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In Bayesian Rationality (Oxford, 2007) M. Oaksford and N. Chater argue that rationality involves the ability to reason correctly about 
uncertainty, and that “cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather 
than logical, inference problems.” (BBS 2009, p. 69)  While I agree with the first point, and would like the second to be true, both 
ideas leave open the question of how probabilistic judgments and reasoning should be modeled.  One issue, in particular, concerns 
whether to model beliefs, inferences, and information processing using “sharp” probabilities, thereby portraying agents as having a 
single subjective probability function, or whether to employ “imprecise” probabilistic models that use structured sets of probability 
functions to represent uncertainty?  Many philosophers have championed imprecise probabilities as the right response to incomplete or 
ambiguous evidence, and some psychologists (e.g., N. Pfeifer and G. D. Kleiter) have suggested that imprecise models might serve 
better than sharp probabilities as “normative reference systems” that can be used to explain human cognition.  I will sympathetically 
assess the normative prospects for one version of the theory of imprecise probabilities, arguing that it does a better job than “sharp” 
theories do at reflecting incomplete or ambiguous evidence.  Moreover, since the imprecise view has the capacity to express far more 
types of attitudes and judgments than can be encoded in sharp probabilities; it allows us more freedom in representing mental states. 
This is both a benefit and a pitfall.  Imprecise probabilities offer us more nuanced ways of representing beliefs, but also more nuanced 
ways of misrepresenting them.  I will discuss cases of each type and draw some tentative morals. 



BASIC IDEAS OF BAYESIAN EPISTEMOLOGY 
 

• Believing is not an all-or-nothing matter.  Opinions come in varying gradations of 
strength ranging from full certainty of truth to complete certainty of falsehood. 

• Gradational belief is governed by the laws of probability, which codify the minimum 
standards of consistency (or “coherence”) to which rational opinions must confirm. 

• Learning involves Bayesian conditioning:  a person who acquires data D should 
modify her opinions in such a way that her “posterior” views about the relative odds of 
events consistent with D agree with her “prior” views about these relative odds. 

• Gradational beliefs are often revealed in decisions.  Rational agents choose options that 
they estimate will produce desirable outcomes, and these (gradational) estimates are a 
function of their (gradational) beliefs. 

 
You should (determinately) prefer OX to OY if and only if you are more confident of X than of Y.   
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RATIONALITY AND “RATIONAL ANALYSIS” 

Bayesianism is a normative theory.  The relationship between normative and descriptive 
theories is complicated, but one option is the rational analysis model of Anderson (1990) 
or Oaksford & Chater (2007), which seeks to understand cognitive systems by portraying 
them as producing behavior that is largely rational given the agent’s evidence and goals. 
  

  Rationality Principle (Anderson, 1990).  The cognitive system optimizes the adaptation of the 
 behavior of the organism.  (Compare Davidsonian “interpretivism” about mental states.) 

1. Precisely specify what the goals of the cognitive system are.  
2. Develop a formal model of the environment that the system is adapted to.  
3. Make the minimal assumptions about computational costs.  
4. Derive the optimal behavioral function given 1-3.  (THEORY OF RATIONALITY USED HERE.) 
5. Examine the empirical literatures to see if the predictions of the behavioral function are confirmed.  

 

• Rational analysis is not a theory of cognitive mechanisms. 

• It is, rather, a theory of those general features of thought and behavior that obtain 
irrespective of the details of the underlying cognitive processes.   

 

Key Question:  What theory of rationality should we employ in “rational analysis”? 
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  AN ANSWER (Oaksford & Chater, 2007 & 2009):  BAYESIAN!   

 
“Everyday thought involves astonishingly rich and subtle probabilistic reasoning – but 
probabilistic reasoning that is primarily qualitative rather than numerical” (2009, p. 69) 
 

Note:  Commitment to a using a Bayesian account of rationality does not require one to think 
that mistakes in probabilistic reasoning are either rare or unsystematic. 

 
 
Even if we grant that Bayesian accounts of rationality are well-suited to the purposes of 
modeling and explaining human thought and behavior, there remains the question of 
which version of Bayesianism provides the best account of rationality for purposes of 
“rational analysis”. 

• I. J. Good once wrote a paper claiming that there are (at least) 24⋅36⋅4 = 46656 kinds of Bayesians! 
 

Concern Today:  Is a “precise” or “imprecise” version of Bayesianism better for 
modeling and explaining human thought and action?
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 “PRECISE” BAYESIANISM  

 

• Graded beliefs come in sharp numerical degrees: in any context, we can think of an 
agent’s epistemic state as given by a single credence function c that assigns a degree 
of belief c(X) ∈ [0, 1] to each proposition X (in some Boolean algebra). 

Note: “Objective” and “subjective” Bayesians differ about whether credence functions reflect 
objective constraints on beliefs or (also) matters of personal opinion. 

• Rational credences are additive:  c(X v Y) = c(X) + c(Y) when X and Y are contraries.  

• Learning is governed by Bayes’ Theorem:  a person who acquires data D should 
modify her opinions so that she believes each proposition X to degree 

c*(X) = c(X)⋅[c(D | X) / c(D)] 
where c(D | X) = c(D & X) / c(X) is the prior conditional probability of D given X. 

• Rational decision making is a matter of choosing options that maximize expected 
utility computed relative to one’s credences. 



PROBLEMS WITH PRECISE BAYESIANISM 
• It is psychologically unrealistic to suppose that people have attitudes that are precise 

enough to be represented by real numbers.   What could c(X) = 1/π2 mean? 

• It misrepresents decision making, e.g., Ellsberg’s paradox, ambiguity aversion. 

• Since evidence is often incomplete, imprecise or equivocal, the rational response is 
often to have beliefs that are incomplete, imprecise or equivocal. 

 
A black/white coin is chosen randomly from an urn containing coins of every possible bias ¼ < β < ¾.  
You have no information about the proportions with which coins of various biases appear in the urn. 

      How confident should you be that the coin comes up black when next tossed? 

 “Objective” Precise Bayesian:  c(B) = ½ because this choice uniquely minimizes the amount 
of extra information one needs to add to get a sharp degree of belief. 

 “Subjective” Precise Bayesian:  Any c(B) between ¼ and ¾ can be coherently held.   
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 “Imprecise” Bayesian:  It is determinate that ¼ < c(B) < ¾, but c(B) lacks a determinate 
value because the evidence does not discriminate among values c(B) = p with ¼ < p < ¾. 
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  IMPRECISE BAYESIANISM  
 
• IMPRECISION.  Graded beliefs do not come in sharp degrees.  A person’s credal state  is best 

represented by a set C of credence functions. 
 
• COHERENCE.  For a rational agent, C can be identified with a set of probability functions. 
 
• CONDITIONING.  If a person with credal state C learns that some proposition D is certainly 

true, then her post-learning credal state will be CD = {c(• | D) : c ∈ C with c(D) > 0}. 
 
• COMPLETENESS.  If my credal state is C and yours is C*, then we have the same total system 

of beliefs if and only if C = C*. 
 
• SUPERVALUATION.  If some claim about probabilities ϕ(c) holds for every c ∈ C, then ϕ is a 

determinate truth about what the person believes. 
 

 
Important qualifications:  imprecise ≠ vague and imprecise ≠ unknown. 



ILLUSTRATION:  THE FOUR URNS 

It’s natural to think that a rational person’s beliefs “reflect her evidence,” but beliefs 
reflect evidence in a variety of ways, not all of which are captured by sharp probabilities. 

Imagine that coin drawn from the following urns will be tossed. 

  
 

 Popper’s Objection:  Bayesianism treats all four cases as identical by assigning 
C(Heads) = ½, but these are entirely different evidential situations. 

 

    Jeffrey’s Reply:  same credence ≠ same epistemic state. 
• The Urn1 and Urn2 probabilities are resilient.  They remain fixed (exactly for Urn1, roughly 

for Urn2) given future evidence: c(Heads | 24H, 1T) = ½ and c(Heads | 24H, 1T) ≈ 0.50023. 
• The Urn3 probabilities are unstable in the face of evidence: c(Heads | 24H, 1T) = 0.880. 
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What about Urn4?  What value should we assign c(Heads | 24H, 1T)? 
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TWO COMMON ANSWERS 

Objective Bayesian:  Urn4 and Urn3 are equivalent.  c(Heads | Data) exists and equals 
c(Heads | Data) for all data. 

• Key Claim:  In both cases, no evidence distinguishes any one bias from any other.  Principles 
of sound epistemology (Insufficient Reason, MaxEnt) require that we treat symmetrical cases 
symmetrically by assigning them the same probability. 

The choice of c(Heads | data) = c(Heads | Data) is often justified by appeal to the requirement that the 
prior probability c should encode the minimum amount of information consistent with the evidence, so 
that c(β = 0.i) = pi maximizes Entropy(pi) =  – ∑i pi⋅ln(pi). 

Problem(s):  ‘‘Apart from evolving a vitally important piece of knowledge, that of the exact 
form of the distribution, out of an assumption of complete ignorance, it is not even a unique 
solution.’’  R.A. Fisher, 1922, pp. 324-325. 

 
Subjective Bayesian:  Urn4 and Urn3 are not equivalent.  c(Heads | Data) exists but it can 
consistently have any value in [0, 1], whatever the value of c(Heads | Data). 

• Key Claim:  A rational agent can have any probabilistically coherent set of credences over the 
possible biases.  So, any credence for heads in light of data can be rationally entertained. 

• Problem:  The choice of one sharp probability over any other seems arbitrary.  In particular, in 
the face of symmetrical evidence there is no more reason to choose a prior with c(β = 0.i) = pi 
than the symmetrical prior with c(β = 1 – 0.i) = pi. 
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A THIRD WAY 

“The problem is not that Bayesians have yet to discover the truly noninformative priors, 
but rather that no precise probability distribution can adequately represent ignorance.”  
(P. Walley, Statistical Reasoning with Imprecise Probabilities, 1991) 

 
Imprecise Bayesian:  Urn4 and Urn3 are not equivalent.  c(Heads | Data) does not exist!  
Instead modeling our beliefs about possible biases using a single credence function, we 
should use a set of credence functions that best reflects our state of uncertainty. 

• Objective Imprecise:  There is a single imprecise credal state that is appropriate for 
any given body of evidence.  For symmetric evidence this state is symmetric. 

• Subjective Imprecise:  There are often many sets of credence functions consistent 
with the data, and a believer is free to adopt any of these sets as her credal state. 

Judgments in light of evidence are seen as imposing (typically qualitative) “constraints” on credal 
states.  

X is more likely that Y   c(X) > c(Y) for all c ∈ C 
X is at least twice as likely as not  c(X) > 2/3 for all c ∈ C 
X is pretty likely    c(X) > t for all c ∈ C   (threshold t contextually determined) 
X and Y are independent   c(X & Y) = c(X)⋅c(Y) for all c ∈ C 
X and Y are (+, –) correlated  c(X & Y) >,< c(X)⋅c(Y) for all c ∈ C 
X has a binomial distribution  c(Xn & ~Xm | θ) = θn⋅(1 – θ)m for all c ∈ C 
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SOME USEFUL DOXASTIC ATTITUDES THAT CAN BE  
REPRESENTED USING IMPRECISE PROBABILITIES 

• Independence/Relevance:  One can see X and Y as independent even when one lacks 
probabilities for X, Y, X & Y or X given Y. 

Example:  X = “St. Kilda will win the Australian Football League Grand Final in 2015.”   
Y = “India and Pakistan will go to war sometime between 2025 and 2050.”   

Note:  This attitude has no “definition” in terms of betting behavior, i.e., there is no pattern of 
preferences that is a perfect indicator of a bare independence judgment. 

That’s OK:  Bayesianism should jettison its operationist past!  Sometimes we must rely on 
indirect evidence and partial tests in belief attribution. 

o If y ≈ [1 if Y, 0 if ~Y], then c(X & Y) = c(X)⋅c(Y) is determinate when [1 if X & Y, 0 if X & ~Y, y if ~X] ≈ 
[1 if ~X & Y, 0 if ~X & ~Y, y if X]. 

o If [1 if X & Y, 0 if X & ~Y, y if ~X] > [1 if ~X & Y, 0 if ~X & ~Y, y if X] for all y ∈ [0, 1], then X and Y are 
not independent (and Y is positively relevant to X). 

 

• Unknown Interaction:  One can be clueless about the dependence between X and Y, in 
which case C contains all functions with c(Y | X) = y and c(Y | ~X) = y* for y, y* ∈ [0, 1]. 

Example:  X = “A cricket team from Hyderabad will win the The Irani Trophy in 
2015.”  Y = “A Hyderabad cricket team will win the Ranji Trophy in 2015.”    
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• Equiprobability:   One can judge that X and Y are determinately equally likely even 
though one lacks sharp probabilities for both. 

• Dominance:   One can judge that X is determinately more likely than Y even though 
one lacks sharp probabilities for both. 

Example:  I have no idea how easy it is to gain admission to State U., but I know State 
cares only about high-school GPA and athletic ability.  I know Jane has better grades and 
is better at sports than Joe.  I don’t know how likely either is to get in, but I know that 
Jane is more likely to get in than Joe. 

 

• Complementarity:   One can judge that X is as likely given Z as ~X is given ~Z even 
though one lacks a sharp probability for X. 

Example:  Jekyll and Hyde never show up at the same party, but one of them always 
comes to any party to which Jekyll has been invited.  I have no idea whether Jekyll was 
invited to tonight’s party.  But, I know that Hyde is exactly as likely to attend given that 
Jekyll drank the potion as Jekyll is to attend if he did not drink the potion. 

 



APPLICATION:  PROBABILISTIC MODUS PONENS 

Oaksford and Chater argue that simple inferences involving conditionals are best 
understood probabilistically. 
 
 

MP If p then q and p.  Thus, q.     VALID 

c0(q | p) = x and c1(p) = 1.  Therefore, c1(q) = x. 
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APPLICATION:  PROBABILISTIC MODUS PONENS 

Oaksford and Chater argue that simple inferences involving conditionals are best 
understood probabilistically. 
 
 
       MP If p then q and p.  Thus, q.     VALID 

c0(q | p) = x and c1(p) = 1.  Therefore, c1(q) = x. 
 
So, reasoning by MP is effectively equivalent to Bayesian conditioning on the antecedent. 
 

14 | 
 



APPLICATION:  PROBABILISTIC MODUS PONENS 

Oaksford and Chater argue that simple inferences involving conditionals are best 
understood probabilistically. 
 
 
       MP If p then q and p.  Thus, q.     VALID 

c0(q | p) = x and c1(p) = 1.  Therefore, c1(q) = x. 
 
Note:   The results of the inference do not depend on prior probability of p.  

15 | 
 



APPLICATION:  PROBABILISTIC MODUS PONENS 

Oaksford and Chater argue that simple inferences involving conditionals are best 
understood probabilistically. 
 
 
       MP If p then q and p.  Thus, q.     VALID 

c0(q | p) = x and c1(p) = 1.  Therefore, c1(q) = x. 
 
Note:   The results of the inference do not depend on prior probability of p  

    or on the probability of q or the probability of q given ~p.  
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APPLICATION:  PROBABILISTIC MODUS PONENS 

Oaksford and Chater argue that simple inferences involving conditionals are best 
understood probabilistically. 
 
 
       MP If p then q and p.  Thus, q.     VALID 

c0(q | p) = x and c1(p) = 1.  Therefore, c1(q) = x. 
 

Note:   The results of the inference do not depend on prior probability of p  
    or on the probability of q or the probability of q given ~p.  

 

• Agents drawing MP inferences are portrayed as probabilistically reasonable. 
 
• Rigidity.  It is assumed that one learns the unconditional premise at t = 1 in a way 

that does not undermine the conditional premise known at t = 0.  (If Bond tries to 
kill me, I’ll never know.  Bond tries to kill me.  So, I’ll never know.)  

 

Problem (?).  This suffers from the requirement that the categorical premise is learned 
with certainty. 
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APPLICATION:  PROBABILISTIC AFFIRMING THE CONSEQUENT 

       AC If p then q and q.  Thus, p.    INVAID, OFTEN PLAUSIBLE 

c0(q | p) = x, c1(q) = 1.  Thus, c1(p) = x·y/z, on the assumption that c0(q) = z and 
c0(p) = y are both known. 

 
Again, subjects drawing AC inferences are portrayed as probabilistically reasonable, 
though when the subject has no priors for p and q, the inference is unreasonable. 
 

General Principle (MP, AC, MT, DA):  As result of the inference, the subject 
assigns a conditional probably to the conclusion given the categorical premise. 

This assumes (a) rigidity holds (often a problem for MT inferences), and (b) the subject has 
sufficient additional knowledge to determine the relevant conditional probability given the 
information in the premises (needed for all but MP).  

 

Two problems: 

• This suffers from the requirement that the condition is learned with certainty. 
• AC only applies when the agent has determinate priors for p and q. 



PRECISE OR IMPRECISE MP? 

O & C note that combining c0(q | p) = x and c1(p) = y in MP bounds q’s probability (via 
Jeffrey conditioning):   x·y ≤ c1(q) ≤ x·y + (1 – y). 

             
This can be interpreted as either: 
 

Precise MP.  The conclusion is c1(q) = z for some definite z ∈ [x·y, x·y + (1 – y)]. 
Here, those who draw MP inferences are portrayed as supplementing the premises with 
prior beliefs in the form of a sharp probability for c0(q | ~p).  

 
Imprecise MP.  The conclusion has the form c1(q) ∈ [x·y, x·y + (1 – y)]. 

Here, those who draw MP inferences are portrayed as concluding only what can be 
deduced from the premises, without bringing in information about c0(q | ~p). 
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O & C seem inclined toward Precise MP. 
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AN ALTERNATIVE:  PFEIFER AND KLEITER ON “MENTAL PROBABILITY LOGIC” 

Pfeifer and Kleiter (2007):  “If a person is uncertain, probability logic supposes that 
human subjects make coherent imprecise probabilistic assessments.” 

P & K think of this reasoning as a matter of deducing probability intervals from premises. 
 

Imprecise MP (and AC, DA, MT) are portrayed as (often) involving deductive inferences 
from probabilistic premises, which may be imprecise, to conclusions of the form “the 
probability of event E is no less than lE and no greater than uE.”  

 

Uncertainty explicitly represented by probability intervals.
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OAKSFORD AND CHATER ON A “FUNDAMENTAL COMPUTATIONAL BIAS” 

Response to criticism by P & K that suggests that people do reason about imprecise 
probabilities, O & C invoke a “fundamental computational bias” (Stanovich & West, 2000) 
 

FCB:  People automatically import prior beliefs into inferences, and cannot avoid 
doing so even when they try. 

Logic Teachers’ Lament.  If Jim runs three miles every day for a month then he will look 
like a fit 20-year-old.  Jim will run three miles every day for a month.  So, Jim will look 
like a fit 20-year-old. 

 
O & C conclude (2009, p. 109):  “It is unlikely that people reason deductively about 
probability intervals.”   

Quite an inferential leap! 
 
A Charitable Reading:  People tend to draw probabilistic inferences only when their 
background beliefs, when conjoined with the premises, permit them to assign fairly 
precise probabilities to the conclusion. 



AN ILLUSTRATIVE EXPERIMENT (P & K, 2007) 

Subjects were posed this inference problem: 
 
 
 
 
 

Subjects could choose to answer either 
 Exactly ___% of the cars are two-door cars. 
 At least ___% and at most ___% of the cars are two-door cars. 

 

Some findings, which remained fairly consistent when the probabilities were varied (but 
small sample, n = 15, and an easy problem ): 

• About 2/3 of subjects preferred to state an interval. 
• Almost everybody stated a lower bound (or point value) above 0.72, and about 2/3 

stated an upper bound below 0.82. 
 

It’s hard to know what to make of this, but it does seem that some people think in terms 
of imprecise probabilities when evidence is insufficient to warrant precise assignments. 
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    80% of the red cars on the lot are two door-cars.  c(2-door | Red) = 0.8 
    90% of the cars on the lot are red cars.    c(Red) = 0.9 
    How many cars are two-door cars?     –––––––––––––––––– 
           c(2-door) ∈ [0.72 , 0.82] 
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MIDDLE GROUND? 

The FCB is undeniable, but it is also true that we almost never think or act like precise 
Bayesians (except, perhaps, in casino’s). 
 

Objective Bayesian Insight.  Evidence often imposes direct constraints on credal states. 
E.g., symmetry requirements:  c ∈ C, then c(•) = c(~X)·c(• | X) + c(X)·c(• | ~X) ∈ C. 

It is irrational to have a creedal states that violates these objective constraints, but 
they are typically far from sufficient to pick out a unique credence function (and 
appeals to MaxEnt or Insufficient Reason principles are illegitimate). 

 

Subjective Bayesian Insight.  People typically, and legitimately, augment the data they 
receive with subjective background beliefs, which further restricts their credal states. 

 
Subjective beliefs are especially important in determining inductive policies.  
But, they are usually far from sufficient to pick out a unique credence function.    
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 EXAMPLE:  TOTAL IGNORANCE AND LEARNING FROM EXPERIENCE 

We know only that a coin might have a bias β toward heads strictly between ¼ or ¾, and 
that coin tossing coin is an IID process. 

• Objective constraints: 

Symmetry.  For each c ∈ C with c(β = 1/4) = p, there is c*∈ C with c*(β = 1/4) = 1 – p. 
Note: This is weaker than asking each c ∈ C to be symmetric, which would require C to be 
the singleton of c(β = 1/4) = 1/2.  Analogy:  the impartial judge vs. the impartial committee. 

Binomial Likelihood.   For all c ∈ C, c(〈h, t〉 | β) = (h+t
 h) βh·(1 – β)t where 〈h, t〉 is the 

event of getting a sequence of h heads and t tails (in any order).   

Based only on these constraints, we might hope to model our uncertainty by letting C 
contain all probability functions that assign a positive probability to each possibility: 

C = {c(•): 0 < c(β = 1/4) < 1} 
 
This choice ignores a deeply held inductive tendency that I suspect all of us have. 
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ADDING DATA 

We toss the coin 500 times and observe 385 heads.  

• In general, 
   c(β = 1/4)⋅3t 

     c(β = 1/4 | 〈h, t〉) = –––––––––––––––––––––– 
 c(β = 1/4)⋅3t + c(β = 3/4)⋅3h 

 

• We seem to have overwhelming evidence for β = 3/4. 

Even if we start with c(β = 3/4) as small as one in a quadrillion, the value of c(β = 3/4) given this 
data will be 0.999…..9 with the ‘9’s extending past 100th decimal place! 

This concentration of probability will be even more extreme if we start with a larger c(β = 3/4). 
 

So, we should expect a great deal of inductive learning to take place here. 



TOTAL IGNORANCE PRECLUDES LEARNING FROM EXPERIENCE! 
 
  FACT:  If C = {c(•) : 0 < c(β = 1/4) < 1}, then C〈h, t〉 = {c(• | 〈h, t〉): c ∈C } is identical to C. 

Pf:   For any p ∈ (0, 1) if we assume the prior is c(β = 1/4) = p⋅3h / (p⋅3h + (1 – p)⋅3t), 
then the posterior is c(β = 1/4 | 〈h, t〉) = p. 
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Prior Probability 



TOTAL IGNORANCE PRECLUDES LEARNING FROM EXPERIENCE! 
 
  FACT:  If C = {c(•) : 0 < c(β = 1/4) < 1}, then C〈h, t〉 = {c(• | 〈h, t〉): c ∈C } is identical to C. 

Pf:   For any p ∈ (0, 1) if we assume the prior is c(β = 1/4) = p⋅3h / (p⋅3h + (1 – p)⋅3t), 
then the posterior is c(β = 1/4 | 〈h, t〉) = p. 
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Prior Probability + Data  



TOTAL IGNORANCE PRECLUDES LEARNING FROM EXPERIENCE! 
 
  FACT:  If C = {c(•) : 0 < c(β = 1/4) < 1}, then C〈h, t〉 = {c(• | 〈h, t〉): c ∈C } is identical to C. 

Pf:   For any p ∈ (0, 1) if we assume the prior is c(β = 1/4) = p⋅3h / (p⋅3h + (1 – p)⋅3t), 
then the posterior is c(β = 1/4 | 〈h, t〉) = p. 

 
       Prior Probability + Data = Posterior 
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       Inductive Learning? 



TOTAL IGNORANCE PRECLUDES LEARNING FROM EXPERIENCE! 
 
  FACT:  If C = {c(•) : 0 < c(β = 1/4) < 1}, then C〈h, t〉 = {c(• | 〈h, t〉): c ∈C } is identical to C. 

Pf:   For any p ∈ (0, 1) if we assume the prior is c(β = 1/4) = p⋅3h / (p⋅3h + (1 – p)⋅3t), 
then the posterior is c(β = 1/4 | 〈h, t〉) = p. 

 
More Extreme Prior + Data  =  Prior Probability + Data  =  Posterior 

 

So, nothing is learned even in the simple case of IID coin tossing. 
This looks terrible for the imprecise view!   But is it really? 
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TWO WAYS TO THINK ABOUT LEARNING FROM EXPERIENCE 
 
1.  There is a sense in which inductive learning does occur.  From the perspective of the 

 imprecise prior all of the following are determinately true: 

• 385 heads and 115 tails is strong evidence for β = 3/4.  As measured, e.g., by a 
likelihood ratio of 3270. 

• The probability of β = 3/4 increases as a result of conditioning on the data, albeit not 
by any determinate amount.  (For each c ∈ C, the probability of β = 3/4 increases by a 
factor of (c(β = 1/4)⋅3–270 + c(β = 3/4))-1 > 1.) 

• The distributions become more concentrated around the probability of heads (the 
variance shrinks, though not by any determinate amount). 

• There is convergence of opinion, of a sort.  Given any c, d ∈ C, if we let ||c – d|| = 
(c(β = 1/4) – d(β = 1/4))2 + (c(β = 3/4) – d(β = 3/4))2 measure the distance between c and d, then 
||c – d|| > ||c〈h, t〉 – d〈h, t〉||.  

 
All great stuff, but… 
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2.  In another sense, we learn nothing.  If we have no reason to exclude any prior over 
{β = ¼, β = ¾}, then we have no reason to exclude any posterior either. 

The argument from “the prior c(β = 1/4) = p⋅3h / (p⋅3h + (1 – p)⋅3t) is consistent with the old data” 
to “the posterior c(β = 1/4 | 〈h, t〉) = p is consistent with the new data” seems unassailable. 

 
So, when we consider things from a third-person standpoint, rather than from the 
perspective of the prior, we are in no better epistemic position with respect to the 
coin’s bias than we were before. 

 

Both 1 and 2 say something true about our evidential situation, but each leaves something 
important out.  Analogy:  The Hilbert Hotel with angry guests. 
 

• It’s hard to be happy with this situation.  While we can say up front that the data has all 
the right evidential properties, acquiring this data it has no affect at all on our beliefs 
because we started out from such an extreme position. 

• The problem is that C contains probabilities that misrepresent central aspects of our 
doxastic situation. 
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A FRUITFUL WAY TO THINK 

We can write each c ∈ C as a beta distribution 

                βs⋅m  – 1⋅(1 – β)s⋅(1 – m) – 1  
   c(β) =  –––––––––––––––––––––––––––––––––––––   

     βs⋅m – 1⋅(1 – β)s⋅(1 – m) – 1  +  β s⋅(1 – m) – 1⋅(1 – β)s⋅m – 1 
 

where m = c(heads) and s = logB(m
 
–

 
β/1 – β – m)⋅(2m – 1)–1 for B = 1 – β/β. 

• This assumes that m ≠ ½.  When m = ½, s is determined by taking a limit  

• In our example, c(β = 1/4) = (1 + 3 s⋅(2⋅m – 1))–1 and s = log3(4m – 1/3 – 4m)⋅(2m – 1)–1, and s ≈ 
3.64096 at m = ½. 

 

 The parameter s reflects c’s tendency to give weight the prior as opposed to the data 
(Walley, 1996). 

c(heads | 〈h, t〉) = (h + s⋅m) / (h + t + s) 
 

Compare: The Johnson/Carnap “continuum of inductive methods.” 
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IMPORTANT FACTS ABOUT s 

• When m = ½, s is at its minimum and the prior carries the least weight. 

• For ¼ < m < ½, each value of s uniquely fixes m and c. 

• c(heads | 〈h, t〉) = m in the limit as s → ∞, and so the data carries no weight. 
s increases as one moves toward the extreme points c(β = 1/4) = 1/0. 

• The value of s is the same for complementary credence functions. 
s = s* when c(β = 1/4) = 1 – c*(β = 1/4). 

• Evidence always increases s.  
               βh + s⋅m – 1⋅(1 – β)t + s⋅(1 – m) – 1 

    Posterior:    c(β | 〈h, t〉) = –––––––––––––––––––––––––––––––––––––––––––––– 
βh + s⋅m – 1⋅(1 – β)t + s⋅(1 – m) – 1  +  β h + s⋅(1 – m) – 1⋅(1 – β) t + s⋅m – 1 

 so that sc(• |〈h, t〉) = h + t + s. 
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INTERPRETATION OF s 

s measures the resilience of the probability assignments in c in a way that increases with 
the weight of the evidence but does not depend on the evidence’s valence. 

• To specify any probability in C only need specify its resilience level and its valence (m >,< 1/2). 

• Large values of s, which correspond to extreme credences, indicate a high level of dogmatic 
inflexibility in the face of evidence. 

• The possibility of inductive learning depends on having attitudes that initially exclude this kind of 
inflexibility, so that s is restricted to ranges in which c(β = 1/4) is bounded away from zero/one. 

• As evidence accumulates, even subjects who start out flexible (those whose credal states contain 
probabilities with low s-values) become increasingly inflexible. 

• The range of s-values that a subject countenances at any point reflects her willingness to be lead 
by evidence or, alternatively, her level of self-assurance about the correctness of her own beliefs. 

Note:  This way of thinking, does not require us to appeal to any probability measure over C. 
We do not say “she believes her beliefs are probably right.”   Rather, “she updates her beliefs  
as if they are probably right.” 
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THE SUBJECTIVE AND OBJECTIVE DETERMINANTS OF C 

Our subject’s credal state is determined by both  

i. the objective constraints of Symmetry and Binomial Likelihood 

ii. her own subjective tendency to respond to evidence in more or less dogmatic ways. 

• The insistence on Symmetry rules out any form of Radical Subjective Bayesianism that 
permits the subject to have an imprecise credal state, or a sharp credence function, in 
which it is determinate that the probability of heads differs from 1/2. 
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THREE POSSIBILITIES CONSISTENT WITH THE OBJECTIVE CONSTRAINTS 

• Precise Objective Bayesianism:  Rationality requires believers to have maximum 
doxastic flexibility, so that s is minimized.  There is a uniquely rational initial 
inductive policy – MaxFlex or MinResil – and it requires and c(β = 1/4) = 1/2. 

This is a different way of arguing for MaxEnt, so as to get c(β = 1/4) = 1/2 a priori. 
 

• Imprecise Objective Bayesianism:  Rationality prohibits believers from having any 
determinate level of doxastic flexibility since nothing in the objective constraints 
justifies such a stance.  So, any consistent value of s should be allowed (inductive 
learning be damned). 

 

• Moderate Subjective Bayesianism:  Objective constraints must be respected, but beyond 
that any level of doxastic flexibility is consistent with the demands of rationality. 

A believer can have a credal state C = {c(•): ε < c(β = 1/4) < 1 – ε}, where of ε > 0 is fixed 
by personal inductive policies that bound s below infinity. 

I like the last view, but there are some issues. 
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Empirical Question:  Does MSB capture the way people actually think? 

I suspect it correctly describes the attitudes of many people. 

o We are uncomfortable saying that, definitely, the probability of heads is ½. 

o We are uncomfortable with the idea that prior beliefs that are largely uninformed by 
evidence should be weighted heavily relative to future data. 

o We also have no precise views about strong or weak the effect of priors should be. 

 

Philosophical Question:  Is MSB the right way to think about rational belief, and does it 
work within the “rational analysis” framework? 

This is less clear. 
 

o MSB is a kind of half-way house between the two objective views, whose proponents will 
argue that there is no principled place to stop anywhere between minimizing s, so that s = 
mins, and leaving s entirely unconstrained, so that Range(s) =  [mins, ∞).  
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THE CASE FOR MINIMIZING s 

s = mins is the most modest choice one can make since it assumes, to the greatest degree 
possible, that the believer’s (pre data) judgments are fallible. 
 

Response:  Not really.  The claim is true if you compare s = mins to any other choice 
of a sharp value for s.  But, anyone with a sharp s makes highly immodest probability 
assignments.  E.g., setting s = mins commits one to believing (and acting as if) the 
probability of getting 20 heads and 10 tails is 0.000172067, where all those digits are 
significant.  Given what you know, would you take a bet that hangs on the value of 
that last “7”? 
 

From the perspective of probability assignments, epistemic modesty involves 
allowing s to have a range of values. 
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THE CASE FOR LEAVING S UNCONSTRAINED 
 
Range(s) = [mins, ∞) is the only policy that does not add information to the objective 
constraints.  Our feeling that inductive learning should be possible here is based on a 
confusion.  We typically face finite problems in which an objective lower bound for s is 
fixed.  This puts us in the habit of thinking that inductive learning should always be 
possible.  But, when we don’t know anything about s, we should not capriciously assume 
it has a lower bound.  To do so is to introduce an unwarranted inductive bias. 
 

Response:  There is something to this.  We are accustomed to finite problems – the 
urn surely can’t contain more than 1050 coins! – and it might be that scenarios in 
which we know nothing are so rare that people misunderstand them. This might not 
be too great a cost if our natural inductive tendencies agree with objective constrains 
in realistic cases. 
 
On the other hand, it does seem that some level of epistemic modesty is warranted 
even in situations of extreme ignorance.  In the same way that adopt the reasonable 
policy of thinking that events of very small probability do not occur (see (Shafer 2008) 
on “Cournot’s Principle”), it might be that we rightly assume that highly extreme 
distributions, short of 0/1, do not accurately reflect reality. 
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SOME CONCLUSIONS 

 The theory of imprecise probabilities might be the right tool for use in a broadly 
Bayesian project of “rational analysis.” 

 
 The theory has the advantage of being able to express a range of epistemic attitudes 

that cannot be described using precise probabilities (e.g., bare judgments of independence 
or disagreement). 

 
 This extra expressive power carries some risks, however, because it lets us to express 

attitudes that real subjects might well be incapable of having. 
 
 An especially fruitful area for the theory is the connection between beliefs and policies 

of inductive learning, since the theory can capture subtle differences in attitudes of 
doxastic flexibility in face of evidence. 

 
 Within this an imprecise framework a Bayesian can make room for the joint effects of 

objective evidential constraints and subjective judgments on beliefs. 
 
 But, the precise way to understand these effects remains a matter of dispute. 
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