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Abstract

We introduce a novel view-based object representation, called the saliency map
graph (SMG), which captures the salient regions of an object view at multiple scales
using a wavelet transform. This compact representation is highly invariant to transla-
tion, rotation (image and depth), and scaling, and offers the locality of representation
required for occluded object recognition. To compare two saliency map graphs, we
introduce two graph similarity algorithms. The first computes the topological similar-
ity between two SMG’s, providing a coarse-level matching of two graphs. The second
computes the geometrical similarity between two SMG’s, providing a fine-level match-
ing of two graphs. We test and compare these two algorithms on a large database of

model object views.

Keywords:  View-Based Object Recognition, Shape Representation and Recovery,
Graph Matching.

*A condensed version of this paper will appear in the IEEE International Conference on

Computer Vision, Bombay, January 1998, under the title, “View-Based Object Matching.”







1 Introduction

The view-based approach to 3-D object recognition represents an object as a collection of
2-D views, sometimes called aspects or characteristic views [14]. The advantage of such an
approach is that it avoids having to construct a 3-D model of an object as well as having to
make 3-D inferences from 2-D features. Many approaches to view-based modeling represent
cach view as a collection of extracted features, such as extracted line segments, curves,
corners, line groups, regions, or surfaces (Ikeuchi and Kanade [11], Burns and Kitchen [2],
Ullman and Basri [30], Dickinson et al. [7], and Pope and Lowe [21]). The success of
these view-based recognition systems depends on the extent to which they can extract their
requisite features. With real images of real objects in unconstrained environments, the
extraction of such features can be both time consuming and unreliable.

In contrast to the feature-based view-based recognition paradigm, a number of image-
based view-based recognition systems have emerged. Beginning with the eigenface approach
proposed by Turk and Pentland [29], these image-based approaches avoid extracting complex
features from an image; instead, they retain the entire raw image as a single feature in a
high-dimensional space. Turk and Pentland focused on the domain of faces and therefore
did not require a large set of model views for each face. Nayar and Murase extended this
work to general 3-D objects where a dense set of views was acquired for each object [19].

Although avoiding costly and often unreliable feature extraction, these image-based ap-
proaches pay the price of sensitivity to lighting conditions, image translation, image rotation,
depth rotation, occlusion, and minor shape variation, all of which affect an image’s pixel val-
ues and result in a change in the image’s location 1n some high-dimensional space. Recent
results have shown some progress towards solving these problems, e.g., the work of Belheumer
and Kriegman [1] (limited invariance to illumination changes) and the work of Leonardis and
Bischoff [15] and Schmid and Mohr [24] (limited invariance to occlusion). Nevertheless, the
lack of abstraction from raw image data to the model means that the model defines a very
specific object instance.

The concept of computing coarse-to-fine 1mage descriptions has much support in the




computer vision community; some examples include (3, 12, 16, 20, 27, 28]. In some cases,
attention models have been developed that use a multiscale description to decide where in the
image to apply some operation. Lindeberg has based this selection process on a quantitative
analysis of gray-level blobs in écale space [16]. Jagersand [12] uses an information theoretic
measure to compute “informativeness” of image regions at different scales, while others have
defined some measure of “importance” and used it to drive an attention process [20, 27, 28].
Although suitable for locating objects in images for further processing, the above multiscale
descriptions, often called saliency maps, lose the detailed shape information required for
object recognition.

Some multiscale image descriptions have been used to locate a particular target object
in the image. For example, Rao et al. use correlation to compare a multiscale saliency map
of the target object with a multiscale saliency map of the image in order to fixate on the
object [23]. Although these approaches are effective in finding a target in the image, they,
like any template-based approach, do not scale to large object databases. Their bottom-up
descriptions of the image are not only global, offering Little means for segmenting an image
into objects or parts, but offer little invariance to occlusion, object deformation, and other
transformations.

An approach similar to the approach we will present is due to Crowley et al. 5, 4, 6].
From a Laplacian pyramid computed on an image, peaks and ridges at each scale are detected
as local maxima. The peaks are then linked together to form a tree structure, from which a
set of peaks paths are extracted, corresponding to the branches of the tree. During matching,
correspondence between low-resolution peak paths in the model and the image are used to
solve for the pose of the model with respect to the image. Given this initial pose, a greedy
matching algorithm descends down the tree, pairing higher-resolution peak paths from the
image and the model. Using a log likelihood similarity measure on peak paths, the best
corresponding paths through the two trees is found. The similarity of the image and model
trees 1s based on a very weak approximation of the trees’ topology and geometry, restricted,
in fact, to a single path through the tree.

In this paper, we present a multiscale view-based representation of 3-D objects that, on




one hand, avoids the need for complex feature extraction, such as lines, curves, or regions,
while on the other hand, provides the locality of representation necessary to support occluded
object recognition as well as invariance to minor changes in both illumination and shape. In
computing a representation for a 2-D image (whether model image or image to be recognized),
a multiscale wavelet transform is applied to the image, resulting in a hierarchical saliency
map of the image that offers advantages over a Laplacian pyramid. This saliency map is
represented as a hierarchical graph structure, called the saliency map graph, that encodes
both the topological and geometrical information found in the saliency map.

The similarity between a test image and a model image is defined as the similarity
between their respective saliency map graphs. We address the problem of matching two
saliency map graphs, leading to two matching algorithms. The first algorithm finds the best
mapping between two saliency map graphs in terms of their topological structure, while the
second algorithm factors in the geometry of the two graphs. In each case, we present an
evaluation function that determines the overall quality of the match, i.e., the similarity of the
two graphs. We demonstrate and evaluate our image representation and our two matching
algorithms using the Columbia University COIL image database. In addition, we assess the

viewpoint invariance of our representation and matching algorithms.

2 A Scale-Space Saliency Representation of an Image

To reduce the complexity in matching input image representations to model view represen-
tations, we seek a scale-space or coarse-to-fine representation of images that allows us to first
match or index based on the coarse-level features in the image. Coarse-level correspondence
can then be used to constrain a fine-level matching of the remaining features. Furthermore,
we would like our image representation to be invariant to slight variations in the illumination
falling on the object, image-plane rotation, translation, and scaling of the object, slight ro-
tation in depth of the object, slight deformations of the shape of the object, e.g., stretching,
bending, etc., and occlusion of the object.

Traditional view-based object representations that are image based, e.g., [29, 19, 1, 15,




24, 23], are neither coarse-to-fine nor invariant to the above transformations due to the global
nature of their representations (although some offer limited invariance to particular trans-
formations). However, the advantage of these approaches is that complex feature extraction,
grouping, or abstraction is not required. Systems based on more invariant view-based image
descriptions, e.g., [11, 2, 30, 7, 21], have relied on complex feature extraction (e.g., edges,
lines, regions, etc.) which is not only unreliable but often requires domain-specific parameter
tuning.

To address these shortcomings, we compute a scale-space representation of an image in
which image objects (homogeneous regions) are located at the coarsest scale which captures
their salient shape properties. Moreover, both the geometrical and topological relations
between the regions will be explicitly encoded in the representation. Finally, computing

these regions and relations requires the setting of very few parameters.

2.1 The Multiscale Wavelet Transform

The scale-space image representation that we have selected is based on a multiscale wavelet
transform [25]. The advantage of the wavelet decomposition lies in its effective time (space)-
frequency (scale) localization. Unlike other image transforms, e.g., [3, 4], which spread the
information across their basis functions, the wavelet transform allows us to compute better
localized object representations. In the output of the transform, as illustrated in Figure 1,
the salient shape of small objects is best captured by small wavelets, while the converse
1s true for large objects. Searching from finer to coarser scales (right to left in Figure 1),
we select the scale which captures the most efficient encoding of an object’s salient shape:
above the chosen scale, extraneous information is encoded, while below the chosen scale, the
object is overly “blurred.” The region defining the object at the chosen scale is called the
scale-space cell (SSC) [18].

The dyadic wavelet transform of a function f € L?*(R) at the scale 27 and at the position

k is given by the inner products of the function with the family of wavelets
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Figure 1: In the proposed multiscale description, objects are captured at the coarsest scale

which captures their salient properties. Note that the frequency ¢ and the scale s are inversely

proportional.

where the overline denotes the complex conjugate. This inner product may also be viewed
as a convolution product (W) (j,k) = f % 1; or as a filtering of the function f with a
band-pass filter whose impulse response 1s Dk

Detecting the scale-space cells requires analysis of the wavelet transform response at each
scale. The scale-space cell of an image object is located at the scale which is approximately
one octave below the scale at which the object’s response becomes indistinguishable from
other image objects of the same size. At this scale, the object’s response resembles the
wavelet basis function impulse response. The following subsections will explore scale-space

cell detection in greater detail.

2.2 Scale-Space Cells in One Dimension

To illustrate the detection of scale-space cells, consider the one-dimensional signal in Figure 2,
using the wavelets described in [17]. Any object behaves like a point at all scales coarser

than its characteristic scale J. This means that the wavelet transform of a signal at any




scale j > I is the same no matter what the object’s shape is; the transform is completely
determined by the width of the objects and their amplitude. We can ignore the information
at the scales j > I and still be able to reconstruct the original signal almost perfectly, as
illustrated in the right column in Figure 2.

The reconstructed signal fg(z)is obtained by replacing the responses (W-)(6,z) of objects
A and B with the analyzing wavelet Pex of the same amplitude. Similarly, fs.5(2), fe5.4(z),
and fgg43(z) are obtained by successively replacing the corresponding wavelet responses
at the scales (6,5), (6,5,4), and (6,5,4,3), respectively, with the analyzing wavelets. The
error in reconstruction is very small if the replacement takes place at scales greater than the
characteristic scale; the error increases significantly as the replacement takes place at the
finer scales. In the general case, interactions between the neighboring objects will distort the
wavelet transform response. However, even for complex signals, each object will eventually
yield the (approximate) impulse response at the appropriate scale determined by the size of
the object.

In order to find the characteristic scale of an image object in the 1-D case, one can
measure the correlation between the wavelet transform of the object and the basis function
at any given scale. At each location (z,y), one can then select the finest scale at which
the correlation exceeds some threshold. We will now proceed to examine the detection of a

scale-space cell in two dimensions.

2.3 Saliency Detection Algorithm in Two Dimensions

In the two-dimensional case, the characteristic scale I (©) may be different for any particular
orientation ® of a 1-D cross-section through an object. Any object other than a circular
one (disc) will become a point at different scales in different directions, e.g., an elongated
object, occluded object, etc. In this case, the object will extend over several SSCs at
any scale j < maxe{I(©)}. Therefore, in the 2-D case, we apply the 1-D procedure in a
number of directions and search for clusters of 1-D centers, as shown in Figure 3(a). Our

entire procedure for detecting the SSC’s in an image therefore consists of the following four

steps [18]:
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Figure 2: An illustration of the object’s characteristic scale. The left column shows the

analyzing wavelets ¥; ; at the corresponding scales. The middle column shows two examples

(A and B) of a function f(z) (top) and their wavelet transforms (below). Beginning with

the characteristic scale I = 4, the (W-)(I + j,z) takes the shape of Prije,d = 1,2, The

right column shows the reconstruction of the original function by replacing the (W(t, z)

Wif}h the 1/),',]0.

Step 1—Wavelet Transform: Compute the wavelet pyramid of an image with £
dyadic scales using oriented quadrature bandpass filters tuned to 16 different orienta-
tions, i.e. © = 0°,22.5°,45°, ..., 337.5°. See [26] for a detailed derivation and description

of computing the wavelet pyramid using steerable basis filters.

Step 2—Local Energies: Compute the oriented local energies using the equation:

E(@©,s,z,y)= [Ge(s,:c,y)]z + [He(s,m,y)]z (2)




(a)

Figure 3: (a) The clusters formed by the centers of the 1-D SSCs associated with the cross-
sections through an object. (b) One of the filter kernels 9(®, z,y) used in computing the

saliency of the SSC’s (Eq. (3)). The kernel is obtained by computing the oriented energy at
® = 0° for a disc.

where G®(s,z,y) and H®(s,z,y) are the outputs of a quadrature pair of analyzing
wavelet filters at the scale-space coordinate (s, z,y), oriented at the angle ©. For each

image point, 16 different oriented local energies are computed.

Step 3—Saliency Maps: Compute £ saliency maps. The saliency of each particular

SSC is computed using the convolution:
saliency SSC(s,z,y) = > [E(©,s,z,y) *9(0, z,y)] (3)
)

where J(0,z,y) is the filter kernel obtained by computing the sum of the squared
impulse responses of the two analyzing wavelet filters G°(s,z,y) and H®(s,2,y), as
shown in Figure 3(b). As discussed above, circular shape has the highest saliency as

measured by this scheme.

Step 4—Peaks in Saliency Maps: Moving from finer to coarser scales at every
location, we select the first saliency map for the which a peak (local maximum) at that

location exceeds a given threshold. By using a series of oriented 1-D filters to detect
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the characteristic scale, we can detect objects that are not perfectly circular in shape.
For example, if a non-circular shape’s variation in diameter does not reach neighboring
scales above or below the current scale, then a circularly-symmetric filter, such as that
used by Crowley [5, 4, 6], will give a weak response for the shape. In our approach,
however, the 1-D filters are slightly adjusted in width (bounded by neighboring scales).
The result is a cluster of oriented peaks from which we compute the 2-D shape’s location
as the centroid of these peaks. The salience of the 2-D shape is computed as the sumn
of the oriented saliencies of the oriented peaks near this centroid. Finally, we apply
a nmon-maximuim suppression process to climinate closely overlapping salient SSC’s at

each scale.

The contents of each scale-space cell (SSC) is a 2-D matrix of wavelet coefficients. The
size of this matrix is invariant to both the scale at which the SSC is detected and the
complexity of the shape contained in the SSC’s corresponding image region. In the current
implementation, only the scale, position, and saliency of a SSC is exploited during the
matching of two saliency maps. However, one could include the actual content of the SSC as
specified by the wavelet coefficient matrix. The fact that all the S5C matrices are self-similar
and small (in our case, 16 X 16) means that efficient comparisons can be made between SSC’s
at different scales.

Figure 4 illustrates how a complex object’s saliency map (a) is largely invariant to scaling
(b), translation (c), image plane rotation (d), and limited rotation in depth (e), where the
illuminated left side of the face exhibits little change in its saliency map. Circles in the image
correspond to scale-space cells, while their intensity is proportional to the their saliency. Note
that the size of the circle appears to be slightly larger than its corresponding imége feature.
This is due to the fact that the size of the circle is determined by the largest extent of the
filter shown in Figure 3(b), i.e., where the response approaches zero. For different images
taken under different conditions, there cannot be true invariance in the sense that salient
regions are identical in different views. However, approximate invariance suffices for the

recognition scheme that we propose below.
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(d) (e) (f)

Figure 4: Extracting the most salient SSC’s in an image: (a) original image and its saliency
map; (b) scale invariance; (c) translation invariance; (d) image rotation invariance; (e) in-
variance to rotation in depth (illuminated left side of face exhibits little change in its saliency

map); and (f) the saliency map graph (SMG) of the original image in (a).

2.4 Limitations of the Representation

Under normal circumstances, an object (or one of its component features) should produce a
peak at its corresponding location in the saliency map. However, there are several exceptions
which do not properly fit within the SSC framework. The evolution of the saliency map at a
single scale as the object becomes degenerate, in the sense of the SSC framework, is shown
in Figure 5. The exceptions arise due to wavelet transform scale sub-sampling, crowded

objects, and elongated objects. As expected, combinations of these will create even more

difficulties.
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Figure 5: The evolution of the saliency map at a single scale for the exception cases. The
left side shows the original images and the right side shows the corresponding saliency maps
at one scale. (a) As the object size increases, a peak in the saliency map corresponding to
the object turns into a “crater.” (b) As the objects approach closer to one another, the
“anti-object” between them becomes the most salient. (c) Instead of peak(s) in the saliency

map, elongated objects produce “mountain ridges.”

As shown in Figure 5(a), the saliency peak detector will find one salient region for the
object at the left side, whereas it will find several salient regions for larger objects on the
right side. This effect will occur when the size of an object is intermediate between two
(octave) scales, and can be minimized by increasing the number of scales. In Figure 5(b),
the detector will find four salient regions for the distant objects at left, but will find only one
region in the center of the four close objects at right. This phenomenon occurs when a set
of objects enclose a compact background region; the detector cannot separate figure from
ground. One could argue that such a regular pattern represents a form of texture that should
be treated as a single object. Again, if there were more scales, this composite object would
be detected at a coarser scale. Finally, in Figure 5(c), the detector will find several salient
regions positioned along the elongated object. In this case, a salient region grouper could
search for a string of co-curvilinear SSC’s at a given scale and group them into a composite

structure which could easily be accommodated by our graph representation and matching
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Given this formulation of the mapping, f, we define the error of f to be:

E(f) = ¢ Z Z M,y w(u,v) |s(u) — s(v)] +

ueVy veW,

(1-e) (Z (1= 20 Mug)s(u)+ > (13 Mi,v)S(v)) (4)

ueVy JeV, vEV> 1eV;

where ¢ = ]1‘M(f)1|/|V1[ represents the ratio of the number of matched vertices to the
number of vertices (|V4]) in the model SMG (with 1 the identity vector of the appropriate
dimension) and s(v) denotes the strength of region v in its saliency map. For the SMG topo-
logical similarity algorithm, defined in Section 3.3, w(w,v) is always one, while for the SMG
geometrical similarity algorithm, defined in Section 3.4, w(u,v) represents the Euclidean dis-

tance between the centers of the regions, v and v. Clearly, in the case of perfect similarity,

E(f) = 0, while £(f) will be ¥,cy, s(u) + 2uev, $(v) if there is no match (14| M(f)|1 = 0).

3.3 A Matching Algorithm Based on Topological Similarity

In this section, we describe an algorithm which finds an approximate solution to the SMG
similarity problem. The focus of the algorithm is to find a minimum weight matching between
vertices of G; and G5 which lie in the same level. Our algorithm starts with the vertices
at level 1. Let A; and B; be the set of vertices at level 1 in G, and Gy, respectively. We
construct a complete weighted bipartite graph G(A;, By, E) with a weight function defined
for edge (u,v) (u € A; and v € By) as w(u,v) = |s(v) — s(u)].? Next, we find a maximum
cardinality, minimum weight matching M; in G using [9]. Al the matched vertices are
mapped to each other; that is, we define f(z) =y if (z,y) is a matching edge in M;.

The remainder of the algorithm proceeds in phases as follows, as shown in Figure 6. In
phase 7, the algorithm considers the vertices of level 7. Let A; and B; be the set of vertices
of level 4 in Gy and G, respectively. Construct a weighted bipartite graph G(4;, B;, E) as
follows: (v,u) is an edge of G if either of the following is true: (1) Both w and v do not

have any parent in G; and G, respectively, or (2) They have at least one matched parent

?G(A, B, E) is a weighted bipartite graph with weight matrix W = [w;;] of size |A| x | B] if, for all edges
of the form (i,7) € E, i€ A, j € B, and (4,7) has an associated weight = w; ;.
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Figure 6: Ilustration of the SMGBM Algorithm (see text for explanation).

of depth less than i; that is, there is a parent pu of u and p, of v such that (PusPo) € M; for
some j < i. We define the weight of the edge (u,v) to be |s(u) — s(v)]. The algorithm finds
o maximum cardinality, minimum weight matching in G and proceeds to the next phase.
The above algorithm terminates after £ phases, where / is the minimum number of scales
in the saliency maps (or SMG’s) of two graphs. The partial mapping M of SMG’s can be
simply computed as the union of all Mysfori=1,.. . £. Finally, using the error measure
defined above, we compute the error of the partial mapping M. Each phase of the algorithm
requires simple operations with the time to complete each phase being dominated by the time
to compute a minimum weight matching in a bipartite graph. The time complexity for finding
such a matching in a weighted bipa,rtite‘ graph with n vertices is O(n® V/nloglogn) time,
using the scaling algorithm of Gabow, Gomans and Williamson [10]. The entire procedure,
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as currently formulated, requires O(£n*+/nloglogn) steps.

3.4 A Matching Algorithm Based on Geometric Similarity

The SMGBM similarity measure captured the structural similarity between two SMG’s in
terms of branching factor and node saliency similarity; no geometric information encoded in
the SMG was exploited. In this section, we describe a second similarity measure, called SMG
Similarity using an Affine Transformation (SMGAT), that includes the geometric properties
(e.g., relative position and orientation) of the saliency regions.

Given Gy = (Wi, E1) and G, = (V4, B), we first assume, without loss of generality, that
|Vi| < |Ve]. First, as shown in Figure 7, the algorithm will hypothesize a correspondence
- between three regions of Gy, say (ry, s, r3), and three regions (], 7}, r3) of G3. The mapping
{(r1 = 7)), (r2 = 73), (rs = 74)} will be considered as a basis for alignment if the following

conditions are satisfied:
 7; and r; have the same level in the SMG’s, for all 1 € {1,...,4}.

o (ri,7;) € By if and only if (v} ;) € By, for all 4,5 € {1,...,£}, which implies that

1?7

selected regions should have the same adjacency structure in their respective SMG’s.

Once regions (r1,73,73) and (7,7}, r3) have been selected, we solve for the affine trans-
formation (A, b), that aligns the corresponding region triples by solving the following system

of linear inequalities:

o v 10 0 0] au] [ 2 |

Try Yoo 1 0 0 0 a1z Zr,

Try Yy 1 0 0 O by _ | % (5)
0 0 0 =z, gy, 1 az1 Yr{

0 0 0 =z, y, 1 a3 Yrh

00 0 @y gy 1] b | [y

The affine transformation (4, b) will be applied to all regions in (71 to form a new graph G'.

Next, a procedure similar to the minimum weight matching, used in the SMGBM is applied to

17




Choose region triple
correspondence
and solve for affine
transformation T
that aligns the
triples.

Apply affine
transform T to one
graph, aligning it
with the other.

Find minimum
weight mapping in
bipartite graph at
each level based on
Euclidean distance.

Figure 7: Ilustration of the SMGAT Algorithm (see text for explanation)
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the regions in graphs G’ and G;. Instead of matching regions which have maximum similarity
in terms of saliency, we match regions which have minimum Euclidean distance from each

other. Given two regions v and v, the distance between them can be defined as the L, norm

of the distance between their centers, denoted by d(u,v) = \/(a:u —24)2 4+ (Yu — %0)? In a
series of steps, SMGAT constructs weighted bipartite graphs G; = (R;, R}, E;) for each level
2 of the two SMG’s, where R; and R, represent the set of vertices of G’ and G, at the ¢-th
level, respectively. The constraints for having an edge in E; is the same as SMGBM: (u,v)

1s an edge in G; if either of the followings holds:
e Both » and v do not have any parents in G' and G, respectively.
e They have at least one matched parent of depth less than 3.

The corresponding edge will have weight equal to w(u,v) = d(u,v). A maximum car-
dinality, minimum weight bipartite matching M; will be found for each level G;, and the
partial mapping f(4p) for the affine transformation (A, b) will be formed as the union of all
M;’s. Finally, the error of this partial mapping £(f4p)) will be computed as the sum over
each E; of the Euclidean distance separating E;’s nodes weighted by the nodes’ difference
in saliency. Once the total error is computed, the algorithm proceeds to the next valid pair
of region triples. Among all valid affine transformations, SMGAT chooses that one which
minimizes the error of the partial mapping.

In terms of algorithmic complexity, solving for the affine transformation (eq. 5) takes only
constant time, while applying the affine transformation to G; to form G’ is O(max(|V4], | E1|)).
The execution time for each hypothesized pair of region triples is dominated by the complex-
ity of establishing the bipartite matching between G, and G, which is O(¢n?y/nloglogn),
for SMG’s with n vertices and £ scales. Although in the worst case, i.e., when both saliency
map graphs have only one level, there are O(n®) pairs of triples. However, in practice, the
vertices of an SMG are more uniformly distributed among the levels of the graph, greatly
reducing the number of possible correspondences of base triples.

Although not yet implemented, we can reduce the complexity of the bipartite matching

step by exploiting the fact that the edge weights of the bipartite graph represent the Eu-
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clidean distance between the regions of two SMG’s and satisfy the triangle inequality. The
following algorithm can then be used to find the bipartite matching at the i-th level of G":

1. Construct the Voronoi diagram of the vertices at the -th level of G' (O(|R:|log | Ril)

time).
9. Project the regions in R. into the plane of this Voronoi diagram.

3. In each Voronoi polytope, choose the closest region of R. to the vertex defining the

Voronoi polytope, if one exists (O(log |Rs|) time for each Voronoi region).

4. Update the Voronoi diagram by removing the matched vertices and their corresponding

regions in R; (©(log |R;|) time).

5. Repeat this process antil either all the vertices at the i-th level of G' ate matched or

the remaining vertices cannot be matched (due to path constraints).

The time complexity of the above procedure for level @ is O(n?logn) (22]. For £ levels,
the total complexity is O(4n* logn), which compares favorably to the O(én*/nloglog n)
complexity of our current SMGAT algorithm.

3.5 Limitations of the Matching Algorithms

There are two major limitations of both matching algorithms. First, since both algorithms
seck a minimum weight, maximum cardinality matching in a bipartite graph that spans
corresponding levels of two saliency map graphs, corresponding nodes m the two graphs
must therefore lie at the same levels in their respective SMG's. This implies that a scene
SMG cannot be vertically expanded or compressed relative to a model SMG. Furthermore,
an image object that is detected at a scale different from that of its corresponding model
object cannot be correctly matched.

To overcome this problem, consider a model SMG corresponding to a particular view of

some object and let the initial scene SMG be exactly equal to the model SMG. Next, consider
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a perturbation of the scene SMG in which any scene SMG node can migrate up or down a
small number of levels, k, provided that the scene SMG topology remains intact, i.e., same
parent-child relationships with parents and/or children changing levels. For a fixed, small
k, the bandwidth of the bipartite graph mapping solution will increase from 1 to 2k + 1.
In other words, the bipartite graph previously generated at each level will now encompass
nodes at neighboring levels. The resulting complexity of both algorithms will be the same
except for a constant scaling factor to account for the increased (constant) number of nodes
in each bipartite graph.

The restriction that corresponding nodes lie at the same level or scale has an important
implication for matching cluttered scenes. If the scale of background objects is comparable
to the object being recognized, the saliency map graph corresponding to the scene is approx-
imately the saliency map corresponding to the object with additional nodes added to one or
more levels. In this case, our assumption that corresponding nodes exist at the same level
1s not violated. However, if a background object dominates the object being recognized, the
effect will be to “push” the object down to a finer scale while the background object occupies
the coarser scales. This migration of the target object would violate our assumption that
corresponding SMG nodes lie at the same scale.

If we assume that some model SMG, consisting of £ levels, occupies any ¢ continuous
levels of a scene SMQ@, then to overcome this second problem requires that we apply either
algorithm to each level of the scene SMG. This will mean that the complexity of both
algorithms will increase by a multiplicative factor of h, the number of scales in the scene
SMG. In the experiments reported in the following section, we assume a bipartite graph of

bandwidth 1 and assume that any background objects do not dominate the target object.

4 Experiments

To illustrate our approach to shape representation and matching, we apply it to a database
of model object views generated by Murase and Nayar at Columbia University. Views of each

of the 20 objects are taken from a fixed elevation every 5 degrees (72 views per object) for
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Figure 8: A sample of views from the database: top row represents original images, second

row represents saliency maps, while third row represents saliency map graphs.

a total of 1440 model views. The top row of images in Figure 8 shows three adjacent model
views for one of the objects (piggy bank) plus one model view for each of two other objects
(bulb socket and cup). The second row shows the computed saliency maps for each of the
five images, while the third tow shows the corresponding saliency map graphs. The time to
compute the saliency map averaged 156 seconds/image for the five images on a Sun Sparc
20, but can be reduced to real-time on a system with hardware support for convolution, e.g.,
a Datacube MV200. The average time to compute the distance between two SMG’s is 50
ms using SMGBM, and 1.1 second using SMGAT (an average of 15 nodes per SMG).
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Algorithm || % Hit % Miss % Miss
right object | wrong object

SMGBM 89.0 8.4 2.6
SMGAT 96.6 2.9 0.5

Table 3: An exhaustive test of the two matching algorithms. For each image in the database,
the image is removed from the database and compared, using both algorithms, to every
remaining image in the database. The closest matching image can be either one of its true
neighboring views, a different view belonging to the‘correct object, or a view belonging to a

different object.

Figure 10: Occluded Object Matching: (a) original image; (b) saliency map; and (c) saliency
map graph

in Table 5. In this case, the closest view is the correct view (Figure 8(d)) of the socket.

In a second occlusion experiment, consider the duck occluding the toy cat, as shown
in Figure 11. The closest matching view in the database is the correct view of the duck
(Figure 9(a)). After removing the scene SMG subgraph corresponding to the duck, the
remaining subgraph was matched to the entire database, as shown in Table 7. The closest

image is the correct view (Figure 9(d)) of the cat.
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Algorithm || 8(a) | 8(b) | 8(c) | 8(d) | 8(e)
SMGBM 9.56 | 3.47 | 8.39 | 12.26 | 14.72
SMGAT | 24.77 | 9.29 | 21.19 | 30.17 | 33.61

Table 4: Distance of Figure 10(a) to other images in Figure 8. The correct piggy bank view
(Figure 8(b)) is the closest matching view.

Algorithm || 8(a) | 8(b) | 8(c) | 8(d)| 8(e)
SMGBM | 12.42 | 14.71 | 14.24 | 4.53 | 9.83
SMGAT | 18.91 | 20.85 | 17.08 | 7.19 | 15.44

Table 5: Distance of Figure 10(a) (after removing from its SMG the subgraph corresponding
to the matched piggy back image) to other images in Figure 8.

Algorithm || 9(a) | 9(b) | 9(c) | 9(d) | 9(e)
SMGBM | 22.71 | 29.64 | 33.97 | 30.57 | 62.11
SMGAT | 39.16 | 47.92 | 66.04 | 85.19 | 105.72

Table 6: Distance of Figure 11 to other images in Figure 9.

Algorithm || 9(a) | 9(b) | 9(c) | 9(d) | 9(e)
SMGBM | 78.68 | 62.41 | 71.27 | 27.59 | 51.03
SMGAT || 75.92 | 81.39 | 68.41 | 44.37 | 90.29

Table 7: Distance of Figure 11 (after removing from its corresponding SMG the subgraph

corresponding to the matched duck image) to the other images in Figure 9.
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Figure 11: Image of occluded object used in second occlusion experiment

4.3 An Analysis of Viewpoint Invariance

In a view-based 3-D object recognition system, an object is represented by a collection of
views. The more viewpoint-invariant an image representation is, the fewer the number of
viéws needed to represent the object. In the above experiments, we computed the saliency
map graphs for the full set of 72 views for each of the 20 objects. In this section, we explore
the viewpoint invariance of our representation by considering a smaller sample of views for
one of our objects.

Our experiment, as shown in Figure 12, consists of successively removing every second
view (model SMG’s) of a given object (in this case, the piggy bank) and computing the
distance, using both SMGBM and SMGAT, between each removed view to the Iemain‘ing
views. Thus, at the first iteration, we will remove every second view from the original set of
72 views, leaving 36 views of the model object. Each of the 36 views that was removed will
then be compared to each of the 36 remaining model views. If the closest matching model
view is adjacent to the removed view’s position in the original set of 72 views, then one can
argue that the intermediate view (that was removed) is extraneous. At the next iteration,
we remove every second view from the 36 model views and repeat the experiment with the
18 removed views.?

The results are shown in Table 8. For example, when leaving out 36 views, 91% of the

3The n views removed at step £ are maximally distant from the n remaining views; there is no need to

match the views removed at step £ — 1 to the views remaining at step £.
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Figure 12: An Experiment Exploring the Viewpoint Invariance of the SMG Representation
and Matching Algorithms
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Views in Tree || 36 | 18 | O

SMGBM % || 91 | 50 | 35
SMGAT % || 99| 84 | 61

Table 8: Evaluafing Viewpoint Invariance of the SMG Representation. The first row in-
dicates the number of model views remaining in the model view set for the piggy bank
object after Iemoving every second view. The second and third rows indicate the percentage
of SMGBM-based and SMGAT-based searches, respectively, between each of the removed
views and the remaining model views that result in a “closest” view that is adjacent to the

removed view.

SMGBM searches (using a removed view) resulted in a closest view that is adjacent to the
removed view at the next level up (72 views), while for SMGAT, 99% of the searches were
successful. Furthermore, this percentage gradually declines for SMGAT and rapidly declines
for SMGBM. As one might expect, when geometric information is included in the search,
neighboring views of a test view exhibit the least geometric distortion. For the SMGBM
algorithm, however, the topological structure of a test view may, in fact, be similar to other
views of the object despite geometric differences.

With the proper indexing structure, it is clear that in a recognition framework, the
number of candidates returned from a topological index will be higher than that returned
from a geometric index, given the ambiguity inherent in a topological index. On the other
hand, shape deformations within an object’s class may be accommodated by SMGBM and
not by SMGAT. Finally, it must be pointed out that the above analysis was performed
on only one object. Although we would expect the same trend to oceur with other model
object view sets, the percentages will vary with the shape and appearance of the object.
For example, for an object with many degenerate views, we would expect the percentages
to fall when a sample lies directly on a degenerate view. We are currently conducting more
comprehensive experiments in order to to predict what kind of view sampling resolutions are

appropriate for each algorithm.
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4.4 Limitations of the Experiments

The approach presented in this paper has not addressed the indexing problem. For the
experiments, each “query” view was compared to each and every model view to return the
closest matching view. In current work, we are exploring the use of recovered local SMG
structure (SMG subgraphs covering local regions in the image) to index into the database of
model views and return objects whose model view trees have similar structure at their leaves.
In addition, we are exploring hierarchical representations of the model views corresponding
to a given object, leading to a more efficient (O(logn)) search of an object’s model views
than the current linear search. The evaluation of our approach is also limited in that by using
the Columbia University image database, we were unable to change the lighting conditions,
scale, etc., of the images. In future work, we plan to construct our own image database,

allowing us to more effectively evaluate the transformation invariance of our representation.

5 Conclusions

There is a gap in the view-based object recognition literature between the image-based
systems and the feature-based systems. While the image-based systems have been shown
to work with complex objects, e.g., faces, they are highly sensitive to occlusion, scale, and
deformation. The feature-based systems, on the other hand, rely on highly sensitive feature
extraction processes. We have introduced an image representation that fills this gap. Our
saliency map graph offers a robust, transformation invariant, multiscale representation of
an image that not only captures the salient image structure, but provides the locality of
representation required to support occluded object recognition. We have presented two
graph matching algorithms, SMGBM and SMGAT, that offer an effective mechanism for
comparing the topological and geometric structure, respectively, of a test image SMG and a
database image SMG.

Our graph matching formulation, in terms of topological and geometric similarity, is
applicable to any multiscale image representation, e.g., a Laplacian pyramid, which can be

mapped to a vertex-weighted, directed acyclic graph. We are not only seeking to improve our
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saliency map construction, but are exploring other multiscale image representations within
this framework. We are also embedding our matching algorithms in an object recognition

system that uses SMG subgraphs as an indexing structure.
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