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Abstract

We present an active object recognition strategy which combines the use of an attention
mechanism for focusing the search for a 3-D object in a 2-D image, with a viewpoint control
strategy for disambiguating recovered object features. The attention mechanism consists of a
probabilistic search through a hierarchy of predicted feature observations, taking objects into a
set of regions classified according to the shapes of their bounding contours. We motivate the use
of image regions as a focus-feature and compare their uncertainty in inferring objects with the
uncertainty of more commonly used features such as lines or corners. If the features recovered
during the attention phase do not provide a unique mapping to the 3-D object being searched,
the probabilistic feature hierarchy can be used to guide the camera to a new viewpoint from
where the object can be disambiguated. The power of the underlying representation is its
ability to unify these object recognition behaviors within a single framework. We present the
approach in detail and evaluate its performance in the context of a project providing robotic

aids for the disabled.

*To appear in Computer Vision and Image Understanding. An earlier, condensed version of this paper was
presented at the 1994 European Conference on Computer Vision (ECCV), in Stockholm.



1 Introduction

Active vision can be defined as the use of image interpretation to intelligently change the intrinsic
and extrinsic sensor parameters to more effectively solve a particular vision task. One aspect of
active vision is the use of an attention mechanism to decide where in the image to search for a
particular object. Template matching schemes which move an object template throughout the
image offer no attention mechanism since all positions in the image are treated equally. However,
any recognition scheme that preprocesses the image to extract some set of features provides a basis
for an attention mechanism. Assuming that the recovered image features correspond to model
features, object search can be performed at those locations in the image where the features are
recovered.

For an attention mechanism to be effective, the features must be distinguishing, i.e., have low
entropy. If the recovered features are common to every object being searched, they offer little in
the way of focusing the search for an object. This is typical in object recognition systems which
match simple image features like corners or zeroes of curvature to model features [30, 19, 39, 26].
Although invariant to viewpoint, there may be an abundance of such features in the image, leading
to a combinatorial explosion in the number of possible correspondences between image and model
features that must be verified. In the first part of this paper, we will argue that regions, characterized
by the shapes of their bounding contours, provide a more effective attention mechanism than simple
linear features. We go on to present a Bayesian attention mechanism which maps objects into
volumetric parts, maps volumetric parts into aspects, and maps aspects to component faces. Face
predictions are then matched to recovered regions with a goodness-of-fit providing an ordering of
the search locations.

An effective attention system is not enough to overcome problems such as region segmentation
errors, heavy object occlusion, or ambiguous views of the object. At best, such a system could
exploit knowledge of the object to possibly recover from some of these problems. For example, in
the case of segmentation errors, domain-dependent knowledge could be used to correct under- and
over-segmentation of regions, or to group disconnected lines in the image into salient structures.
However, in the case of limited information due to occlusion or ambiguous view, the best we could
hope for is an object hypothesis based on partial information.

We can enhance the power of our attention mechanism through viewpoint control. In the case
of region segmentation problems, the camera could be moved to a viewpoint in which, for example,
a given object surface projects to a higher contrast region, or an object edge projects to a higher
gradient in the image. Or, if a particular view of an object (or one of its parts) is ambiguous,
perhaps due to occlusion, the camera could be moved to disambiguate the object. In the second
part of this paper, we extend our object representation for attention to support active viewpoint
control. We will introduce a representation, called the aspect prediction graph, which is based on
the aspect graph. Given an ambiguous view of an object, i.e., a view in which the object cannot be
uniquely identified, the representation will first tell us if there is a view of the object which is more
discriminating. If so, the representation will tell us in which direction should we move the camera
to encounter that view. Finally, the representation will tell us what visual events (the appearance
or disappearance of features on the object) we should encounter while moving the camera to the
new viewpoint.

Following a brief review of relevant related work, we will first describe the probabilistic object
representation used by the attention system. Next, we describe the attention mechanism in detail,
while motivating the use of regions as focus features. We will then introduce extensions to the
object representation that will support our viewpoint control strategy, followed by its integration



with the attention mechanism. Finally, we test both aspects of the system as they apply to the
domain of object recognition for robotics aids for the disabled.

2 Related Work

In previous work, we presented a bottom-up approach to the recovery and recognition of objects
composed of qualitative 3-D volumetric parts from a single 2-D image (Dickinson, Pentland, and
Rosenfeld [14]). The approach is based on a hybrid object representation in which objects are
composed of a set of chosen 3-D object-centered volumetric parts; the parts, in turn, are mapped
to a set of 2-D viewer-centered aspects. The part recovery problem was formulated as a heuristi-
cally guided search through the various groupings of image regions into aspects, each representing
a view of a volumetric part. A system called OPTICA (Object recognition using Probabilistic
Three-dimensional Interpretation of Component Aspects) was built to demonstrate the approach,
and 1t was successfully applied to the problem of unexpected object recognition from real images
(Dickinson, Pentland, and Rosenfeld [13]).

A major limitation of the approach was both its dependency on a complete and consistent
covering of the image regions in terms of a set of aspects, and its assumption that all objects visible
in the image are made up of the chosen volumes. OPTICA was first extended to the problem of
top-down, expected object recognition, by using knowledge of the target object to focus the various
search procedures inherent in OPTICA’s unexpected object recognition paradigm (Dickinson and
Pentland [11]). However, as a starting point, it still required complete aspect and volume coverings
of the image. When dealing with noisy images of less constrained scenes, along with shadows and
poor lighting, such coverings of the image are not only very costly, but overly ambitious. More
intuitively, 1s it really necessary to completely recover all high-order shape information in the scene
in order to locate a particular object? OPTICA provided no attention mechanism to decide what
features to look for in the image or where to look for them.

The importance of incorporating attention mechanisms into an interpretation framework was ar-
gued by Tsotsos in [40]. There, both psychological as well as computational evidence was presented.
In addition, a model for recognition was described and was applied by way of experimental example
to a time-varying medical image domain. In the system of Tsotsos [40], attention was tied to the
limiting of search for candidate interpretations. This relationship was subsequently formalized in
[41]. A focus of attention during search is derived from the “best guesses” for the solution of the
problem at hand. However, search in vision can take many forms. In order to conjoin features (such
as “red” and “the letter B”) into a single percept, search for corresponding features in different
portions of processing hierarchies may be required. It may be that the feature being searched for
has no corresponding instance and thus a visual search using eye motion must be initiated. This
would be accompanied by establishing expectations as to what the attentive system was looking
for, thus biasing the computation. These biases facilitate the computation of particular concepts.
Yet a different form of search is that for features that may help to distinguish between two compet-
ing interpretations. Biases on computation may be obtained by default mechanisms or by a priori
frequency of occurrence (a probability of some form) data.

At the earlier end of visual processing, methods exist for the localization of salient image fea-
tures. A biologically plausible scheme to solve the problem of selective visual attention appears
in Tsotsos [42] and Culhane and Tsotsos [5, 6]. It proposes a method that solves the problem of
locating and localizing items in the visual field and shows how to implement the idea of an in-
hibitory attention beam. The scheme is based on the foundation laid by Koch and Ullman [24], but
incorporates several novel changes and additions which permit a proof of convergence with constant



time convergence properties. Furthermore, it addresses the issue of saliency maps and the binding
across representations, and includes much tighter comparisons to biology. Experiments show that
luminance, edge, and motion fields (regions of common flow) can be used equally well as input
representations.

At the higher end of visual interpretation, Tsotsos [40] showed how to use a number of different
organizational axes of a model database to limit search through a set of default heuristics. The
present work has a similar flavor, but adds to the abstract framework a priori probability measures
for 3-D object recognition.

Several other researchers have addressed the problem of attention in the context of computer
vision systems. Rimey and Brown [36] used Bayesian networks for selection of preprocessing modules
and spatial attention regions, but the approach is based on explicit and accurate modeling of the
domain. Furthermore, the approach focused more on scene context than on how a particular 3-D
object may be viewed. Califano et al. [4] used a heuristic method for the selection of operators
based on discriminative power; the attention region is defined in terms of the region of ambiguity.
Kittler et al. [31] used a rule based method for the selection of operators to facilitate verification of
objects based on 2-D information. The method also includes the ability to define spatial attention
regions based on temporal context. Stark et al. [38] used functional verification procedures in
combination with relation specification for the selection of operators and the definition of attention
regions; the reasoning is based on fuzzy logic for evidence combination. Brunnstrom, Lindeberg,
and Eklundh [3] describe a foveation system in which blobs in a scale-space representation of the
image are used to guide a foveation mechanism which recovers junction information.

Although some heuristics were introduced to accommodate over-segmentation in OPTICA, light-
ing conditions had to be favorable for a successful interpretation to be generated [14]. Furthermore,
there was no support for viewpoint control to offset the effects of poor region segmentation or
ambiguous views of the object. Wilkes and Tsotsos [45] offer a solution to polyhedral object recog-
nition, whereby the camera is moved to a canonical viewpoint of the object based on maximizing
the projected lengths of two non-parallel edges in the image. With viewpoint control, they effec-
tively reduce the 3-D recognition problem to a 2-D recognition problem. Hutchinson and Kak [18]
describe a system for disambiguating objects recovered from range images. Based on a set of current
hypotheses about the identity and position of an object, they evaluate candidate sensing operations
with regard to their effectiveness in minimizing ambiguity. Maver and Bajcsy [32] describe an ap-
proach to choosing the next view in order to resolve occluded regions in a range image. Based on
height information at the polygonally-approximated border of an occluded region, a sequence of
views is planned.

Kim, Jain, and Volz [23] explore an approach which determines both optimal camera distance
from the object as well as viewing direction. Camera distance was chosen to maximize object
surface visibility (or minimize the number of views required to cover the surface of the object) while
maintaining a lower bound on feature size in the image. Two approaches to determining camera
position are presented. Assuming that the distinguishing feature has been selected, the visual aspect
graph (VAG) method moves to a position on the viewing sphere belonging to an aspect containing
the feature. The aspects can be ranked according to some “goodness” measure. To account for
feature visibility when occluding objects are present, the feature(s) being sought are projected
onto a spherical or cylindrical screen, effectively partitioning the viewing sphere (or cylinder) into
occluded and unoccluded regions. This work differs significantly from our approach in that no
object recognition framework is incorporated, no methods for deciding which feature to search for
are provided, camera movement appears to be a single viewpoint change with no continuous visual
event tracking, and no results are reported.
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Figure 1: The Ten Modeling Primitives

In our approach, we use a set of viewing probabilities to rank the possible directions in which
we can move in order to disambiguate an object (part) hypothesis. An aspect representation, called
the aspect prediction graph, of an object’s parts encodes the visual events encountered as the sensor
moves from one viewpoint to the next. The attention mechanism not only provides initial placement
in this graph, but is used in the process of verifying the visual events.

3 Review of the Object Representation

3.1 Object-Centered Modeling

To demonstrate our approach to attention, we have selected an object representation similar to that
used by Biederman [2], in which the Cartesian product of contrastive shape properties gives rise to a
set of volumetric primitives called geons. Since the introduction of Biederman’s geons to the vision
community, a number of other researchers have developed computational models for geon recovery
resulting in a number of geon-based recognition systems (e.g., Dickinson et al. [8], Bergevin and
Levine [1], Hummel and Biederman [17], Munck-Fairwood [15], Jacot-Descombes and Pun [20], and
Narayan and Jain [35]). However, unlike these approaches, which are typically applied to manually
segmented line drawings, our approach is applied to real images and is not dependent on the choice
of geons as modeling primitives. For our investigation, we have chosen three properties including
cross-section shape, axis shape, and cross-section size variation (Dickinson, Pentland, and Rosenfeld
[12]). The cartesian product of the dichotomous and trichotomous values of these properties give
rise to a set of ten volumes (a subset of Biederman’s geons), modeled using Pentland’s SuperSketch
3-D modeling tool [34], and illustrated in Figure 1. To construct objects, the volumes are attached
to one another with the restriction that any junction of two volumes involves exactly one distinct
surface from each volume.

3.2 Viewer-Centered Modeling

Traditional aspect graph representations of 3-D objects model an entire object with a set of aspects,
each defining a topologically distinct view of an object in terms of its visible surfaces (Koenderink
and van Doorn [25]). Our approach differs in that we use aspects to represent a (typically small) set
of volumetric parts from which each object in our database is constructed, rather than representing
an entire object directly. Consequently, our goal is to use aspects to recover the 3-D volumetric
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Figure 2: The Augmented Aspect Hierarchy

parts that make up the object in order to carry out a recognition-by-parts procedure, rather than
attempting to use aspects to recognize entire objects. The advantage of this approach is that since
the number of qualitatively different volumes is generally small, the number of possible aspects is
limited and, more important, independent of the number of objects in the database. The disadvan-
tage is that if a volumetric part is occluded from a given 3-D viewpoint, its projected aspect in the
image will also be occluded. Thus we must accommodate the matching of occluded aspects, which
we accomplish by use of a hierarchical representation we call the aspect hierarchy.

The aspect hierarchy consists of three levels, consisting of the set of aspects that model the chosen
volumes, the set of component faces of the aspects, and the set of boundary groups representing
all subsets of contours bounding the faces. The ambiguous mappings between the levels of the
aspect hierarchy were originally captured in a set of upward conditional probabilities (Dickinson et
al. [7]), mapping boundary groups to faces, faces to aspects, and aspects to volumes. However, for
the attention mechanism described in this paper, the aspect hierarchy was augmented to include
the downward conditional probabilities mapping volumes to aspects, aspects to faces, and faces to
boundary groups.! Figure 2 illustrates a portion of the augmented aspect hierarchy.

To generate the conditional probabilities of the aspects given the shapes, we employ the following
procedure, as described in [12]. We first model our 3-D volumetric primitives using the Supersketch
modeling tool (Pentland [34]). Supersketch models each shape using a superquadric surface subject
to stretching, bending, twisting, and tapering deformations. The superquadric with length, width,
and breadth a;, as, and a3 is described (adopting the notation cosnp = C,, sinw = S,) by the
following equation:

G C2
X(n,0) = | 0,Chs3 1)

€1
a,3S17

where X (7,w) is a three-dimensional vector that sweeps out a surface parameterized in latitude 5

1For the probabilistic search process described in section 5, the augmented aspect hierarchy is actually represented
by two acyclic graphs, one capturing the upward conditional probabilities and the other capturing the downward
conditional probabilities.



and longitude w, with the surface’s shape controlled by the parameters €; and es.

The next step in generating the conditional probabilities involves rotating different instances
of each primitive about its internal z, ¥, and z axes in 10° intervals.? The resulting quantization
of the viewing sphere gives rise to 648 views per shape; however, by exploiting shape symmetries,
we can reduce the number of views for the entire set of ten shapes to 688. For each view, we
orthographically project the shape onto the image plane, and classify the view in terms of one of
the aspects.®> The resulting frequency distribution gives rise to a set of bottom-up (found in [7])
and top-down conditional probability matrices.

4 Preattentive Feature Extraction

4.1 A Case for Focusing on Regions

Given the various levels of the augmented aspect hierarchy, the question arises: At which recovered
features from the image do we focus our search for a particular object? Many CAD-based recognition
systems (e.g., Lowe [30], Huttenlocher and Ullman [19], Thompson and Mundy [39], and Lamdan,
Schwartz and Wolfson [26]) advocate extracting simple features like corners, high curvature points,
or zeroes of curvature. Although robustly recoverable from the image, there may be many such
features in the image offering marginal utility for directing a search. Such features are analogous
to the boundary group level of features in the augmented aspect hierarchy. By examining the
conditional probabilities in the augmented aspect hierarchy, we can compare the relative utility of
boundary groups and faces in inferring the identity of a volumetric part.*

To compare the utility of boundary groups versus faces in recovering volumes, we will use the
conditional probabilities captured in the augmented aspect hierarchy to define a measure of average
inferencing uncertainty, or the degree to which uncertainty remains in volume identity given a
recovered boundary group or face. More formally, we define average inferencing uncertainty for

boundary groups, U fvcg;, and for recovered faces, U fvg, as follows:®

1 Npg Ny

Use = ——— > 3" Prob(V; | BG;)log Prob(V; | BG;) (2)
NBG =1 j=1
1 NF NV

Uty = —~— 3.2 Prob(V; | F;)log Prob(V; | F;) (3)
NFA =1 j=1

where:

Npg = number of boundary groups in the augmented aspect hierarchy
Nps = number of faces in the augmented aspect hierarchy
Ny = number of volumes in the augmented aspect hierarchy

Table 1 compares the average inferencing uncertainty for the boundary groups and faces. Clearly,
faces offer a more powerful focus feature for the recovery of volumetric parts than do the simpler
features that make up the boundary groups. However, this advantage is only realizable if the cost of

2 All spatial orientations of the shapes are assumed to be equally likely.

3Note that this procedure also yields the individual faces and aspects associated with the shapes.

4Gince aspect recovery first requires the recovery of component faces, we will examine the choice between recovering
simple contour-based features (boundary groups) and regions (faces).

5We have suppressed the zero-probability terms in this and remaining expressions for notational simplicity.



H Feature ‘ Avg. Uncertainty H

boundary groups 0.74
faces 0.23

Table 1: Average Uncertainty in Inferring Volumes from Boundary Groups and Faces
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Figure 3: Face Recovery

extracting the two types of features is comparable. By using simple region segmentation techniques
whose complexity is comparable to common edge detection techniques, we can avoid the complexity
of grouping lines into faces [30]. We can accommodate the segmentation errors associated with a
cheap region grower by using partial information to intelligently guide viewpoint control to improve
interpretation, the subject of the second part of this paper.

4.2 Face Recovery

Having decided to use labeled faces as a focus-of-attention feature, we can proceed to outline the
process of face recovery, as outlined in Figure 3. Face recovery consists of first extracting a set of
regions from an image, describing the shapes of the regions’ bounding contours, and classifying the
regions’ shapes. In the following sections, we discuss these processes in greater detail.

4.2.1 Region Segmentation

There are two approaches to recovering closed contours representing image regions. In a region-based
approach, pixel homogeneity is used to cluster similar pixels together to form a region. Tracing the
boundary of a region yields the bounding contour. In an edge-based approach, edges are extracted
and grouped to form closed sets of contours. Inevitable gaps in the edges make the grouping process
computationally complex, as was demonstrated by Lowe [30]. We avoid this grouping complexity
by simply performing a connected component labeling of an edge image. If a gap exists in a line,



then the regions on either side of the line will get the same component label. The result is that
there is significant region undersegmentation in the image, but the computational complexity is
comparable to simple region-based approaches.

In our implementation, we begin by applying Saint-Marc, Chen, and Medioni’s edge-preserving
adaptive smoothing filter to the image [37], followed by a morphological gradient operator (Lee
et al. [27]). A hysteresis thresholding operation is then applied to produce a binary image from
which a set of connected components is extracted. Edge regions are then thinned and assigned
to neighboring regions, resulting in a region topology graph in which nodes represent regions and
arcs specify region adjacencies. In future work, our goal is to move towards a true region-based
segmentation method, capturing both the properties of the region’s boundaries (or edges) as well
as the region’s internal composition.

4.2.2 Shape Description

From the region topology graph, each region is characterized according to the qualitative shapes of
its bounding contours. The steps of partitioning the bounding contour and classifying the resulting
contours are performed simultaneously using a minimal description length algorithm due to Li [29].
From a set of initial candidate contour breakpoints (derived from a polygonal approximation), the
algorithm considers all possible groupings of the inter-breakpoint contours according to a minimum
description length measure based on how well lines and elliptical arcs can be fit to the segment
groups in terms of the cost of coding the various segments. The partitioned segments of the bounding
contour are represented as labeled nodes in a region boundary graph, with arcs between the nodes
representing adjacency (co-termination), parallelism, or symmetry. Two non-coterminating lines
are considered parallel if the angle between their fitted lines is small, while two non-coterminating
curves are considered parallel if one is convex, one is concave, and the angle between their directions
is small.° Two non-coterminating, non-parallel lines are considered symmetric if there is sufficient
overlap when one line is projected onto the other.”

4.2.3 Face Classification

Once the regions have been extracted and their shapes described, we must classify each region’s
shape according to the faces in the augmented aspect hierarchy. The classification of an image
region consists of matching its region boundary graph to those graphs representing the faces in
the augmented aspect hierarchy using an interpretation tree search (Grimson and Lozano-Pérez
[16]). If there is an exact match, as shown in Figure 4, then we immediately generate a face
hypothesis for that image region, identifying the label of the face. If for any reason (e.g., occlusion,
segmentation errors, noise, etc.) there is no match, we must descend to the boundary group level
of the augmented aspect hierarchy, as shown in Figure 5. We then compare subgraphs of the region
boundary graph describing the image region to those graphs at the boundary group level of the
augmented aspect hierarchy. For each subgraph that matches, we generate a face hypothesis with
a probability determined by the appropriate entry in the conditional probability matrix (in the
augmented aspect hierarchy) mapping boundary groups to faces and the proportion of the region’s

6The direction of a curve is computed as the vector whose head is defined by the midpoint of the line joining the
two endpoints of the curve, and whose tail is defined by the point on the curve whose distance to the line joining the
endpoints is greatest.

“Two non-parallel vectors will have an intersection point. When one vector is rotated about that point, it can be
brought into correspondence with the other. If the resulting overlap of the two lines is a large portion of the smaller
of the two lines, the lines are said to be symmetric.
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Figure 5: Labeling an occluded region

bounding contour covered by the boundary group. The labeled face hypotheses for all regions in
the image are captured in a face topology graph.

5 Attention-Driven Recognition

5.1 Focusing the Search

The goal of the attention mechanism is to limit search, both in the image and in the model database
(augmented aspect hierarchy). Our first task is to decide what features in the image we are searching
for. There is a very important trade-off here which is critical to the problem of choosing features
to attend to. On one hand, we wish to expend as little effort as possible in recovering a set
of features that might belong to the object and hence give us a place to initiate the search for
the object. However, if the recovered features are not discriminative enough, we will be faced
with an abundance of features located throughout the image, all attempting to draw the attention
mechanism to their location. Thus we have a trade-off between uniqueness, or indexing power, and
cost of recovery.

In Section 4.1, we concluded that for 3-D modeling primitives which resemble the commonly used
generalized cylinders, superquadrics, or geons, the most appropriate image features for recognition
appear to be image regions, or faces. Moreover, the utility of a face description can be improved
by grouping the faces into the more complex aspects, thus obtaining a less ambiguous mapping
to the volumes and further constraining their orientation. Only when a face’s shape is altered
due to volume occlusion or intersection should we descend to analysis at the contour or boundary
group level. For our attention mechanism, we will essentially reverse this process. Starting from
the object, we will generate predictions down to the level of labeled faces. Since our face recovery

10



preprocessing step recovers labeled faces, our attention can be drawn to those recovered labeled
faces which match predictions. Furthermore, since each face label has a corresponding probability,
that probability can be used to rank-order candidate image faces for search.

In selecting which recovered face to focus our attention on, we utilize a decision theoretic ap-
proach using a Bayesian framework. A similar approach was reported by Levitt et al. [28], who
use Bayesian networks for both model representation and description of recovered image features.
Specifically, they use Bayesian networks for both data aggregation and selection of actions and
feature detectors based on expected utility. The approach is thus centered around the use of a
Bayesian approach to integration and control. Similar techniques have also been reported by Rimey
and Brown [36], and Jensen et al. [21], where both regions of interest and feature detectors are
selected according to utility/cost strategies.

To select a region of interest, i.e., attend to a particular face, the augmented aspect hierarchy may
be considered as a Bayesian network, allowing us to utilize decision theory as described, for example,
by Pearl [33]. To apply such a strategy, it is necessary to define both utility and cost measures.
The utility function, U, specifies the power of a given feature at one level of the augmented aspect
hierarchy, e.g., volumes, aspect, faces, and boundary groups, to discriminate a feature at a higher
level. The cost function, C, specifies the cost of extracting a particular feature. The subsequent
planning is then aimed at optimizing the benefit, max B(U, C); profit, e.g., utility — cost, is often
maximized in this step. For the system described in this paper, the face recovery algorithm was
chosen to support a simple implementation on a real-time, pipeline architecture. The cost of face
recovery is assumed to be constant and equal for all types of faces. Given such an implementation,
the selection of which face to consider next should simply optimize the utility function.

The process of mapping an object to a candidate face is outlined in Figure 6. Given a target
object, objectr, the first step 1s to choose a target volume, volumer, to search for. Next, given a
target volume, volumer, we choose a target aspect, aspectr, to search for. Finally, given a target
aspect, aspectr, we choose a target face, facer, to search for. Given a target face, facer, we then
examine the face topology graph for labeled faces which match facer. If there is more than one,
they are ranked in descending order according to their probabilities.

The above top-down sequence of predictions represents a depth-first search of a tree defined
by each object; the root of the tree represents the target object, while the leaf nodes of the tree
represent target faces. The target volume subtrees for each object tree are independent of the object
database and can be specified at compile time. The branching factor at a given node in any object
tree can be reduced by specifying a probability (or utility) threshold on a prediction.

The heuristic we use to guide the search is based on the power of an object’s features, e.g.,
volumes, aspects, and faces, to identify the object. For example, to determine how discriminative
a particular volume, volume;, is in identifying the target object, objectr, we use the following
function:

. Prob(objectr|volume;)
D(volume;, objectr) = , Prob(volume; 4
(volume;, objectr) 5. Prob{object,[volumes) % Prob(volume;) (4)

The numerator specifies how discriminative volume; is for objectr, while the ratio specifies
the “voting power” of volume; for the object of interest. Prob(object;|volume;), for any given 4
and 7, is computed directly from the contents of the object database. The last term specifies the
likelihood of finding the volume, and is included to discourage the selection of a volume which is
highly discriminative but very unlikely. The Prob(volume) may be calculated as follows:

11
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Figure 6: Attention Mechanism

Prob(volume;) = Z(Prob(volumei|objectk) % Prob(objecty,)) (5)
k

where Prob(volume;|objecty), for any given ¢ and k, is computed directly from the object
database, and Prob(objecty) represents a priori knowledge of scene content. In a similar fashion,
we define D(aspect;, volumer) as follows:

Prob(volumer|aspect;)

(aspect;, volumer) S Prob{volume; |aspecty) * Prob(aspect;) (6)
Prob(aspect;) = Z(Prob(aspecti|volumek) % Prob(volumey,)) (7)
k
and D(aspectr, face;) as follows:
Prob(aspectr|face;)
D(faces, aspectr) = Prob(face;
(face;, aspectr) S Prob{aspect| faces) % Prob(face;) (8)
Prob(face;) =Y _(Prob(face;|aspecty,) x Prob(aspecty,)) (9)

k

To determine the best target volume to search for in order to recognize the target object, the
following utility function is evaluated:

Prob(object ! .
U(volumer, objectr) = max( rob(objectr|volume,)

Prob(vol a 1
a Y. Prob(objectj|volume,) * Prob(volumes)) (10)
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To determine the best target aspect to search for in order recover the target volume, the following
utility function is evaluated:

Prob(volumer|aspect,)

Ulaspectr, volumer) = m‘?X(E- Prob(volume;|aspect,)
J J a

% Prob(aspect,)) (11)

To determine the best target face to search for in order recover the target aspect, the following
utility function is evaluated:

Prob t .
U(facer,aspectr) = max( rob(aspectr|face,)

a Y. Prob(aspect;| face,) * Prob(facea)) (12)

When we descend the search tree to a given target face, we search for matching face candidates
in the face topology graph. We focus our attention on the best face matching the target face,
and proceed to verify the object, as described in the next section. If a target face, target aspect,
or target volume cannot be verified, the search algorithm backtracks, applying the above utility
functions to remaining faces, aspects, and volumes in the search tree.

5.2 Verification

From a target face in the image which matches a target face in the object tree, we next proceed
to recognize the object using the process shown in Figure 7. Recognition is the process by which
we move from a matched target face node in the search tree back up to an object. Once we have
a matched face leaf node, our next step is to verify its parent (target) aspect [14]. This entails
searching the vicinity of the target face for faces whose labels and configuration match the target
aspect using an interpretation tree search (Grimson and Lozano-Pérez [16]). Note that the resulting
verified aspect has a score associated with it which can be compared to a score threshold to terminate
the search from a particular target face.® The score of a recovered aspect is calculated as follows:

Length(BGy)
Length(Regiony)

1 N
AspectScore = — > Prob(Facey) *
N k=1

(13)

where: N is the number of faces in model aspect, Length(BGy) is the length of boundary group, and
Length(Regiony) is the perimeter of the region. Note that if the region boundary graph recovered
for the shape ezactly matches some face in the augmented aspect hierarchy, its probability will be
1.0 and the length of its boundary group will be the perimeter of the entire region.

Once a target aspect is found, we then proceed up the tree one level to the target volume,
defining a mapping between the faces in the target aspect and the surfaces on the target volume.
The score of a volume is calculated as follows:

VolumeScore = AspectScore x Prob(ModelV olume| M odel Aspect) (14)

where:

Prob(ModelV olume|Model Aspect) = probability of volume given aspect
(from the augmented aspect hierarchy)

Moving back one level to the object, we must then decide whether or not we have enough information
confirming the target object. If so, the recognition process is complete. If not, we must then decide
which volume to search for next.

8The aspect score is a function of the scores of its component faces.
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Figure 7: Object Verification

5.3 Searching for Multi-part Objects

If the target object has more than one part, then verification may involve searching for multiple
parts of an object. The constraint we rely on is that if two parts belonging to the object are
connected in 3-D, then to verify these two parts in the image, their corresponding part aspects
must be topologically connected in 2-D. Furthermore, a specification of how the parts are attached
in 3-D can be mapped to a specification as to which regions in their respective aspects are adjacent
in 2-D [14]. Note that this constraint is simply a heuristic used in our search. Due to occlusion,
the aspects corresponding to two two parts connected in 3-D may not be topologically adjacent in
2-D. Conversely, the aspects corresponding to two disconnected parts in 3-D may be topologically
adjacent in 2-D. Absolute verification of a connection would require recovering the geometry and
pose of the two parts, which we address in [10].

Given our connectivity constraint, a target volume should be chosen as the most discriminating
volume among those that are connected in 3-D to a volume already verified. Since the new target
volume is connected to a verified volume, we can focus our search for the target face on only those
image faces that are topologically adjacent to the faces belonging to the verified volume.

5.4 Computational Complexity

In this section, we briefly outline the complexity of our search process. Since the complexity of
the region segmentation and boundary segmentation tasks are entirely dependent on the choice of
segmentation algorithms, we only address the complexity of the face labeling. Recall that each
recovered face can be represented as a graph. Since the size of the largest face and the number
of faces in the augmented aspect hierarchy are fixed, the complexity of face matching is O(n°me),
where n is the number of contours making up a recovered image face, and ¢4, 1s the maximum
number of contours making up an augmented aspect hierarchy face or boundary group.

When searching for an object with k parts, we can end up searching for each of its & component
volumes. Each of those volumes can appear as a maximum of d,,,, aspects, where @4, 18 the
maximum number of aspects modeling any volume in our augmented aspect hierarchy. At the next
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level, we have have to search for f,,,, different faces, where f,,,, is the maximum number of faces
making up any aspect in the augmented aspect hierarchy. If there are r regions in the image, then
each region, in the worst case, could have a face hypothesis for each type of model face. Thus,
for a given object with k parts and an image with r regions, in which the maximum number of
contours making up a region is n, the complexity of the recognition process, including preprocessing,
18 O(k@maz frmazrn®™**) which, given that @a, and fiq. are constants, reduces to O(krn®me=).

6 Viewpoint Control

6.1 The Role of Active Vision in Object Recognition

During the volume recovery process, we may not be able to recover a volume in its most likely
view. In fact, the likelihood is significant that some viewpoint degeneracy will occur (see Wilkes,
Dickinson, and Tsotsos [44]). Unfortunately, in examining the conditional probabilities inherent in
the augmented aspect hierarchy, we discover that less likely views of a volume may not be unique
to that volume. For example, the least likely view of the block volume (volume 1 in Figure 1)
is the aspect consisting of a single parallelogram face. This same face, in fact, represents a valid
aspect for all the other volumes except the ellipsoid, the barrel, the cone, and the truncated cone.
Furthermore, less likely views of a volume often underconstrain an attempt to fit a quantitative
shape model to the recovered qualitative shape (Dickinson and Metaxas [10]).

Clearly, given a low probability view of a volume, we would like to use its projected aspect, along
with knowledge of the volume’s possible aspects and their probabilities (from the augmented aspect
hierarchy), to predict not only which aspect represents a “better” view of the volume, but how
the camera should be moved in order to find it. Conversely, given a recovered aspect of a volume,
along with a direction of motion, we might wish to know into what aspect the current aspect will
transform. In the next section, we present a new representation, called the aspect prediction graph,
which supports these two queries.

6.2 Extending the Representation

Consider a monocular camera system actively observing a scene containing static objects. Further-
more, assume that our camera can fixate on a given object while moving around it. As mentioned
earlier, we would like to predict the object’s appearance in a new view, as well as propose a direction
of camera movement to obtain a “better” view of the object’s volumetric parts. To begin with, let
us assume that the observer presently perceives an aspect of one of the object’s volumetric parts.
For the given volume, we would like a representation that not only specifies the possible aspects of
the volume, but also the transitions or relations between its aspects. Each relation should represent
a qualitatively distinct change in viewpoint, and should specify how the faces of the involved aspects
are related under this change in viewpoint.

To capture these relationships, we have constructed an aspect prediction graph for each of the ten
volumes. The aspect prediction graph (APG) is derived from two sources. The first is a traditional
aspect graph (Koenderink and van Doorn [25]) in which nodes represent topologically distinct views
of an object and arcs specify transitions between the views. The APG is a more compact version
of the aspect graph in which topologically equivalent nodes are grouped regardless of whether their
faces map to different surfaces on the object. For example, the APG for a block encodes 3 aspects
for a block (volume 1 in Figure 1) while a traditional aspect graph encodes 26 aspects. Next,
the APG specifies the visual events in terms of which faces appear/disappear when moving from
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one aspect to another. Furthermore, the position of such a face appearance/disappearance from
a source aspect to a target aspect is specified with respect to particular contours of faces in the
source aspect (event contours). In addition, the transition between two nodes (aspects) encodes
the direction(s) relative to the event contours that one must move in the image plane in order to
observe the visual event. Finally, the APG borrows from the augmented aspect hierarchy both the
Prob(volumelaspect) and Prob(aspect|volume) conditional probabilities, and assigns them to the
nodes in the APG. Note that the downward conditional probabilities from a given volume to its
possible aspects are independent of the other volumes. However, the upward conditionals in an
APG’s nodes are a function of the other volumes; hence the collection of APG’s corresponding to
the set of volumes are linked by the upward conditional probabilities at their nodes.

Given an aspect of a volume, the observer can usually move in more than one direction to get
to some other aspect. For example, given a frontal view of a block with only a single visible face,
we could move left, right, up, or down (assuming that you can move underneath the block) to an
aspect containing two visible faces. To cover all these alternatives, the APG encodes multiple arcs
between the aspects, each representing a qualitatively distinct view change direction. In addition,
associated with each of these arcs are one or more face events. Each face event specifies what face
will appear or disappear under the change of view corresponding to the arc, and where the event
will occur relative to the source aspect. In the example with the frontally viewed block, a face will
appear on the left of the original face if the observer moves left, on the right when moving right,
or above when moving up. A movement towards the upper-left or upper-right would bring a new
aspect and two new faces into view: one face above and one to the left of the original face if moving
towards the upper-left, and one above and one to the right if moving towards the upper-right.

To illustrate the above concepts, Figure 8 presents the APG for the block volume, illustrating
the three possible aspects of the block. Between every two nodes (aspects) in the aspect prediction
graph are a pair of directional arcs. The directional arc between aspect 1 and aspect 2 in Figure 8
is expanded in Figure 9. From aspect 1 in Figure 8, there are three ways to move to a view in which
aspect 2 will be visible. Movement relative to contours 0 and 1 on face 2 will cause a visual event
in which face 2 disappears at contour 1 on face 0 and at contour 3 on face 1. Or, movement relative
to contours 0 and 1 on face 0 will cause a visual event in which face 0 will disappear at contour 0
on face 1 and contour 0 on face 2. Finally, movement relative to contours 0 and 3 on face 1 will
cause a visual event in which face 1 will disappear at contour 0 on face 0 and contour 1 on face 2.

It should be noted that in the augmented aspect hierarchy, each aspect has an indexing of its
component faces, and each component face has a similar indexing of its bounding contours. By
referring to the normals of such well-defined contours in a recovered aspect, we can qualitatively
specify direction rules with respect to an aspect-centered coordinate system. The direction of view
change (in the image plane or on the surface of a viewing sphere) is specified as a vector sum of the
normals to particular contours of the recovered aspect corresponding to the current APG aspect.®
The face events are also defined with respect to these specified contours. For example, we can
predict along which contour in the current aspect a new face will appear or disappear when moving
towards a new aspect.

6.3 A Strategy for Moving the Camera

Using the attention mechanism described earlier in section 5, the search for an object includes a
search for its component volumes. Each recovered volume is characterized by the aspect in which
it 1s viewed. For a given aspect of a volume, we can use the volume-to-aspect mappings in the

9For concave and convex curve segments, the normal at the midpoint is used.
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aspect prediction graph to determine which aspects (if any) are more probable (or stable) than the
current one, by maintaining an ordered list of aspects for each volume, ranked in decreasing order
of their downward conditional probabilities. Conversely, if we have an ambiguous aspect whose
mapping to the hypothesized volume is weak, we can use the aspect-to-volume mappings in the
aspect prediction graph to determine which aspects offer a less ambiguous mapping to that volume.
These aspects, ranked in decreasing order of their upward conditional probabilities, offer an effective
means of disambiguating a given view of a volume.

When we want to move the camera in a direction to get a “better” view, we first check the
APG to see which aspects (neighboring nodes) can be reached from the current aspect (node). The
probabilities associated with the APG nodes tell us to which aspect to move in order to achieve a
more likely view of the volume or to disambiguate it. The arc to this “best” neighbor node encodes
the view change direction (in the image plane) in terms of a function of the normals of selected
aspect contours. We calculate the values of these normals in the image and get a direction for
camera movement with respect to the current aspect.
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Figure 10: The Strategy for Moving the Camera

Our strategy for moving the camera is summarized in Figure 10. Note that if a recovered vol-
ume (and its associated recovered aspect) is unambiguous, no camera motion is computed. If the
recovered aspect is determined to be ambiguous (by looking at the upward conditional probabilities
mapping the recovered aspect to the target volume), then we select from among the aspects belong-
ing to the target volume that aspect, called the target aspect, whose conditional probability to the
target volume is maximized. Given the recovered aspect and the target aspect, we can extract from
the aspect prediction graph the transition that takes us from the recovered aspect to the target
aspect. Due to the compactness of our part-based aspect graphs, a single aspect transition, called
the target transition, is sufficient. Finally, given the target transition and the recovered aspect, we
compute the direction of camera motion in the image plane or on the surface of the viewing sphere
(given an estimate of the distance to the object). This direction is specified by the transition as a
function of the normal directions of the contours comprising the faces in the recovered aspect.

Finally, it should be noted that our strategy for moving the camera is based on disambiguating a
single object part. Due to occlusion by other parts of the object or even other objects, the ambiguous
part may not even be visible from the new viewpoint. In this case, the next least ambiguous view
should be chosen from the APG, and movement to that view should be planned. If, in the worst
case, the ambiguous view is the only unoccluded view of the object, then the attention mechanism
must choose another volume to verify the presence of the hypothesized object.
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6.4 Tracking a Volume Across Views

While moving the camera, we must track the aspect from one frame to the next so that we can verify
the visual events as specified in the APG. Since we have not recovered the part’s 3-D geometry,
we need some way of qualitatively tracking the volume in the image. Our approach to qualitative
object tracking, as shown in Figure 11, combines a symbolic tracker and an image tracker, which
we briefly discuss below; details can be found in [9].

The symbolic tracker tracks movement from one node to another in the aspect prediction graph.
For our viewpoint control strategy, we begin at the node in the APG representing the ambiguous
view (current node). As we move the camera, we will compare the visual events detected by the
image tracker to those events predicted to appear as we move from the current node to the APG
node chosen to disambiguate the volume (target node). From the visual event specification defined
by the arc spanning the current and target nodes, we will add or delete structure from the image
tracker. If new face events predicted to appear by the symbolic tracker cannot be verified by the
image tracker, or the image tracker detects disappearing face events not predicted by the symbolic
tracker, the recovered ambiguous aspect does not represent a target volume in the image.

The image tracker employs a representation called an adaptive adjacency graph, or AAG. The
AAG is initially created from the recovered (ambiguous) aspect, and consists of a network of active
contours (snakes) [22]. In addition, the AAG encodes the topology of the network’s regions, as
defined by minimal cycles of contours. Contours in the AAG can deform subject to both internal
and external (image) forces while retaining their connectivity at nodes. Connectivity of contours
is achieved by imposing constraints (springs) between the contour endpoints. If an AAG detected
in one image is placed on another image that is slightly out of registration, the AAG will will be
“pulled” into alignment using local image gradient forces.

The basic behavior of the AAG is to track image features while maintaining connectivity of
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the contours and preserving the topology of the graph. This behavior is maintained as long as the
positions of active contours in consecutive images do not fall outside the zones of influence of tracked
image features. This, in turn, depends on the number of active contours, the density of features in
the image, and the disparity between successive images. If either the tracked object or the camera
moves between successive frames, the observed scene may change due to disappearance of one of
the object faces. The shape of the region corresponding to the disappearing face will change and
eventually the size of the region will be reduced to zero. The image tracker monitors the sizes and
shapes of all regions in the AAG and detects such events. When such an event is detected, a signal
describing the event is sent to the symbolic tracker.

Conversely, if the symbolic tracker has predicted the appearance of a new face, it will add active
contours to the AAG to pick up the expected face. These contour will form a new cycle where the
new face is expected to appear. If the contours do not lock on to an appearing face, i.e., its area
does not increase due to decreasing face foreshortening, then the image tracker will signal to the
symbolic tracker that the event could not be verified.

7 Results

We test the attention and viewpoint control strategies in the context of a multidisciplinary research
effort exploring active vision in the domain of robotic aids for a disabled child [43]. Through a
touch-screen interface, a child can instruct a mobile robot vision system to identify, localize, and
manipulate 3-D objects in its environment. One of the ways the child can select an object for
manipulation is through a set of object icons on the touch-screen. It is for this particular task that
the attention and viewpoint control strategies are aimed. Once an object 1s found, it 1s highlighted
in the image for the child to confirm. If the child rejects the highlighted object, implying that
he/she wanted some other instance in the image, the search must continue for the next best object
of the chosen class. To support simple manipulation of the objects, the domain of objects that
the system can visually identify consists of the ten volumetric shapes outlined in Figure 1; more
complex objects, modeled as constructions of the ten shapes, will be supported in the future. Thus,
each object consists of one component volume. Finally, each of the ten objects is assumed to be
equally likely.

7.1 Attention

In Figure 12, we present the results of applying the attention mechanism to a scene containing
single-volume objects. In this case, the child has selected the “block” icon, instructing the system
to find the best instance of a block in the image; once found, the instance is displayed to the child.
The child can then confirm that instance as the one they desire, or command the system to continue
looking for the next best instance, and so on. Moving top to bottom and left to right, the first image
shows the results of the region segmentation step; recall that the face topology graph constructed
from the region topology graph is the input to the attention mechanism. The next three images
show the three best instances of the block viewed in its most likely aspect containing three faces.
The faces in the aspect are highlighted in the image. Furthermore, only those contours (boundary
group) used in defining the face are highlighted in the face.

Using Equation 14, the first three volumes received the score of 1.0, 1.0, and 0.86, respectively.
In the third case, region undersegmentation results in the merging of regions from two blocks. The
resulting region does not exactly match the component face of the block aspect. However, a strong
inference to that face can be made from the boundary group which is highlighted. In the next four
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figures, we search for the block given its next best aspect, i.e., that consisting of two faces. The
scores of the best three volumes are 0.48, 0.48, and 0.48, respectively. In the fourth case, we show
a lower-scoring volume (score = 0.33), which is clearly incorrect. During the search process, both
low probability predictions and low scoring recovered features (faces, aspects, and volumes) can be
pruned, resulting in only high quality volumes being recovered. The next three images show the
three best volumes given the lowest probability aspect, i.e., the aspect containing one face. The
scores of these three volumes are 0.22, 0.22, and 0.22, respectively. Finally, in the last figure, we
show the result of searching for the best instance of a cylinder (the only other volume in the image);
the score of the cylinder 1s 0.31.

Figure 13(b) illustrates the results of applying the attention algorithm to find the best instance
of the truncated pyramid (volume 2 in Figure 1) from the segmented region image in Figure 13(a).
In, Figure 13(c) the best instance of the cylinder (volume 5) is shown. Finally, in Figure 13(d), the
attention mechanism has been directed to find the best instance of the barrel (volume 8). Due to
region undersegmentation, the end face of the volume was merged with the body face. Although
the body face was matched to the most likely aspect of the volume, the end face is assumed to be
occluded at the bottom of the recovered volume.

In Figure 14, we illustrate the search for a multi-part object. Figure 14(a) shows the original
image of a coffee cup, while Figure 14(b) shows the results of the region segmentation. The most
discriminating part of the cup (given a small database containing a cup, a hammer, and the ten
single-part objects corresponding to the ten volumes) is the bent cylinder used to model the handle.
The search algorithm then searches for the best instance of the bent cylinder in the image, shown
in Figure 14(c). Then, at regions adjacent to the regions encompassed by the bent cylinder, the
search algorithm searches for the best instance of the remaining part of the cup, 1.e., cylinder, as
shown in Figure 14(d). If, for example, bent cylinders were found at many locations in the image,
then subsequent search for remaining object parts would take place at each of these locations using
a breadth-first search.

Figure 15 gives another example of multi-part object search. Figure 15(a) shows the original
image of a hammer, while Figure 15(b) shows the region segmented image. Since both parts of our
hammer (handle and head) are modeled as cylinders, we have no choice but to search for a cylinder
in the image. The best cylinder instance is shown in Figure 15(¢), with only a portion of the cylinder
being recovered in its most likely aspect. Search for the remaining object part is focused only at
regions adjacent to the first volume. The best connected cylinder is shown in Figure 15(d), recovered
in its second most likely aspect (parallelogram). Note that what we’ve found is the best instance
of a pair of connected cylinders in the image. Until we reason about the connections between the
two cylinders, e.g., which one is connected at its side and which is connected at its end, we don’t
know at this point which is the handle and which is the head.

7.2 Viewpoint Control

Figure 16(a) presents the results of searching for a block (volume 1) in the image. Although the
most probable aspect could not be recovered, the second most probable aspect (containing two
faces) was recovered. This aspect is ambiguous (projection of block (volume 1) and bent block
(volume 4)). Since we are searching for the block, we use the recovered aspect to position ourselves
in the aspect prediction graph. Using the aspect probabilities encoded in the aspect prediction
graph, the system knows which aspect should be recovered to disambiguate the aspect. In addition,
the arc between the recovered aspect and the target aspect (in the aspect prediction graph) encodes
in which direction the sensor should be moved (in the image plane) in order to encounter the target
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Figure 12: Searching for Volumes 1 (block) and 5 (cylinder) (see text for explanation
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()

Figure 13: Searching for Volumes 2 (truncated pyramid), 5 (cylinder), and 8 (barrel)
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Figure 14: Searching for a coffee cup in an image: (a) original image; (b) region segmented image;
(c) best instance of the cup’s most discriminating part (bent cylinder); and (d) best instance of the
cup’s body (cylinder) adjacent to the handle.
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Figure 15: Searching for a hammer cup in an image: (a) original image; (b) region segmented image;

(c) best instance of a hammer part; (d) best instance of a second hammer part adjacent to the part

in (b).
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Figure 16: Moving the Sensor to Disambiguate Volumes 1 (block) and 5 (cylinder)

aspect. In this case, we can move either to the left or the right to bring a new face into view. We
arbitrarily move to the left along the surface of a fixed-size view sphere and obtain the view shown
in Figure 16(b).

For these experiments, a much simpler tracking mechanism was used, in which we assume that
the position of the aspect in the image does not change significantly in relation to the sizes of its
regions. To verify the target aspect (highlighted in the image), we invoked the attention mechanism
and restricted it to those regions in the new image that intersect with those regions in the old image
defining the ambiguous aspect. In future work, we will integrate the active contour tracker reported
in [9]. In a second example, shown in Figure 16(c), a cylinder is recovered in its second most likely
aspect (common to volumes 1, 2, 3, 4, 5, and 10). Guided by the aspect prediction graph, the
camera 18 moved to the left and the attention scheme is guided to disambiguate the volume by
searching for its most likely aspect, as is shown in Figure 16(d).

A third example is shown in Figure 17. Searching for the block volume yields a recovered aspect
containing a single face (Figure 17(a)). Since the aspect is ambiguous, the system, in trying to
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Figure 17: Moving to the Least Ambiguous Aspect

verify the block volume, can choose to move either towards one of the sides or towards one of the
corners. Moving to the side would would reveal the two-faced aspect of the block volume, which is
still ambiguous. The system therefore moves towards a corner to reveal the unambiguous aspect of
the block (Figure 17(Db)).

In the final example, shown in Figure 18, we again begin by searching for a block volume. Once
more, the best recovered block appears as the single face aspect which is ambiguous, as shown in
Figure 18(a). Moving in the direction of a corner, the system attempts to verify the unambiguous
aspect of the block. As shown in Figure 18(b), the results of the verification are very weak, with
only a portion of the original face contributing towards the unambiguous aspect being sought. Since
the score of the recovered aspect falls far short, the verification fails, and it is concluded that the
highlighted object is not a block. At this point, two options are available. The bottom-up shape
recovery strategy, as outlined in [14], can be applied to both frames, with the added constraint
that the recovered aspect in the two frames must be consistent with a single volume. Alternatively,
the attention strategy can be applied using volumes whose aspects include the aspect recovered in
Figure 18(a). Figures 18(c) and (d) show the search for the cylinder volume in the second frame;
two different groupings give rise to the verified cylinder.

In choosing which alternative volumes to search for when invoking the attention mechanism, one
can order the search according to the conditional probabilities mapping aspects to volumes. Using
this ordering, both the tapered block and pyramid have a higher aspect-to-volume mapping (between
the single parallelogram face and their respective volumes) than the cylinder. The algorithm would
therefore attempt to verify these two volumes before attempting to verify the cylinder volume. The
cost of such a sequential search must be compared to the cost of a bottom-up interpretation focused
at the face where the original aspect was recovered.

& Limitations

Although the augmented aspect hierarchy can be computed for any set of volumetric parts which
project to collections of faces (aspects), our representation does assume that objects can be repre-
sented as constructions of volumetric parts. Although this does cover a large class of man-made and
natural objects, there are many object classes for which this modeling strategy is inappropriate. In
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Figure 18: Failing to Verify a Volume Through Viewpoint Control
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addition, the Bayesian formulation used in the attention mechanism assumes a closed world con-
sisting of objects constructed only from the set of volumetric parts defining the augmented aspect
hierarchy. Thus, in a domain where objects not contained in our database appear in the image,
the bottom-up conditional probabilities used in computing feature utility may be inaccurate. The
active contour network tracking mechanism does not currently support occluded parts. For real
objects composed of multiple parts, part occlusion is inevitable, and we are currently extending our
tracker to handle region deformations due to occlusion. Perhaps the most significant limitation of
our system is its reliance on salient homogeneous regions in the image that can be easily segmented.
Real objects contain a plethora of detail that must somehow be abstracted out when recovering the
face components of an aspect. We are currently investigating methods by which such detail can be
filtered out of the face topology graph.

9 Conclusions

A major trade-off in object recognition systems is the balance between effort expended in feature
recovery and effort expended in verification. Many approaches to recognition shift this balance
towards verification, requiring accurate pose estimation in order to verify weak indexing features.
Furthermore, since the recovered features are so common in the image, many possible correspon-
dences between image and model features must be hypothesized leading to high computational
complexity. In this paper, we have shown that regions offer much less uncertainty in hypothesising
objects. Through a set of probabilities derived from a statistical analysis of a set of volumetric parts
over the viewing sphere, we have presented an attention mechanism which can focus the search for
an object at a much smaller set of locations in the image. Moreover, these locations can be evaluated
and ranked, allowing a search to begin at more likely locations.

In examining the balance between recovery and verification, we have clearly moved towards
recovery. Although more discriminating features mean less uncertainty and lower search complexity,
there is a cost in attempting to recover more complex features (in our case, a set of regions and their
bounding shapes). Our solution to this problem is to pass along this cost to a dynamic sensor. We
assume that some relatively unoccluded, fronto-parallel surfaces will project into regions that can
be quickly and cheaply extracted using simple region segmentation techniques, as is demonstrated
in section 7. We use this limited knowledge to intelligently guide the sensor to a position where the
object can be disambiguated.

The ability of a vision system to move to a new location in order to disambiguate a view of an
object enhances its ability to recover and recognize objects. To provide a vision system with this
capability, we must address a number of important questions, including: How do we know that a
given view is ambiguous?; What view is less ambiguous?; How do we move the camera system to
encounter the less ambiguous view?; and finally: What should we look for as we move? The approach
proposed in this paper addresses the above four questions by combining a probabilistic augmented
aspect hierarchy, encoding object (part) views and their likelihoods, with a highly compact aspect
graph, encoding aspect transitions and visual event specifications. The resulting representation
effectively unifies the processes of attention and viewpoint control, providing a more integrated
approach to active object recognition.
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