
in a fundamentally different way than larger numbers—
by discrete symbols rather than by mental magnitudes. It
would also seem to be strong evidence that these subjects,
at least, were not counting subvocally. If they were, their
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mean count would not show a systematic nonlinear (ac-
celerating) increase as the target value increased.

Our finding of power relations with non-unity expo-
nents in some subjects suggests a generalization of the
parameter-learning hypothesis of Joram, Subrahmanyam,
and Gelman (1998). They argued that learning to think
with conventional measures of, for example, length re-
quires learning the scale factor relating the numbers gen-
erated by measurement to the mental magnitudes represent-
ing values on the measured dimension. On this parameter-
learning hypothesis, the numbers generated by measuring
constitute the x-axis of a mental graph (the arguments of
a mental function); the mental magnitudes that represent
the corresponding lengths constitute the y-axis (the range
of the mental function); and the function is scalar (it has
the form y = kx), with k being the parameter that must be
learned. This hypothesis assumes that the conventional
symbols are themselves represented mentally at equally
spaced locations along a mental continuum. If, in accord
with the generalized Stevens hypothesis, the template for
mappings between mental continua is a power function,
y=kxP, then the construction of the bidirectional mapping
between conventional symbols for numerosity and the
mental magnitudes generated by nonverbal counting re-
quires the learning of two parameters. We suggest that
subjects learn to obtain from numerals and other conven-
tional symbols for numerosity approximately appropriate
mental magnitudes by learning the values of the two pa-
rameters (k and p) that specify the requisite power func-
tion. Our results suggest that there are small but measur-
able differences in the parameters that adult subjects learn.
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NOTES

1. Since subject data obtained during the different nonverbal counting
sessions did not differ significantly [¢(14)=0.404,¢(14)=1.18,p>.05],
data from both sessions were combined for each of these subjects (Sub-
jects 102 and 103, respectively).

2. Again, the data from both sessions within each condition for Sub-
ject 102 were combined since they did not differ significantly [¢(14) =
1.37, t(14) = 0.87, p > .05 for the full count and tens count conditions,
respectively].

3. This condition was included since most subjects in the full count
condition found it difficult to count rapidly using “teens” and “twenties”
words. It is an interesting question, how subjects retain the tens count
when using this strategy. We speculate that they retain it as a nonverbal
magnitude.

4. In cases where the joystick button incorrectly registered two presses
for one (which resulted in presses much closer together than humanly
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possible), the computer program was unable to keep up and registered an
illegal press, indicated by a negative interresponse time. These button
presses, clearly segregated from real presses by the interresponse time,
were excluded from response time analyses. Infrequently, this occurred
on the initial key press of a trial. In that case, the target number would
flash on the screen too quickly to be seen by the subject. When that hap-
pened, the trial was ended immediately and these data points were ex-
cluded from analyses. In addition, outlier data points, ones more than
three standard deviations away from the mean, were excluded from
analyses.

5. For purposes of analyses in the logarithmic domain, zero values were
excluded because the logarithm of x tends to minus infinity as x tends to
zZero.

6. Two sessions resulted in data that were not well fit by a straight line on
a log-log plot; a small downward curvature was noted in both graphs. These
data are, however, better fit by a power function than by a log function.
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