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Abstract

Biederman’s introduction of geons to the vision community has spawned considerable interest
in building geon-based vision systems. However, numerous issues must be addressed before such
systems can make a practical contribution to machine vision. At IJCAI, 1993, a group of
distinguished researchers, each of whom has worked with geon-based recognition, was brought
together to form a panel whose goal was to identify and discuss these issues. This paper is based
on that panel discussion.

To appear in Image and Vision Computing.



1 Introduction

In 1985, Biederman introduced to the computer vision community a theory of human visual object
recognition called Recognition by Components (RBC) [5]. The main tenets of RBC, supported by
psychophysical experiments [9, 11], are that: (i) the basic-level representation recovered from an
image during primal accessis metrically invariant, i.e., invariant to scale, translation, or orientation
in depth, and (ii) the basic-level representation is composed of parts and their interrelations. In
addressing these two principles, RBC also suggests that from nonaccidental contour relations in
the image, a set of contrastive dichotomous (e.g., straight vs. curved axis) and trichotomous (e.g.,
constant vs. tapering vs. expanding/contracting cross-sectional sweep) 3-D volumetric primitive
properties can be determined. The Cartesian product of the values of these properties gives rise
to a set of volumetric primitives, or parts, which Biederman called geons. The notion of quickly
recovering a set of object-centered, qualitative parts (geons) from an image, both without a priori
knowledge of the scene contents and without expending any effort on depth recovery, quickly
attracted the attention of the object recognition community. Since then, a number of researchers
from around the world have engaged in building computational models based on Biederman’s RBC
theory.

Beginning in 1988, Bergevin and Levine [2, 3] introduced their PARVO system, representing
the first significant effort to build a vision system based on geons. From manually segmented line
drawings (and from range data in 1991 [44]), they were able to recover and recognize a variety
of multi-part objects. Then in 1989, Dickinson, Pentland, and Rosenfeld [26] introduced a hybrid
object representation integrating object-centered (volumes) and viewer-centered (aspects) models,
with the object-centered models composed of parts closely resembling geons. This was to become
the backbone of the OPTICA system which recognizes 3-D objects from real images [28, 27].

A long-time advocate of recognition-by-parts, Pentland introduced a parametric part represen-
tation to computer vision, using deformable implicit functions such as superquadrics [47]. Similar
to geons but with continuous rather than qualitative properties, this type of representation has
been successfully used for recognition in segmented data [48], and in modeling complex natural
objects [52].

In 1991, Munck-Fairwood investigated a logic programming approach to the recovery of geons
from a manually segmented line drawing [33]. Recently, he has integrated causal probabilistic
networks into his approach, assigning confidence measures to Biederman’s dichotomous and tri-
chotomous properties [34]. More recently, Du and Munck-Fairwood have applied their approach to
geon recovery from real 2-D imagery [30]. Jacot-Descombes and Pun have explored probabilistic
methods for distinguishing among metrically different instances belonging to a single geon class
[39]. Diverging from the analysis of labeled contours, Raja and Jain explored geon recovery from
range data [49]. Their technique, which recovers geons from superquadrics fitted to range data, has
been successfully tested on range images of real geon-based objects with straight axes. Since then,
Dickinson, Metaxas, and Pentland [24] and Wu and Levine [54] have also looked at geon-like part
extraction from range data.

Eklundh and his colleagues are building an active vision system whose goal is to recognize geon-
based objects from images acquired by their stereo head [31]. In recent work, Eklundh and Olofsson
were the first to study the problem of geon-based object maintenance (of position, orientation, and
appearance) over time [32], a critical problem facing the design and construction of geon-based
active vision systems.

During these efforts by the vision community to build geon-based recognition systems, Bieder-
man was exploring his own computational models for geon recovery. In 1988, Hummel, Biederman,
Gerhardstein, and Hilton began exploring connectionist models for geon recovery [37], while in



recent work [36], Hummel and Biederman report a neural net model for shape recognition, using
dynamic binding, that can recognize simple geon-based objects from line drawings.

Despite the growing interest in geons in the vision community, the above systems are still
being applied to very constrained domains in which segmentation is often performed manually,
lighting is tightly controlled, or the objects themselves are unrealistically simple. Nevertheless,
the motivation for building generic recognition systems is strong. If a robotic vision system is to
move about its environment, quickly recognizing new object exemplars from a large database of
generic, articulated object models, as well as learning new object descriptions, it must have the
capability to recover and match image representations which capture the coarse shape of an object
in terms of its parts. Geons have emerged as the most popular shape representation for generic
object recognition. However, before successful geon-based recognition systems can be realized, a
number of important issues must be addressed, including:

e Are geons an appropriate modeling vocabulary for 3-D generic object recognition systems? If
so, for what classes of objects are they best suited? If not, can the representation be altered
or enhanced to make them more usable?

¢ What are the major obstacles in recovering geons from real imagery? What image features
should be extracted in order to recover geons?

e What kinds of architectures and control strategies are appropriate for geon-based recognition?

e Finally, with the growing interest in active vision, what issues face the design and construction
of geon-based active recognition systems? And what role can geon-based recognition play in
a larger context where, for example, object manipulation may be required?

At the 13th International Joint Conference on Artificial Intelligence (IJCAI), Chambery, France,
1993, Dickinson chaired a panel discussion which brought together a number of researchers, each
with first-hand experience in building geon-based recognition systems to address the above issues
[19]. In the following sections, these researchers evaluate their progress and assess the potential of
geon-based object recognition.

2 Testing the RBC Theory: An Approach Respecting the General
Principles and the Computational Hypotheses

Robert Bergevin
Laval University

I see the original RBC proposal by Biederman as made up of two loosely connected sets of pre-
dictions: (i) the general principles, and (ii) the computational hypotheses. The general principles
state that:

1. A line drawing which represents the discontinuities in an image is an efficient description of
the image and is sufficient for the primal access task.

2. Objects are better represented and analyzed by decomposing them into their natural compo-
nents (parts).

3. A qualitative description of the components is necessary and sufficient to permit fast access
to a large database of object models.



4. Non-accidental instances of viewpoint-invariant features in the 2D line drawing are sufficient
to permit fast access to the qualitative model of a 3D object.

5. Primal access for visual object recognition is obtained by matching a description of the spatial
structure of components making up an object to an indexed database of models in a similar
representation.

On the other hand, the computational hypotheses state that:
1. Five specific classes of 2D line groupings are sufficient to access the parts representation.
2. Segmentation should happen at concavities in the outline of an object.

3. The geons, a subset of the generalized cylinders, form an efficient qualitative shape represen-
tation for the parts which is suitable for the primal access task.

4. The symbolic descriptions for objects and models should include geon labels, aspect ratios,
and relative sizes of parts.

While many psychological results directly support the general principles [6, 9, 13], the computa-
tional hypotheses are more like extrapolations or predictions regarding an actual implementation.
This was meant to fill the gap between the levels of study in the psychological and computational
perception fields (the “what (is needed)” and the “how (is it obtained?)” problems, respectively).

2.1 Line drawings

The main assumption of RBC is the suitability of single view line drawings for primal access. This,
together with the small set of volumetric primitives making up the geons, represent, in my opinion,
the atomic kernel of the theory without which the goal of rapidly recognizing arbitrary unexpected
objects cannot be attained. Although in some circumstances it could make sense to diverge from
these principles and, say, analyze multiple 2D views of an object, recover the object from range
data, reconstruct quantitative surfaces, volumes, or exact models, etc., the resulting system would
not solve the primal access task as defined in RBC.

Regarding these assumptions, a well acknowledged fact in the computer vision field is the
difficulty to extract a very good line drawing in an uncontrolled imaging situation, e.g. when the
lighting and viewpoint are arbitrary. Two approaches have been taken around this problem in the
geon research community. Most groups assumed the (usually ideal) line drawing as given from the
outset. Others decided to extract line drawings from real data (usually from range images) but
had to restrict themselves to very simple scene with ideally shaped custom-made objects. From
the point of view of low-level vision processes, the main question to be addressed is how one
goes from imperfect data from a non-ideally shaped object to the much simplified and compressed
description in terms of an idealized line drawing. A number of ideas have been proposed in the
computer vision community to abstract a non-ideal shape by fitting surface or volume models to
depth data. Similarly, many two-dimensional line fitting and multi-scale edge extraction methods
exist. However, not much is known about extracting appropriate edges of complex, free-form
and textured three-dimensional objects from noisy two-dimensional intensity images. Among the
reasons for this state of affairs is the non-availability of a general-purpose approximation model
for three-dimensional shape. One interesting piece of research, in this respect, is the study of
quantitative invariant properties of the projected contours of generalized cylinders. Unfortunately,
the results of this research are also difficult to apply to intensity images of real scenes comprising
complex objects [55].



2.2 PARVO

In my work with the PARVO (Primal Access Recognition of Visual Objects) system, two main goals
were pursued [3, 4]. First, I aimed to determine what are the underlying assumptions about the
geometric properties of objects and their line drawings that make them acceptable to the kind of
processing proposed in RBC. That is, what objects may be recognized with such an approach?; what
is their complexity?; etc. Second, given such acceptable line drawings (ideal or noisy), I wanted
to develop methods to actually perform the feature extraction, part segmentation, geon labeling,
object description, and model matching stages to determine whether unexpected object recognition
is possible using the RBC approach under realistic conditions. In other words, given the huge
difficulty of the generic object recognition problem, I decided instead to investigate the capabilities
and limitations of an actual computer vision system to be built according to the principles and
hypotheses of RBC, which are themselves based on a significant piece of research in human image
understanding. From the obvious fact that geons cannot be an appropriate modeling vocabulary for
all existing objects, I tried to determine what generic set of objects this representation is appropriate
for, if any, while making more precise and explicit the architecture and control strategies of an object
recognition system based on RBC.
My main conclusions from this work with PARVO are that:

1. Primal access geon-based recognition is possible for a large number of man-made objects.
Objects selected in my experiments are of the same type as those used in Biederman’s work
i.e. they are part-based by construction. Still, modeling power of geons appears impressive,
at least from a high-level point of view, given the large diversity of recognized objects.

2. Recovery of geon-based descriptions from natural objects is likely to be very difficult using
the RBC approach. Besides obvious reasons such as the idealized nature of the geons and
the coarseness of the attributes that are to be extracted from the intermediate line drawing
representation of free-form textured objects, there is the fact that many natural objects simply
cannot easily be described as an assembly of a few volumetric parts. On the positive side,
the growing process of many natural objects give rise to a limb structure reminiscent of an
assembly of elongated parts, which is appropriate for RBC and PARVO.

3. Explicit part segmentation is needed and may still be possible even if some elements of
the object or line drawing do not respect the implicit assumptions on acceptable shapes.
Experiments with line drawings having missing or spurious features (lines, faces, parts, etc.)
were successful in demonstrating this inherent capability of RBC and PARVO.

4. Face extraction and labeling is necessary for proper geon labeling. The main reason being
the necessity to address robustness and uniqueness issues which leads to the insertion, at this
and other processing stages, of a verification or validation step.

5. Errors arising from blind labeling of the parts (i.e. without explicit verification of the hy-
potheses) are likely to destroy the indexing power of the geons. Fortunately, verification steps
in PARVO are “wired-in” and do not destroy the bottom-up nature of the system. Besides,
no iterative feedback to lower levels is needed given the redundant nature of the part-based
representation of objects by RBC and PARVO.

6. Parallel architectures and algorithms are necessary to cope with the combinatorial complexity
arising from manipulating sets of features. The implemented processes in PARVO were all
designed with this constraint in mind.



2.3 Grouping and MAGNO

My recent research [1] on these topics has focused on the problem of deriving more efficient and
robust contour grouping processes. Such processes, operating at multiple scales, are meant to
rapidly identify significant structured subsets of contour elements in an intensity image of a complex
scene. The identification of these subsets is seen as a means towards individual object detection
and segmentation, itself a prerequisite to the part decomposition and feature extraction steps as
implemented in PARVO. As such, the grouping processes could help bridge the gap between noisy
intensity images of arbitrarily viewed multiple-object scenes and “PARVO-acceptable” object-based
geometrical contour descriptions. In other words, grouping might help relax the constraints on the
quality of the extracted line drawing. For instance, it makes possible the removal of spurious,
non-geometric, contours and the restoration and completion of partially missing or noisy contour
segments.

MAGNO (Multi-level Access to Generic Notable Objects), a front-end to PARVO is presently
under development. This module is going to extend the primal access model of unexpected object
recognition to a more realistic situation where an active agent (e.g. mobile robot) controls the
positioning and orientation of a camera inside a room; the goal being that interesting objects in
the scene be detected and centered in the field of view to ease their proper recognition by PARVO.
Multi-level grouping processes and qualitative depth cues are to be at the center of MAGNO’s
processing. MAGNO and PARVO represent the two complementary systems needed to address the
“where (are the objects?)” and “what (are those objects?)” aspects of object recognition.

At this stage, MAGNO is going to limit itself to intensity images as input, respecting the
principal assumption behind RBC and primal access object recognition. Moreover, the domain
of interest of MAGNO and PARVO, as an integrated system, will be similar to the domain of
PARVO, which I consider a success with respect to its stated goals. That is, it is not planned to
invest much efforts in the near future to extend the domain of applicability of PARVO beyond what
has been identified as appropriate from a geon-based point of view. Instead, the demonstration
that this approach is applicable and useful in a realistic experimental setting, using active control
for the acquisition of intensity images from complex scenes containing real man-made objects, will
be aimed at.

2.4 Conclusion

The success with PARVO and the still incomplete understanding of the complex issues related to
three-dimensional shape representation determined the present direction of my object recognition
research. Application of the whole approach to a wider-scope domain of objects encompassing,
for instance, man-made or natural textured and free-form objects remains an ultimate goal to be
kept in mind. However, any serious progress in this direction will depend on the availability of
a new, and perhaps complementary, shape representation originating from progress in biological,
psychological or computational vision research.

In the longer term, the basic-level type of recognition represented by MAGNQO and PARVO
could also be a starting point to both subordinate-type and superordinate-type recognition, in the
terminology of human image understanding research. In the former case, a more specific recognition
and pose suitable, say, for robotics manipulation is to be obtained using quantitative object and
part models. In the latter case, a more generic recognition is to be obtained using higher-level
abstraction and function-based reasoning.



3 Recognition-by-Geons: 1995’s Current Progress and Current
Challenges

Irving Biederman

University of Southern California

Eric E. Cooper

Towa State University

John E. Hummel

University of California, Los Angeles (UCLA)

In a fraction of a second humans are able to comprehend novel images of objects and scenes
on the basis of their shape. Geon theory [6, 7, 8, 36] offered an account of this phenomenon
characterized by four assumptions: a) Objects are represented as an arrangement of simple parts
(geons), b) The geons can be distinguished by a small number of (typically binary) differences in
viewpoint invariant properties (VIPs), such as straight vs. curved, rather than fine differences in
metric properties, such as aspect ratio, ¢c) The relations among the geons are explicit, such as top-of
or perpendicular-to, as part of a structural description, rather than implicit in a coordinate space,
and d) A relatively small number of geons is sufficient to distinguish objects at a basic- (or entry-)
level, such as between a table and an elephant.

We review the current status of the theory and its challenges. Since the theory was first
proposed almost 10 years ago, considerable evidence has accumulated supporting several of its
basic assumptions and extending its scope to the vast majority of subordinate-level distinctions that
people make. We will first consider two frequently made criticisms of geon theory: a) that geons
are inadequate for representing all objects, and b) because geons are activated from orientation and
depth discontinuities, and current systems in computer vision cannot extract such discontinuities
with high accuracy, we should turn to another type of representation. On closer analysis, neither
criticism appears to carry much weight in that a) geons do not represent well what people do
not represent well, and b) human behavior offers an existence proof that orientation and depth
discontinuities can readily be determined, bottom up. We will then review the empirical results
relevant to geon theory, current theoretical work, and current challenges.

3.1 Two Criticisms of Geon Theory
3.1.1 Criticisn: Geons cannot represent all objects.

Geon theory offers an account of real-time entry-level shape classification by humans—what Bie-
derman [6] referred to as “primal access.” It will be helpful to consider what geon theory is not,
as this has been the source of some misdirected commentary, e.g., [41, 43]. Geon theory is not a
full graphics system. Consequently, there will be many image distinctions that will not be easily
depicted by geons, such as when an object or object region does not readily decompose into parts,
as occurs with some sculptures and animal bodies, or when an object or region of an object is com-
plex and/or highly irregular, as with trees or bushes. But, as predicted by geon theory, differences
between such shape variations are not readily employed by people in real-time classification, nor
are they treated as invariant under depth rotation, nor do they form the basis of any spontaneous
classification in any culture [12, 18]. Put another way, though we can see a particular oak tree in
all its complexity, it is not at all clear that we require its exact shape to achieve classification, nor
would we be able to readily distinguish that tree from others at a new orientation in depth, nor



would we even think about the differences between that tree and other oak trees as the basis of
a useful class [10, 12]. The shape variations that are not easily represented by geon theory thus
appear to be the same kinds of shape variations that people do not represent well. Whether the
difficulty of expressing these kinds of image variations is a shortcoming of geon theory as a general
purpose object recognizer may well depend on how one defines ”general purpose object recognizer.”
Indeed, Jan-Olof Eklundh astutely raises the question as to whether such image variations (e.g.,
arising from an image of bushes) should even be considered as variations in shape.

Is it possible for geon theory, nonetheless, to provide a principled representation of highly
complex irregular objects or objects that do not decompose into parts? Space precludes an extensive
discussion of this issue, but it may be possible for the Hummel and Biederman network [36] to
represent such objects by employing the same units that are successful for simple, regular objects.
A highly complex, irregular object, such as a bush, will result in accidental synchrony preventing
activation of a consistent geon structural description. The system will then “saturate” into a texture
description, defined in terms of low level (layer 2) contour and blob descriptors. Similarly, a simple
but irregular object could be represented by whatever image attributes it would activate. In neither
case would a geon structural description be activated, but the object could be easily distinguished
from other objects only if they differed in their low level feature descriptors, such as straight or
curved, an expectation consistent with the psychophysical data, e.g., [11, 12].

3.1.2 Criticism: Edge extraction is difficult

Geon theory posits that the determination of the orientation and depth discontinuities in an image
is sufficient for the vast majority of shape classifications that people achieve. Indeed, for multipart
objects, there is virtually no difference in identification performance between full color slides and
line drawings [13]. Although people evidence little difficulty in determining these discontinuities
from a gray level image of unfamiliar objects, extraction of these discontinuities remains a daunting
challenge to most computer vision systems. Biological vision thus furnishes an existence proof and,
therefore, an inspiration to attempts at achieving edge extraction by machines. From this perspec-
tive, the appeal to stereo and motion by the “active vision” community represents a premature
admission of defeat.

3.2 Empirical Results
3.2.1 Is recognition part-based?

[6] showed that recognition is impossible (median accuracy 0%) if contour is deleted from an
image of an object such that the part structure cannot be recovered. As long as the parts can be
recovered, recognition can be highly accurate (median accuracy 100%) even with a considerably
greater proportion of the contour removed. Results from priming experiments [9], in which the
speed and accuracy of perceiving a briefly presented picture is facilitated by a prior presentation of
arelated picture, provide direct support for a simple, parts-based representation that is intermediate
between a) local features such as filter outputs or image edges, and b) a global model (shape or
concept) of the object. In these studies, complementary pairs of contour-deleted images of an object
were created in which each image had half the vertices and edges of each geon. Presumably, the
same geons could be activated from either image but through very different image features.

In a first (priming) block of trials, subjects named as quickly and as accurately as possible,
one of the contour-deleted images. Each image was briefly presented (for a fraction of a second)
followed by a mask. On a second block of trials, subjects named either the original or the com-
plementary member. Even though there was no contour in common between the two members



of a complementary pair, the remarkable result was that the speed and accuracy of naming the
images was equivalent. Performance was much worse for objects with the same name but a different
shape, e.g., an upright piano when a grand piano was initially shown, indicating that the priming
was visual, rather than verbal or conceptual. A further control for specific concept priming was
that complementary pairs of images composed of different (intact) geons showed no visual priming.
That is, all the priming could be attributable to activation of a representation of the geons and
relations - none to the activation of a specific object model, e.g., a grand piano or a round table,
or the image features. A striking subjective impression is that the members of a contour-deleted
complementary pair appear to be identical, as long as the same geons can be activated.

3.2.2 Are the parts geons?

[8] showed that variations in VIPs, such as changing the base of a lamp from a cylinder to a brick,
have a more significant effect on an object’s real-time classification than variations in the geon’s
aspect ratio. In that experiment, the magnitude of the aspect ratio differences were selected so
as to be more detectable than the geon differences in a task where subjects had to judge whether
two object images were physically identical. We have investigated the extent to which a two-
layer recognition system [42] that has been highly successful at face recognition, could produce the
advantage shown for recoverable vs. nonrecoverable images and the equivalence of complementary
images. The input layer of the system consists of a lattice of Gabor-filters at various scales and
orientations that can serve as an approximate model of V1 simple cells. The output of these kernels
is mapped onto a representation layer that stores the activation values and performs standard
matching functions in determining the similarity between a stored image and a probe image. The
system does not explicitly represent any intermediate entities such as edges, surfaces, or parts,
nor does it explicitly distinguish VIPs or relations. The system showed very high accuracy in the
recognition of two frame grabs of the line drawings in the previously described experiments, but
its performance manifested none of the effects shown by human observers in those experiments. Its
recognition performance was equivalent for recoverable and nonrecoverable images, it was worse
on complementary images than the originals, and it did not show the greater sensitivity to VIP
compared to metric differences.

3.2.3 Is recognition aspect invariant?

In contrast to sets of objects that are not distinguished by geon differences, [11] showed that objects
that differ in geons are recognized with little or no cost from rotation in depth, as long as the same
part and relations were in view. In general, the availability of distinctive VIPs allows objects to
be recognized from novel viewpoints, in contrast to what would be expected from certain “view-
based” accounts that posit no special status for VIPs. Without distinctive VIPs, enormous costs are
evident in attempting to recognize objects from new orientations [8]. The invariance to viewpoint
also holds for changes in size, position, and mirror reflection [17].

3.3 Modeling: Hummel and Biederman’s JIM

A neural net (NN) implementation of geon theory, JIM [36], takes a line drawing of an object as
input and recruits a unit that is invariant over translation, size, and rotation-in-depth. The unit
represents a structural description (geons + relations) of the object. The model’s capacity for
structural description derives from its original solution to the binding problem of neural networks.
The input layer consists of a lattice of orientation-tuned cells. Fast Enabling Links (FELs) between



cells that are collinear, coterminating, or closely parallel cause those cells that are currently acti-
vated by one geon to fire in synchrony but out of phase with the cells activated by another geon.
The synchronous activity in a single time slice is used to bind independent units representing an
object’s geons, its attributes (e.g., vertical) and relations to other geons (e.g., above). For example,
given an image of a vertical cylinder above a horizontal brick, the units for cylinder, vertical, and
above will be induced to fire in synchrony with one another but out of synchrony with the units for
brick, below, and horizontal. Limitations in the temporal bandwidth of firing results in accidental
synchrony causing a large number of elements to be perceived as texture unless irrelevant activity
is suppressed by attention. In general, NN accounts have much to recommend them in this area.
Their capacity to handle degraded and missing information and the availability of algorithms to
exploit statistical learning are just two of the advantages of such formalisms.

3.4 Challenges
3.4.1 Are there a small number of visual primitives?

We (Sven Dickinson, Sandy Pentland, David Wilkes and myself) are investigating this issue in the
context of aspect graphs. Are there a limited number of part types that would be distinguishable
from all other part types over large regions of the viewing sphere generating the aspect graph?
For example, a brick can be identified as such from almost any viewpoint. If the areas of the
viewing sphere corresponding to each interpretation are converted to probabilities, then geons have
the property of low uncertainty in the Shannon sense. Is this a good criterion for identifying part
types for human recognition? One attractive feature of this conceptualization is that one can define
geons to be the set of volumes that have minimal viewpoint uncertainty. Low viewpoint uncertainty,
moreover, may yield optimal conditions for a self-organizing network to develop hidden units that
function as geon detectors. However, aspect invariance is not the only constraint that is likely to
prove important. A given aspect, such as a rectangle, might be a possible aspect for a large number
of other simple volumes, e.g., a brick, a wedge, a cylinder, a curved cylinder, among others. Other
aspects might be a possible projection of a small number of volumes. We thus have to consider not
only the uncertainty of the mapping from volumes to aspects but, if the aspects are to serve as the
basis of recognition, the uncertainty of the mapping from aspects to volumes.

3.4.2 Can the binding processes assumed by JIM be fast enough to account for real-
time recognition?

Can the mechanisms of contour binding and geon activation be completed quickly enough to account
for 100 msec recognition times? An elaboration of JIM by [38] posits that an unbound representation
of the image might be classified in 100 msec, but the binding necessary for invariance and memory
might require 300-700 msec; [14] presents evidence for this possibility.

3.4.3 Irregular objects

As noted earlier, geon representations are not suitable for representing objects that do not readily
decompose into simple parts or are highly irregular. Differences among such objects, however, tend
not to define boundaries between basic level objects nor do they evidence the viewpoint invariance
shown by objects that are readily described as an arrangement of geons [18]. A possible benefit
from employing a neural network representation is that it can offer some capacity for achieving
recognition (through partial activation) in the face of the ambiguity often inherent in images of
such objects. Nonetheless, such objects are ultimately classified and a complete account of object
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recognition would include how such objects are represented. In many cases, when classification
cannot be achieved through a geon structural description, it is accomplished though a classification
of texture, position in the scene, or other characteristics.

3.5 Middle-down constraints

One advantage of assuming a geon-type of representation is that one can exploit “middle down”
properties of generalized cylinders (GCs, of which the geons are a partition) as reported by Zerroug
and Nevatia [55]. There are a number of regularizing assumptions that people employ in interpreting
their visual world. These assumptions include symmetry, parallelism, orthogonality of angles, and
the orthogonality of cross sections and axes. Unless these assumptions are made, Zerroug and
Nevatia conclude that the pose, and therefore the shape, of an object may be indeterminate.

3.5.1 Structural description vs. a coordinate space

Geon theory posits a structural description in which units for explicit relations (e.g., above, per-
pendicular to) are bound to geons and attributes of geons (e.g., vertical axis much longer than
diameter of cross section). Other representations assume a coordinate space in which there is no
distinction between parts and relations. Some evidence that is consistent with a structural descrip-
tions derives from [40] who showed that cells in the Inferior Temporal Cortex (where, presumably,
high-level object representations are stored) are tuned to complex features that are largely trans-
lationally and size invariant and appear to be distinguishable by VIPs. If it is shown that the
tuning of these cells is invariant with their local context, it will be further evidence that these cells
participate in an “anding” operation in their representation of objects in a manner suggesting a
structural description. It remains to be seen, however, whether cells can be found that explicitly
code relations, independent of shape.

3.5.2 Development of object recognition capabilities

There is ample evidence that adult neural connectivity could not have been genetically determined.
Although genetics provides a rough scaffolding for determining what statistics of images are going
to affect connectivity, the actual organization must be activity dependent. Assuming that object
recognition capacity develops from viewing objects and scenes, then this experience, by definition,
is viewpoint dependent. From robust statistics of such images, general aspect-invariant capaci-
ties might develop. How these aspect-invariant capacities for object recognition develop from the
statistics of viewpoint-dependent experiences is one of the great challenges in the developmental
neurobiology of object recognition.

3.6 Extensions to subordinate level concepts and scene perception

Although geon theory was initially proposed to account for basic-level classification, [12] discusses
its extension to almost all the subordinate level classifications that people readily make. One kind
of these classifications is where large geon differences exist, such as that between a round table and
a square table. A second type is where the subordinate classification depends on small viewpoint
invariant properties, the location of which is determined by the initial classification. Thus, people
look for the name or logo in distinguishing a Toyota Camry from a Lexus, but the search for that
information is dependent on an initial classification that the object is a car. [7] includes a discussion
of how “geon clusters” can form the basis of quick access to the interpretation of a scene.
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3.7 Conclusion

Although geon theory is still evolving, it offers a unified account of a broad range of empirical results
of real-time human entry- and most instances of subordinate-level classification performance and
certain aspects of scene recognition. These processes are the fundamental routes by which we gain
access to knowledge about our visual world.

4 Geons: A Viable Approach for Computer Recognition of Generic
Objects?

Jan-Olof Eklundh
The Royal Institute of Technology

Visual object recognition is a wide and unwieldy subject on which computer vision has made
but limited progress. One reason for this may be that problems range from recognizing known
objects to general categorization, and that a common framework therefore may be elusive. Consid-
ering recognition of generic objects using volumetric primitives, like geons, can in this perspective
form an attractive middle ground. Although it does not encompass all thinkable types of objects,
since some natural objects, such as bushes, may not even be characterized by their shapes, it does
provide a rich enough world to be of interest. Moreover, it is also known that geon representations
allow indexing and hence rapid recognition. Finally, even though categorization problems in their
most general form can hardly be addressed if only shape is used, recognition by shape primitives
does apply to some of them. Notwithstanding important advances in the past few years, there are
several critical issues to be addressed before we know how far the geon-based approach will take
us. I will discuss some of these and how I think they can be treated at least in a general sense.

The first issue concerns how geons can be recovered from imagery. Most high level work has
in this field, like in other recognition work, been based on perfect or near-perfect line-drawings.
This is certainly not a realistic way to go. However, geons are qualitative in nature, and could
be derived by some shape abstraction principle, which fits or associates primitive shapes to data.
Several schemes in this vein have been suggested in the literature. However, a crucial requirement
is that the typical geon properties should be made explicit, e.g., properties like being flat or curved,
growing or tapering, etc. This is not generally the case for approaches based on fitting methods,
and may require non-linear techniques or cause uniqueness problems. Another important aspect is
the treatment of structures at different scales. Generally speaking, I don’t think we know how to
handle these problems, but I do believe that there exist promising methods.

The second issue is about the use of depth information. In his work on human recognition,
Biederman is using line-drawings only. I think one must be careful in drawing conclusions about
machine vision approaches from that. The display situations are such that the subject sees the
object clearly separated from other objects in the fore- and background. Unless qualitative depth
is provided either from accommodation cues or from binocular or other cues, a machine vision
system using images with a large depth of field is faced with difficulties. Truly, Lowe and others
have shown that recognition can be done in static monocular images. However, I think that then
the possibilities of performing rather complex types of reasoning are needed, which goes against
the general advantages of geon-based recognition. In principle, I feel that the problem should and
can be posed in the presence of qualitative depth information, which can be used for segmentation
and disambiguation. On the other hand I think that having dense depth information from stereo
reconstructions or range sensing defines a completely different problem, and also a problem that is
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mainly of a technical character.

The third issue concerns whether the full geons need to be recovered or if observed subparts can
have enough indexing power. Biederman has convincingly demonstrated that partial information is
sufficient. However, this is again in a context where you don’t see a large scene collapsed in depth.
If those conditions are valid, partial information may not be constraining enough and can lead to
combinatorial problems. On the other hand, if it seems as if there is some other process selecting a
region of interest, or generally guiding the attention, then there are viable computational techniques
which could be based on typical partial information that we can obtain from real images.

Generally I think that geon-based recognition of generic objects can be a powerful approach,
even though it has limitations. However, I also think that the technique must be applied in a
context where the issues I've listed, and also other problems, can be addressed appropriately.

5 Geon-based recognition of 3D objects

Anil K. Jain
Michigan State University

Recognition by components (RBC) theory, proposed by Biederman [6], offers an explanation of
human object recognition supported by several psychophysical studies. It maintains that a 3D
object is decomposed into qualitative volumetric part-based primitives, called geons, at the con-
cavities of an object. The primal access to geons and the extraction of their structural relationship
accounts for the quick and reliable recognition of objects by humans. The theory obviates an ex-
plicit 3D reconstruction for the recognition; it maintains that geon structure of an object could
be constructed from the line drawing extracted from its (2D) image. Both the extraction of the
perfect line drawing from an intensity image as well as the subsequent extraction of geons from
their silhouettes are challenging and open research problems.

In many vision applications, 3D information about the scene is necessary (e.g., navigation,
grasping, manipulation) and can be sensed (e.g, stereo, range finders). While the RBC theory is
primarily advanced in the context of extraction of geons from 2D intensity images, similar strategies
could be used for extracting geons from 3D (depth, range) data. These representations, whether
derived from intensity or range images, could then be used for 3D object recognition [50, 4, 28].

The information offered by geons is only qualitative in nature. Therefore, geons are not ad-
equate for describing and discriminating objects which are similar in their coarse part structure
(e.g., sculpted or free-form objects). In such situations, geon structure of an object is mostly
useful for an indexing of a given object into the model database. Quantitative models (e.g., su-
perquadrics, algebraic surfaces, generalized cylinders) can then be used for further refining and
verifying the initial hypotheses about the input object. Therefore, it is advantageous and necessary
to augment the qualitative information offered by the geon-based representation by a quantitative
representation strategy. In such situations, the recovery of geon structure might proceed from other
quantitative representations®. Our research in geon-based recognition addresses several issues, in-
cluding segmentation of the 3D data into volumetric parts, recovering quantitative models from the
data belonging to each of the parts, and estimating geons, given the quantitative representation
primitives.

Our early work in geon-based recognition studied the recovery of geons from the superquadric
models [49]. The results of the study indicated that recovery of the geons from superquadric models

! Although, qualitative information could also be used to direct the recovery of quantitative information, quanti-
tative information can not be recovered from the qualitative models.
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is indeed feasible for synthetic data and “smooth” real range data. We are currently working on
improving the accuracy of such a recovery from real data by use of surface shape information. We
are also investigating the problem of recovery of geons from algebraic surfaces and juxtaposing
merits of such a recovery with the use of superquadrics [46].

The part segmentation of a range image requires identification of loci of local minima of con-
cavities. In reality, the extracted local minima of the concavities are noisy and can not be directly
used for part segmentation. We have proposed a method for obtaining a reliable part segmentation
of the depth data by integrating principles of gestalt and transversality [45]. Our approach can suc-
cessfully segment a large number of range images into component parts and is a viable alternative
to the existing multiscale approaches to reliable part decomposition.

Most of the research studies focusing on geon-based object recognition work with 2D intensity
images. Geon-based recognition from 3D depth data has not received as much attention. We
have developed a recognition system which uses geons as the primary representation primitive.
Recognizing the fallibility of the principle of transversality to recover the part structure of an
object [35], our system reliably recovers the geon structure of a 3D object from (i) a representation
describing surface configurations of the input object (surface adjacency graph, or SAG), and (ii)
the intensity information associated with the range image. The resultant representations could
then be matched using a graph matching algorithm [50].

Representation of an arbitrary object in terms of a few generic primitives is an attractive and
intuitive idea. However, it appears that much more research is required to establish its feasibility
in solving real-world recognition problems. Given our lack of understanding of the computational
issues in low- and intermediate-level vision processes, a reliable recovery of the qualitative features
of parts as well as their interrelationships is difficult. In the short term, we could do much better
by adopting an engineering approach to the recognition problem.

6 Geons and the ‘What’-function

Roger Munck-Fairwood
Li Du
University of Surrey

Generic object recognition may be regarded as the attempt to fulfill the ‘what’-function of machine
vision. In addressing the first of the four issues in the introduction, we identify a fundamental
question which must be answered if generic object recognition (as it is currently understood) is to
be posed as a scientific pursuit. The question is: How can the ‘what’-function be defined for both
human and machine vision? We present a formal definition of this function. We address the second
issue by presenting a working implementation for extracting geons from real images. We propose
a system architecture which addresses the third issue, and discuss the fourth issue - about active
vision - with respect to the 'what’-function.

6.1 The ‘what’-function and the purpose concept

We define the ‘what’ function as a function which maps a 3D entity into a predefined bin of
classification on the basis of some particular recovered geometrical properties. Let us assume that
W is the vocabulary for describing the geometry of 3D entities (as deliverable by a collection of
lower level vision processes), C is the set of predefined classification bins, and M is the classification
or mapping process. A single task of recognition can then be formally expressed as ¢ = M(w),
where c € C and w € W.
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This formalism helps to critically examine the common statement that it is desirable for a
generic object recognition system to work ’reliably’. Informally, one may mean by this that when
the system is presented with images of different objects, all of which we would naturally call, say,
‘cup’, it should deliver the label 'cup’. But the above formalism shows that this would require a
universal (all-purpose) C. Clearly, this is an unreasonable assumption because even given a perfect
w (geometrical description of an object), the way the bins are designed strongly depends on either
engineering criteria or cultural customs.

If C is defined according to engineering criteria - i.e. pragmatic geometric classification - then
we have moved away from the generally accepted meaning of ’generic’ object recognition and closer
to multi-model-based recognition. On the other hand, if we aim at defining C' to represent 'natural’
categories we have a hopeless task, as even within one culture we cannot accurately define W, C
or M - i.e. precisely what geometric characteristics are used in distinguishing named objects from
each other. Moreover, many overlapping C's exist.

It may be argued that one can always resort to W (object geometry) in order to achieve a
universal unambiguous object description. However, even if low-level processes could provide any
desired degree of accuracy in W, one could only achieve a description and not classification of an
object - i.e. no ’recognition’ would have occurred.

Hence, we argue that a C must be defined and that it cannot be universal or totally 'generic’. In
fact, the above formalism points the way to being able to measure the generality (’genericness’) of
any generic object recognition system. It shows that one cannot use the cardinality of W or C (i.e.
the number of geometrically distinct descriptions, or the number of object categories) as a measure
of genericness, as these can always be made arbitrarily large (e.g. by introducing finer distinctions
in geon classes). In that case, we would not necessarily call such systems "highly generic’ because
many or most of the distinctions within W or C may be practically useless - i.e. have no significance
for the intended use of the recognition system.

Instead, we suggest that the way towards measuring genericness is to assess (a) the richness of
the set of purposes P which a given C supports and (b) the versatility of the W (shape recovery)
system, the outputs of which can be mapped to C. Thus, we see that the pursuit of generic object
recognition can never result in a self-contained, universal system but must be bounded by purposes
at the top end and richness of geometric description and recovery ability at the bottom end.

6.2 A framework for an object recognition system

The above formalism also leads to an outline of how we see the design of generic object recog-
nition systems could usefully proceed. The key idea is to keep the shape recovery subsystem
(W-subsystem) and object classification subsystem (C-subsystem) conceptually separate. It is not
always clear where this distinction lies in the reported work on generic object recognition systems,
and it can therefore be very difficult to judge how ’generic’ a given system is likely to be.

We have outlined [29] a W-subsystem which would provide a versatile repertoire of image
labeling tools. The basic principles behind the system design include the following: (a) It is a
servant to a C-subsystem and has a high degree of transparency in the sense of making process
parameters (scale, thresholds, etc.) explicit; (b) The architecture has the potential to incorporate
any existing approaches of 3D geometry recovery; (c¢) The image labeling vocabulary is divided
both into levels of abstraction and levels of cost; and (d) Reasoning occurs in three directions:
bottom-up (b-u), top-down (t-d), and horizontally. When b-u and t-d are in conflict, either b-u can
dominate (corresponding to visual illusion in human vision) or t-d can dominate (corresponding to
subjective contours). We illustrate the system using 2D edge-based features at the lower end and
geon clusters at the higher end.
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The C-subsystem has two-way communication with the W-subsystem. It not only takes b-u
input from the latter but gives cognitive (predictive) information to it when possible. Its basic
function is to take the recovered geometry at the geon-cluster level of the W-subsystem and to
use M to map each cluster into the appropriate bin of C. In a given engineering task, the human
operator may use the definition of a particular set of purposes P to manually define C and M, thus
simplifying the task of this sub-system. But in general, the sub-system should automatically create
C and M according to a given P.

6.3 Geon extraction by robust feature grouping

We refer now [30] to a working implementation of a small and specialized W-subsystem capable of
extracting geon-type descriptions from real images. Progress in geon-based generic object recogni-
tion has been hindered by the lack of effective means to handle noisy and cluttered images. In fact,
many schemes are aimed at handling line-drawing input or data of very good quality. A classical
problem is involved: to find an effective method for grouping (i.e. determining which edge features
correspond to which geon) in the presence of noise, clutter and occlusion. It seems that the lack
of such a strong ’'perceptual group’ has hindered the ability of existing systems to cope with real
images.

We present the multilateral (at least six sides) convex polygon as the key perceptual group to
facilitate a robust feature grouping method. The grouping power of such convex closures comes from
the fact that they have much greater excluding power than open perceptual groups (such as parallel
and co-terminating groups). In contrast to minimum closures used in earlier systems, multilateral
closures are also far less likely to arise as a result of accidental configuration of surface markings.
In order to exploit this perceptual group, we introduce a new coarse level of geon representation
so that the silhouette of such a geon can always be identified with a convex polygon. Subsequent
focussed reexamination of the image data can determine the traditional (e.g. curved/straight) geon
attributes, once main geon features (sides, ends, etc.) have been localized.

The initial input is a set of lines extracted from an image. The recognition process is organized
into iterations. The first iteration is responsible for recognizing all unoccluded geons. It finds
convex polygons, generates and verifies geon hypotheses and removes explained data from the rest.
All subsequent iterations aim to extract the remaining geons which are occluded by previously
recognized geons. These iterations are similar to the first iteration except that they use partially
occluded convex polylines to initiate extraction of occluded convex polygons (i.e. polygons broken
by previously recognized geons, implying partially occluded geons) which in turn lead to hypothesis
and verification of occluded geons. The whole process terminates when no more geons can be found.
Experiments have shown that this system handles images which are much more noisy and cluttered
than those used as input to previously reported systems.

6.4 About active vision

Our definition of generic object recognition shares the ‘purpose’ concept with that invoked in the
study of active vision, but from an entirely different point of view. Currently in active vision
research, the emphasis is shifted towards sensor-motor interaction, and the ‘purpose’ concept is
used to circumvent the need for the ‘what’-function (e.g. by gazing on a bright spot or a color
pattern). In contrast, we employ the ‘purpose’ concept to directly address the issue of object
recognition by linking P with C'. We consider object recognition as a key component for a general
active vision system, where appropriate actions can only be taken after ‘what’ is answered.
Elements of P may be, for example, ”pick up the container”, and ”put this object on another
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which can support it”. Each element of P can be used to define one or more elements of C which
can serve it. A sufficiently rich W is then required to support the necessary distinctions between
elements of C (e.g. containment, object support).

Viewed in this way, the W which geons provide is unlikely to be able to support the C (and
in turn P) for an active vision system because object category concepts such as ability to contain
or support - and even absolute object size - are not part of the model. However, if strong ad hoc
assumptions are made about such properties of particular geon clusters (e.g. ”the geon cluster
named ’cup’ is usually of this size and can contain liquid ...”) then geons may provide a convenient
way of indexing into a large model database of objects which must be manipulated.

6.5 Summary

The question of whether a geon vocabulary (W) is appropriate for generic object recognition cannot
be answered in isolation without reference to a set of purposes P. The question of what classes
of objects C they are best suited for also cannot be answered without P. In fact, the question of
whether the geon representation can be improved to be "more usable” implies that an intended use
or purpose exists. It is not productive to search for the ’best vocabulary’ (geons or otherwise) for
generic object recognition as a universal (all-purpose) system. However, once P is defined, one can
begin to quantitatively compare the ’genericness’ of different systems.

The major obstacles in recovering geons from real imagery have their roots in the lack of effective
image feature groups. The multilateral convex polygon is a primary group which can give greater
robustness than groups employed hitherto.

An appropriate system architecture is where the shape recovery and object classification sub-
systems are clearly distinct, but communicating two-way. Both subsystems can benefit from devel-
opment efforts: producing better general-purpose shape recovery systems, and automated ways of
deriving shape classification systems given a set of purposes.

For active vision systems where object manipulation may be required, the above P clearly
becomes explicit: the class of the object determines whether or how it should be manipulated.
Hence, geon-based recognition can play a role if assumptions are made about the absolute size and
other properties of specific geon clusters (object classes) - otherwise, an object representation which
involves absolute size must be used.

7 Parts Representations

Alex Pentland
Massachusetts Institute of Technology

The representation of objects by their parts has a long tradition in computer-aided design, simula-
tion, and cognitive psychology. Indeed, in these areas it is the dominant strategy for representing
complex 3-D objects. It is absolutely clear, therefore, that part representations are excellent for
many computational and cognitive tasks. What is not so clear is how they might be useful in
computer vision.

The first parts representation was suggested by Binford [15]; this is the idea of generalized
cylinders (G.C.). Because of the relatively unconstrained nature of this representation, the recovery
process seems to require elaborate line grouping and reasoning. Consequently there are relatively
few reports of recovering such descriptions from real imagery. Moreover, because such descriptions
are often not unique, it is unclear how they aid in object recognition.
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About 1985, these problems with G.C. representations began to be taken seriously, and two
different proposals arose to deal with them. One variation on the G.C. idea is due to Biederman
[6], who suggested using the Cartesian product of qualitative properties such as tapering, cross-
section, etc., in order to create a qualitative taxonomy of G.C. One advantage of this type of
representation, called geons, is that the properties can be chosen to be ones that are more easily
recovered from imagery. Another is that it provides a way to define qualitative shape classes, an
important problem in general-purpose vision.

To date, however, only Dickinson, Pentland, and Rosenfeld [27], and more recently, Du and
Munck-Fairwood [30], have successfully used this approach to recognize objects in real 2-D imagery
and Raja and Jain and Levine et al. [44] from real range imagery, although Bergevin and Levine [3],
Hummel and Biederman [36], and Munck-Fairwood [34] have reported good success in interpreting
line drawings. The principal problems with this approach seem to be the difficulty in extracting
sufficiently good line drawings, and the idealized nature of the geon representation.

A different variation of the G.C. idea was suggested by Pentland [47], who proposed a paramet-
ric version of G.C. based on deformable implicit functions. The original version of this proposal
used superquadric functions with multiplicative deformations; later versions used spheres with ad-
ditive (“Modal”) deformations. Use of a parameterized implicit function (deformed superquadrics
or spheres) converts the problem of recovering a description into a relatively simple numerical op-
timization. Moreover, if the parameterization is orthogonal then the description is unique, making
the recognition problem much easier.

In recent years, several authors have reported success at recovering this type of description
and using it for recognition, e.g., Pentland and Sclaroff [48] were able to recognize people’s head
shape with 96% accuracy. The major limitations of this approach seem to be the requirement for
pre-existing part segmentation, and an initial estimate of orientation.

It is interesting to compare the geon and parametric approaches. Both describe a similar range
of shapes; perhaps the major difference is that one is qualitative while the other is quantitative.
This similarity has made it possible to generate geon statistics using parametric models [28], and
allowed Raja and Jain [49] to use superquadrics to recover geons.

It seems to me that the qualitative geon representation is best suited to understanding inter-
sections and groupings of parts, while the parametric representation is best for classifying indi-
vidual part shapes. I speculate that the most successful systems will employ first a qualitative
pruning/grouping stage to perform segmentation, and then a parametric fitting stage to extract
detailed part shape. This approach was recently successfully employed in [23].

A final question is representational adequacy. It seems clear that to model natural objects the
G.C. representation must be augmented by a displacement map as in [52]. Moreover, the G.C.
representations currently used in vision are much simpler than those used in CAD. Consequently,
I predict that the more expressive G.C. representations [48][52], will become increasingly popular.

8 The Obstacles Facing Practical Geon-Based Recognition

Sven Dickinson
Rutgers University

I see three major obstacles facing the success of geon-based object recognition systems: (i) the
recovery of geons from real imagery; (ii) the difficultly in ezplicitly modeling real objects using
geons; and (iii) the lack of representational power provided by geons for the task of interacting
with the world.
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8.1 Recovery

In our work on geon-based recognition, we have attempted to address the issues in building geon-
based systems that work on real imagery [28, 27]. We chose an approach to volumetric primitive
recovery based on part-based aspect matching which, in fact, can be applied not only to geons, but
to other classes of volumetric primitives as well. Unlike traditional aspect graph representations
which use aspects to model the various appearances of a complete object, we use aspects to model a
small, finite part vocabulary from which objects are constructed. By mapping aspects to parts, we
avoid the intractability of traditional aspect graphs (particularly when the object’s parts articulate).
By indexing with object-centered volumetric parts, we retain the compactness of an object-centered
model representation.

Given our goal of recovering the aspects corresponding to an object’s volumetric parts, how
do we proceed to recover these aspects? From our analysis, we discovered that image regions, not
lines or line groups, were the most appropriate features to extract from an image [28, 21]. Image
regions not only provide a natural grouping of image contours, i.e., the bounding contours of a
region, but region shape provides a powerful inferencing mechanism for aspect, and hence, volume
recovery. Qur aspect hierarchy, a multi-level, viewer-centered representation of a set of volumetric
parts, allows us to recover volumetric parts in the presence of noise, occlusion, and “degenerate”
views, by exploiting the viewing probabilities of a volume’s aspects.?

Despite the utility of regions in recovering volumetric parts, we are still faced with the problem
of quickly extracting regions from an image. In addition, how do we deal with the inevitable under-
and over-segmentation of image regions? And finally, at what stage in the recovery of geons, do we
attempt to rectify such segmentation problems: immediately following segmentation? at the geon
verification stage? or, at the object verification stage? In working with real images, it becomes very
clear that the segmentation cannot be decoupled from the recognition. I believe that a dynamic
feedback scheme between the various stages in the recognition process must be explored before a
geon-based object recognition system can be successfully applied to real images. We are currently
exploring feedback schemes applied to segmentation and recognition.

8.2 Modeling

One of the most challenging tasks in building a geon-based recognition system was finding geon-
based objects to test it on! In fact, in early experiments, we ended up constructing our own geons
in order to build our own objects. That is not to say that there are not geon-based objects in the
world. However, what we found was that although many of the real objects we did look at could
be coarsely described in terms of geons, there was a plethora of detail in the objects that did not
contribute to their coarse shape. Even ignoring surface markings and texture, there would be a lip
on a cup, a small ridge around the edge of a table, or other fine object structure whose projected
contours in the image were quite salient. Although Biederman suggested the use of nonaccidental
relations between contours in recovering geons, neither he nor the line-drawing based geon-recovery
systems which he inspired addressed the issue of structural scale.

Most recognition approaches deal with this problem by explicitly modeling the structural de-
tail of the object. In such CAD-based vision systems, which model an object’s exact geometry,
each salient image contour has a corresponding model feature (surface discontinuity or occluding
boundary). Although such vision systems are effective in manufacturing environments where object
databases are small, objects are rigid, and objects can be explicitly modeled, they offer little hope
for recognition in less constrained environments. I believe that geons are an appropriate modeling

®*For a discussion on the significant likelihood of degenerate views, see [53].

19



primitive for certain recognition domains where objects can be modeled as constructions of distinct
volumetric parts. However, we must be able to recover abstract geon (or other volumetric) descrip-
tions from images of objects with structural detail. Once geons can be abstracted from real objects,
then further modeling abstraction can be pursued. For example, modeling an object’s functionality
instead of its geometry provides an even more powerful and robust means for modeling particular
classes of objects. Reasoning about the shape and interaction of an object’s volumetric parts can
provide “functional” indices into a database of objects defined by their function [51].

8.3 Representational Power

For a vision system to interact with the world requires that it not only identify or recognize the
objects that it wishes to interact with, but that it sufficiently localize (in depth) and characterize
(in dimension) the objects in order to manipulate them. Moreover, a vision system should be
active and be able to guide itself to advantageous viewpoints of an object. Finally, as the vision
system moves through its world, it must be able to track the (possibly moving) objects in its field
of view. In proposing geons, Biederman addressed only the problem of bottom-up, or unexpected,
object recognition. Is there a representational framework for geons or, more generally, generic
volumetric part descriptions, that will support the recognition-related behaviors of unexpected or
bottom-up object recognition, expected or top-down object recognition, object localization, metric
shape recovery, active object recognition (viewpoint control), and object tracking? I feel that the
problem of generic shape representation must be viewed in this wider context of object recognition.

As a controlled experiment to examine the interaction between these behaviors, we are building
a vision-based mobile robot whose goal is to allow handicapped children to interact with their
environment through the use of a robotic manipulator. The child interacts with the system by
instructing it to find and manipulate toys on a table (top-down recognition) [21]; hence, we need
object identification, object localization, and metric shape recovery (for gripping) [24, 25, 23].
Alternatively, when the child is idle, the system can build up its database of objects in its domain
(bottom-up recognition) [28, 27]. If objects appear to be ambiguous or are heavily occluded, the
system must move to a better viewpoint ([20]) and, while moving, the system must track the objects
[22, 16]. We have successfully addressed each of these problems within the framework of our hybrid
object-centered /viewer-centered representation.

9 Conclusions

The field of object recognition by computer has been dominated by approaches assuming knowledge
of the exact geometry of the objects to be recognized. Typically, any salient image feature, such
as a line, a curve, or a corner, has a corresponding feature in the object’s model. Insisting on this
direct correspondence has led to model-based vision systems which are sensitive to minor changes
in the shape of the object, making them wholly inappropriate for generic or prototypical object
recognition.

When a human looks at an object, they can easily describe its shape in terms of a set of
abstracted parts. What is most impressive is the human’s ability to extract the coarse shape of the
object’s parts, even when the parts contain superfluous structural detail that may give rise to very
salient image structures. Biederman has proposed a set of volumetric shape abstractions, called
geons, that offer a representation for this coarse shape. Granted, not all objects can be conveniently
decomposed into volumetric parts; for example, amorphous objects and objects such as faces do
not lend themselves to geon-based description. However, a great many objects, both natural and
artificial, exhibit a definable part structure. The key contribution of Biederman’s RBC theory to
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the computer vision community is the idea that one can define a set of volumetric part classes by
permuting the values of qualitative, viewpoint-invariant properties of lines.

Since Biederman'’s introduction of geons to the computer vision community, much progress has
been made in geon recovery from line drawings and images of simple objects. Such approaches have
proposed different representations, architectures, and control strategies, and have been applied to
both intensity and range images. However, there is a strong consensus that one of the major
obstacles to success is the problem of geon extraction from both intensity and range images of real
objects. As in the traditional CAD-based vision community, the geon community has also avoided
the problem of shape abstraction by choosing simple, smooth objects in which every salient image
feature represents either a shape-defining surface discontinuity or occluding boundary on a geon.
The matching of image detail to qualitative descriptions remains largely an unsolved problem.

Since an intelligent agent will move about and interact with its environment, there is additional
support among some panel members for widening the context of geon-like vision to include, for
example, active vision and metric shape recovery. How do we track geon-based objects in 2-D
images? How do we recover quantitative shape information when we want to grasp an object? How
do we change viewpoint to disambiguate an object? What role do geons play in these tasks?

The goal of generic object recognition is both important and ambitious. Until geon practitioners
can demonstrate effective techniques for recovering geons or other qualitative shape primitives
from images of real objects, the computer vision community and the human vision community
(see [41, 43]) will understandably remain skeptical. However, until coarse shape can be quickly
extracted from scenes of real objects, 3-D object recognition will be restricted to overconstrained,
industrial environments.
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