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Let B  be a network of n nodes x = (x , ...,x), such that x  is connected only to x  and such thatn         1  n    k     k+1
each node x  is subject to a constant positive bias b . Let the connection between adjacent nodes bek        k
inhibitory and constant for the entire network. Such networks can serve as models of string-like
aspects of phonological structure, particularly those involving the relative prominence of adjacent
elements (cf. Prince & Smolensky 1991:13-15; Smolensky, Legendre, and Miyata 1992 and the
references cited therein). 

The underlying problem can be posed this way: given a set of intrinsic, gradient prominences
in the input, represented as  biases on positions, determine a peak/non-peak structure in the output.
A string of segments of different intrinsic sonorities will be parsed into (syllable) peaks and nonpeaks.
A string of syllables of different weights will be parsed into (stress) peaks and nonpeaks.

Here we examine the behavior of such a network under gradient ascent over its harmony
surface (Smolensky 1986). The network is linear in the sense that the gradient of its harmony
function is component-wise linear. We define a peak to be a node whose activation becomes and stays
positive, a nonpeak to a node whose activation becomes and stays negative. This is a linearization of
the original Smolensky-Miyata model described in Prince & Smolensky 1991, which follows the
nonlinear ‘brain-state in a box’ model of Anderson 1977 in limiting activation to the interval [0,1].

There are three main results:
1. The network shows just two stable states: (i) strict peak/non-peak alternation beginning

with a peak, (ii) strict peak/non-peak alternation beginning with a non-peak.
 2. In order to assign biases so that a highest-prominence element is reliably mapped into a
peak, a scaling factor relating the bias of that element to that of its nearest competitor is required.
This factor grows quadratically with the length of the network. 

3. An immediate corollary: Given a ranked set of intrinisic linguistic prominences, such that
peak status is assigned to the highest such prominence in a string,  that the biases corresponding to
the linguistic prominences must be scaled exponentially. 

Evidently, significant nonlinearities must be introduced to achieve better modeling of linguistic
realities. An exact understanding of the linear case examined here provides a useful starting point for
further exploration.  
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For convenience, let the inhibitory weight between adjacent nodes w  = –1. For additionalk(k+1)
descriptive convenience, we occasionally recognize phantom nodes x  , x  such that x = x� 0.0  n+1   0  n+1

Following essentially standard practice, let the harmony function for the network be as follows:

(1)

We write A for the n×n tridiagonal matrix with 0 on the main diagonal and �1 on the sub- and supra-
diagonals. Note that H(0) = 0

For the gradient, we have

(2)

We wish to track the paths of gradient ascent over the harmony surface. Any such path is given by
a function x(t):R � R  , where any tangent vector associated with x(t) points in the same directionn

as //H(x(t)). We will begin gradient ascent at the origin, which is included in H, whence we set
x(0) = 0.

Since the magnitude of the tangent vector to x(t) is of no interest, we simply identify x1(t)
with the gradient vector. The path of steepest ascent is therefore given by the solution to this system
of equations:

(3)

Solution is straightforward, due to the simplicity of A. Because A is real symmetric, it has n distinct
eigenvalues �  , and the n×n matrix E whose columns are the corresponding unit-length eigenvectorsk
!!  is also guaranteed to be unitary so that E  = E  The matrix E diagonalizes A and we use this fact(k)           T.-1

to decouple the equations . Let

(Observe that y(0) = x(0) = 0.) 
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From eq.  we obtain

(4)

But E AT  is just the diagonal matrix whose diagonal entries are the eigenvalues �  of A. LettingT
k

l = E b and writing l  for the entries of E b, eqn.  reduces to the system T         T
k

(5)

The general solution to eqn.  can be written down immediately (recall y(0) = 0):

(6)

This splits into two cases, depending on whether  �  = 0 or not. Let us first assume  �   g 0. k          k

We have then, from eq. (6),

 (7)

For �  = 0, we have, trivially, from eq. (5),k

 (8)
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To redeem the value of x(t) from these equations, recall that x = Ey. Coordinate-wise, we have:

(9)  

where !!  is the eigenvector associated with �  , normalized so that  !! ## !!  = 1. (i)            (i)  (i)
i

Along the same lines, from l = E  b, we haveT

   
(10)

 

Consider the networks where �  g 0, for all k. (Below, we will see that these are exactly the networksk
with an even number of nodes.)

(11)

For any  �  = 0,  the expression reduces to t. i

Observe that x  takes form of a sum of terms  C  e  , plus a constant, plus a linear termk         j
�jt

corresponding to zero eigenvalues. To understand the asymptotic behavior of  x  , then, it sufficesk
to examine a single exponential term, namely the one with the greatest � . As t increases, this termj
will dominate all other terms, be they exponential, linear, or constant. In particular, the fate of x  turnsk
solely on whether the coefficient of this largest exponential term is positive or negative.

To ascertain the conditions determining the sign of the relevant coefficients, we need to have the
eigenvalues and eigenvectors of the matrix A, the n×n tridiagonal matrix with 0 on the main diagonal,
and �1 on the sub- and supra-diagonals. The calculations of Prince 1992:53,98 can be directly applied
to this problem. The eigenvalues are

(12)
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The components of the nonnormalized eigenvectors v  are as follows, with the first component of(k)

each set to 1:

(13)

The normalized eigenvector !!  is just v /v  . (k) (k) (k)

It is clear from  that k = 1 yields the largest eigenvalue, 2 cos (%/(n+1)). So long as the coefficient
C of  the term C  e  in x   is nonzero, it will determine the behavior of x  . 1      1  1   k           k

k     k � t

According to , this coefficient is

We are really only interested in whether C  > 0,  C  < 0, or  C  = 0. Chucking the positive constant1    1     1
material before the summation sign, we arrive at the following condition that must be met if C  is to1
be positive:

(14)

Observe that the only dependence on k is in the sign-determining term. This splits the x  into twok
groups: the even, x  , and the odd, x . Within each group, the sign of C is the same; and between2p     2p

�
1        1  

the groups, there is a contrast in sign.

This leads to the following conclusion. For C  g 0, the units in the network alternate strictly, taking1
either the form   �+�+�...�, or the form ��+�+...�. Surprisingly perhaps, the biases — no matter how
drastically they vary in magnitude — can only determine which of the two patterns emerges. 
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We want to determine what system of biases will ensure that certain prominent (strongly biased)
nodes are indubitably turned on. In particular, we are interested in the situation where we have three
nodes in a row x  x  x  , with x  more prominent that its neighbors. What value of b  , for b  >k-1 k k+1   k         k   k
b  , b  , does it take to ensure that x  will be activated in the course of gradient ascent over thek-1  k+1        k
harmony surface? 

This question is posed in a linguistically natural but rather misleadingly localistic fashion, given the
character of the network. Since the only two stable states of the network are those with strict on-off
alternation, the question to ask must be — what does it take to guarantee that node x  and all itsk
same parity associates will be turned on?

To study this issue, we focus on a kind of worst case analysis. Let node x  be of parityk
p � {odd, even}. Suppose b  has the largest bias in the network. Let �  be the largest bias on anyk         max
node of parity p*,  the opposite of p. We now ask, how much larger than �  must b  be, in ordermax  k
to turn x  on infallibly?k

We will find the following, writing b  for the targeted maximum and �  for the maximum of itsk      max
opposite-parity rivals:

(15) Bias Ranking
In the limit as n � �for ,  b  > (n+1) /%   #  �  , all nodes of the same parity as x  will bek      max         k

2 2

turned on.

This result can be extracted from Eq.  . There are actually four distinct cases to analyze, with 3
different outcomes:

[1] Even length string
a. b  is of odd parity, in an even length string.  n = 2q, k = 2p � 1. k
b. b  is of even parity, in an even length string. n = 2q, k = 2p.k

 [2] Odd length string
a. b  is of odd parity, in an odd length string.  n = 2q � 1, k = 2p � 1.k

 b. x  is of even parity, in an odd length string. n = 2q � 1, k =  2p.k

The even-length cases under [1] give rise to the same scaling factor. (This can be seen in gross from
considering the symmetries of an even-length network � 1 2 3 4 ... (2p � 1), 2p � — there are as many
even as odd nodes, and they are disposed mirror-symmetrically with respect to the opposite edges.)
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Various formulations of it are as follows:

(16) Scaling factor for guarantee of maximum in even-length strings

From the second expression on the r.h.s of ‘>’ it is clear that the scaling factor asymptotes out at
(n+1) /% , since cos (x) � 1 � x  /2 . Since cos (x) >  1 � x  /2,  x small and nonzero, it is also clear2 2        2          2

that the asymptote is approached from above. 

The odd-length cases under [2] are each associated with different scaling factors. (Again, this can be
guessed in gross from considering the (non-)symmetries of the odd-length network
� 1 2 3 4 ... , 2p, 2p�1�. Both edges nodes are always odd.) 

The even-parity maximum [2b] gives rise to the following scaling factor:

(17) Scaling factor guaranteeing an even maximum in odd-length string

It is clear that the scaling factor asymptotes out to (n+1)  / 2%  , half of the value for the even-length-2  2

cases. In this case, since x > sin(x), x positive, it is clear that the asymptote is approached from above
as well.

The final case involves an odd maximum in an odd-length string. The value of the scaling factor is
given by this expression:

(18) Scaling factor for odd maximum in odd-length string

Here the asymptote is (n+1)  / % , and, unlike the above cases is approached from below.2  2 

To give a sense of where these scaling factors come from, let us examine the last case in some detail.
We want to turn on the odd nodes. In order to ascertain the conditions under which this happens, we
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use the following relation derived from  , gathering the odd and even bias terms on opposites
sides of ‘>’. 

(19)

(Point of detail: notice that we can harmlessly use the limit [(n+1)/2] on the r.h.s. since, for n even,
it’s the same as [n/2] and for n odd, the additional final term is equal to 0. Note also that all the sin
� terms are positive, since 0 < � < %.) 

What relationship among the biases does it take to ensure that the odd nodes will be turned on? We
counterpose the weakest achievement of the odd nodes against the strongest possible counterattack
from the even ones.

Suppose that all the odd biases excepting one are 0, so that the l.h.s. gets the least amount of
help from the odd cohort. Suppose likewise that the coefficient of the one remaining odd term is as
small as possible, maximally diminishing the force of the bias b . This would be sin(%/(n+1)), so wek
are dealing with b  (equivalently, b  in an odd length network).1  n

To give the r.h.s its maximal due, suppose that all even biases are maximally large, therefore
equal. We write �  as a representative of this set.max

We now have

(20)

Suppose now that n is odd, so that n = 2 p 
�

 1. Observe that [(n+1)/2] = p and that n+1 = 2 p.
So we have:
 
(21)

 

This last expression may be simplified by the following useful (if perhaps underappreciated)
trigonometric identity:
 

(Demonstration of this verity is found in appendix 1.)
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Returning to eq.  , we have, as promised,

Now, for small x, sin (x) � x and cos (x) � 1, to a first-order approximation. So the fractional
expression on the r.h.s is approximately equal to (2p) /% , i.e. (n+1) /%  , since n + 1 = 2 p.2 2   2 2

We can do better than an asymptotic expression for the scaling factor in this case, since in fact
(1/x)  > cos (x)/ sin  (x),  x g 0, as shown in Appendix 2. This gives the following result: if2    2

then every odd node is turned on, every even node off, for n odd.  

CONCLUSIONS. 

1. The network only shows two stable states, both strictly alternating.
This follows because the fate of each node x  is determined by the sign of the coefficient  ofk

the fastest-growing exponential term e  in the function x(t) describing the path of steepest ascent. � t
1

We saw that such coefficients alternate in sign according to the pattern (�1)  .k+1

The only circumstance under which this coefficient is nondetermining is when it is 0. In this
case, the path of gradient ascent is determined by the next most rapidly growing term. However, the
conditions under which this coefficient zeroes out are rather delicate. We have (cf. eq. )
 
(22)

Or, equivalently, 
(23)

To appreciate the delicacies involved, consider just the case n = 3, for which we have

This emphasize the degree of accuracy required by such equality conditions.. Hence, we regard this
condition as ‘non-stable’ in the sense that, for all values of the b , any tiny perturbation in the valuei
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of a single bias will move the network out of the state. In contrast, in the stable states there are
(plentiful) regions where even large changes in a bias will have no effect on the outcome.
We conclude that although the finer structure of the network’s behavior is of theoretical interest, for
practical purposes it can be put aside.

 2. Exponential separation within a bias system.

Suppose we have a prominence system like that determining Berber syllabification or Hindi stress
(Kelkar dialect), as discussed in Prince & Smolensky 1993. The main property of interest is this: there
are several distinct classes of intrinsic prominence, and the peak goes to the most intrinsically
prominent element present in a given string. (Behavior when ties are present is not relevant to our
concerns here.) Considering only those strings with a unique most-prominent element, we must have
it that an element of class K will earn the peak if  no elements of classes 1, 2,..., K�1 are present, no
matter how many competing elements of classes K+1, ...,N are present. 

From the above results, it follows that in order to achieve this result the bias representing the
intrinsic prominence of class K must be distinguished from the bias representing class K+1 by a
scaling factor �. Hence Bias(K) = � Bias(K+1), for appropriately chosen �. This entails that the
biases of the various classes must grow exponentially in �.

3. Dependence on String Length.

The asymptotic value of the scaling factor needed to assure peak-achievement in an n-length network
is (n+1)  /%  . The factor � just mentioned must therefore be larger than this. Aside from questions2 2

of implementation — this factor grows fairly speedily, so that eg. a length-10 network involves � >
12.26, and a length-20 network requires � > 44.68, with a 5-deep hierarchy of biases demanding a
largest/smallest ratio of about 4,000,000:1 — the mere fact of sensitive length- dependence is
nonlinguistic in character.  Significant nonlinearities are required to achieve the next level of
refinement in modeling.

One promising line is to place a floor on activation at 0, as in the original Miyata-Smolensky model,
which showed a richer range of behavior, rather than letting the nodes go unboundedly negative. As
Bruce Tesar has observed to me, it is essentially this latter property that produces the rigidity of
alternation in the network, and strongly limits the possible effect of the biases on the range of possible
outcomes, since the magnitude of the contribution of any finite bias is going to be swamped
eventually by exponential growth as gradient ascent proceeds. The present analysis can be regarded
as setting the stage for this next step.
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Appendix 1: Summing the Sines

We want 

Let us write  z = cos � + i sin � = e  , where � = %/m . Consideri�

From z = e  , this last expression yields the following:i%/m

Equating the imaginary part of this expression with the imaginary part of the original sum yields the
desired result.  



1

x2
> cos(x)

sin2(x)
, for x small and positive.

sin2(x)
cos(x)

> x2

sin2(x) > x2
�

x4

3



3 x2
� x4

3

cos(x) < 1�
x2

2
�

x4

24



24� 12x2
� x4

24

sin2(x)
cos(x)

> x2 24� 8 x2

24� 12x2
� x4

24� 8 x2

24� 12x2
� x4

> 1 , i.e.

24� 8 x2 > 24� 12x2
� x4 , i.e.

12� x2 > 8

13

Appendix 2

We want

Equivalently,

To demonstrate this, we use appropriately truncated versions of the series representation of sin  (x)2

and cos (x).

Replacing the numerator and denominator with these polynomial   expressions, respectively, we have

So we need

Which is evidently the case for x small, i.e. less than 2.


