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Summary

We develop a modal logic programming language DIALUP in which programs can make dis-
junctive and existential assertions. Such assertions play an important role in specifications of
agents for reasoning about planning and interaction, where it is essential to describe agents’
partial information. More broadly, such assertions allow programmers to describe the modular
structure of any specification. DIALUP is designed so that disjunctions indicate local ambigui-
ties in search. By forcing ambiguities to be considered independently, these modular disjunc-
tions can be used to construct efficiently executable specifications in reasoning tasks involving
partial information that otherwise might require prohibitive search. To achieve this behavior
in DIALUP requires prior proof-theoretic justifications of logic programming to be extended,
strengthened, and combined with proof-theoretic analyses of modal deduction in a novel way.
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2 INDEFINITE INFORMATION

1 Overview
Like all programming languages, logic programming languages need structuring constructs
to describe the modularity of programs and thereby to facilitate their design and reuse.
Modal logic provides a declarative setting to develop such structuring constructs [Miller, 1989,
Giordano and Martelli, 1994, Baldoni et al., 1993, Baldoni et al., 1996]. A necessary goal 2G can
be seen as a modular goal because, in modal logic, only program clauses of the form 2P can
contribute to its proof. With the right modal semantics, modularity also brings locality: a goal
2(P ⊃ G) introduces a local assumption P that can only contribute to the proof of G. This pa-
per extends this approach to modularity and locality to indefinite logic programs. We develop a
modal logic programming language DIALUP in which programs can establish disjunctions and ex-
istentially quantified sentences.

Modal logic already provides a general, declarative formalism for specify-
ing change over time, the knowledge of agents, and other special-purpose do-
mains [Prior, 1967, Hintikka, 1971, Schild, 1991]. DIALUP, like the languages proposed in
[Fariñas del Cerro, 1986, Debart et al., 1992, Baldoni et al., 1993, Baldoni et al., 1996], supports
such specifications—indeed, the indefinite assertions that DIALUP makes available play an impor-
tant role in applying modal formalisms to planning, information-gathering and communication
[Stone, 2000]. Nevertheless, DIALUP derives broad applicability even beyond these domains,
thanks to a crucial and direct connection between modularity and search.

In DIALUP, modal operators not only describe the content and structure of a specification, but
also resolve ambiguities in execution in an intuitive and useful way. DIALUP extends the Near-Horn
approach to disjunctive logic programming [Loveland, 1991]. This approach implements disjunc-
tion by a restart rule that can be highly ambiguous from the point of view of search. When using a
program clause A∨B in a derivation, we may know to use a privileged disjunct (say A) to contribute
to the proof of the current goal G; however, the other disjunct (B, here) may contribute to any earlier
goal in the derivation of G. Thus, after the overall proof is completed using A as an assumption, we
must be prepared to restart the entire proof using the assumption B instead. By making a program
clause A∨B modular using a modal specification, we can constrain this restart process. With the
modular program, A must contribute to the proof of the current goal G; but now B may contribute
only toward earlier goals in its modular context. By constraining the scope of restarts, modular
disjunction limits the size of proofs and the kinds of interactions that must be considered in proof
search. Such constraints are crucial to the use of logical techniques in applications that require au-
tomatic assessment of incomplete information, such as planning and natural language generation.

The correct design of our extended language requires a variety of proof-theoretic ideas about
logic programming to be extended, strengthened, and combined with proof-theoretic results about
modal logic in a novel way. To describe logic programming, we start with the idea of uniform
proof search described in [Miller et al., 1991] and extended to different kinds of disjunctions in
[Miller, 1994, Nadathur and Loveland, 1995]. In uniform proof search, proof rules alternately de-
compose goals to atoms and then match these atoms against program clauses; this allows logical
connectives to be viewed as instructions for search.

To derive a uniform proof system in the presence of existential quantifiers, however, we
can no longer use the familiar quantifier rules used in previous logic programming research,
which simply introduce fresh parameters; we must apply a generalization of Herbrand’s theorem
[Lincoln and Shankar, 1994] and work with quantifier rules that introduce structured terms. More-



IN MODAL LOGIC PROGRAMMING 3

over, to handle modal operators in uniform proof, we use a path-based sequent calculus for modal
logic that assimilates modal proof to classical proof. Path-based techniques for reasoning in modal
logic, pioneered by Fitting [Fitting, 1972, Fitting, 1983], have been extensively studied in recent
years [Wallen, 1990, Ohlbach, 1991, Nonnengart, 1993, Auffray and Enjalbert, 1992]; a combined
path-based Herbrand calculus for multi-modal logic is developed in detail in [Stone, 1999a]. The
key property of this calculus is that inferences can be freely interchanged. This allows arbitrary
proofs to be transformed easily into uniform proofs. But the very same property prevents this cal-
culus from enforcing modularity in the structure of proofs. For example, with free interchange,
inferences can be pulled outside the region of a proof where some local assumption is introduced,
even when those inferences use information provided by that assumption.

To guarantee the modular behavior of the uniform system, we require a new, detailed analysis
of cancellation in disjunctive logic programming. Modular restarts depend on the invariant that
any disjunct assumed in case analysis is used in proof, or cancelled, before another restart is at-
tempted. In some cases such cancellation requires the second disjunct of a clause to be used before
the first. The DIALUP proof system achieves the invariant without reporting duplicate proofs using
a new discipline that temporarily suppresses the cancelled assumption on first restarting for a dis-
junct analyzed out of order. This DIALUP regime is justified by transformations restricting uniform
proofs.

At the same time, the modular behavior of the uniform system depends on proof-theoretic anal-
yses of path-based sequent calculi adapted, in part, from [Stone, 1999b]. These analyses establish
that path representations enforce modularity and locality in the uses of formulas in proofs, even
with otherwise classical reasoning. Hence, although path-based calculi obscure the natural modu-
larity of modal inference, they do not eliminate it. The operational rules of DIALUP are obtained
by streamlining the uniform proof system to take advantage of these results; as a consequence, the
interpreter can dynamically exploit the local use of modular assumptions.

The remainder of this paper is organized as follows. We outline the concrete motivations and in-
tuitions behind DIALUP in Section 2. Next, we present an extended, precise description of DIALUP’s
behavior in Section 3. We give the logic that justifies DIALUP in Section 4; some additional ob-
servations that streamline the implementation are sketched in Section 5. We provide an extended
example of the system in use in Section 6.

2 Motivation and examples
DIALUP accepts program statements of the syntactic category D and goals of the category G defined
recursively as follows.

(1) G ::= A | [M]G | G∧G | G∨G | [M](∀xG) | ∃xG | [M](D⊃ G)
D ::= A | [M]D | D∧D | D∨D | ∀xD | ∃xD | G⊃ D

In (1), A schematizes an atomic formula; atomic formulas take the form p(a1, . . .,ak) where p is a
predicate symbol of arity k and each ai is either a variable or an atomic constant in some set C.

In (1), [M] schematizes a modal operator of necessity; intuitively, such modal operators allow a
specification to manipulate constrained sources of information. That is, a program statement [M]D
explicitly indicates that D holds in the constrained source of information associated with the oper-
ator [M]. Conversely, a goal [M]G can be satisfied only when G is established by using information
from the constrained source associated with [M].
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We will work in a multi-modal logic, in which any finite number of distinct necessity operators
may be admitted. (Necessity operators will also be written as2 or 2i.) In addition to ordinary pro-
gram clauses, a DIALUP specification may contain any of the following axiom schemes describing
the modalities to be used in program clauses and goals:

(2) 2i p⊃ p veridicality (VER)
2i p⊃ 2i2i p positive introspection (PI)
2i p⊃ 2 j p inclusion (INC)

These axioms describe the nature of the information that an operator provides, and spell out rela-
tionships among the different sources of information in a specification. (VER) is needed for infor-
mation that correctly reflects the world; (PI), for information that provides a complete picture of
how things might be; and (INC), for a source of information, j, that elaborates on information from
another source, i.2 Because DIALUP uses this explicit axiomatization, we can take the names of the
modal operators as arbitrary.

We can appeal to modal operators in specifications both for their expressive power in character-
izing domains, and for their operational force in constraining logic programming inference. As an
illustration of DIALUP’s expressive resources, we consider a specification of communicating agents
in Section 2.1. In this specification, modal operators represent the sources of information available
to any agent individually, and the sources of information that groups of agents share. With these
expressive resources, the specification accommodates the basic fact that each agent’s knowledge is
limited but may increase as messages are exchanged.

As an illustration of the the operational force of DIALUP’s modal reasoning, we consider a spec-
ification of a planning problem in Section 2.2. In this specification, modal operators identify re-
stricted sources of information that can be used to construct separate solutions for the subproblems
of the overall task. Because it invokes these operators to characterize dependencies in the problem-
solving task, the specification can be executed without considering interactions in subtasks that
might otherwise potentially arise.

What these examples have in common is their dependence on the modularity of modal logic.
Modal formulas describe not only what needs to be derived in a proof, but also how derivations
should be broken down into parts and what information should be taken into account in each. As
we shall see in Sections 3, 4 and 5, some subtleties are involved in describing and justifying a cor-
rect inference procedure that does break down derivations into modular parts and does consider re-
stricted information in each. With these examples, then, we also motivate our inference procedure
and survey the modularity it can offer.

2.1 Characterizing Domains with Indefinite Modal Specifications: Communicating Agents
In collaborative tasks, agents coordinate their decisions in pursuit of a common goal. To succeed in
such collaboration, agents may need to communicate. For example, one agent may need to supply
its partner with key information which will allow the partner to decide what to do next. Planning
a contribution to conversation therefore requires agents to draw inferences about their partners’

2For those used to thinking of modality semantically, in terms of accessibility relations among possible worlds,
(VER) can be captured by a reflexive accessibility relation, (PI) can be captured by a transitive accessibility relation,
and (INC) can be captured by if j-accessibility entails i-accessibility.
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changing information. Of course, agents generally cannot characterize what their partners know
specifically. More frequently, each agent has an incomplete, abstract description of the other.

This section shows how communicating agents in such circumstances can assess the effects of
communicative actions, and can thereby plan contributions to a collaborative exchange, by posing
queries against DIALUP specifications. These specifications explicitly model the partial and increas-
ing body of information that communicating agents enjoy. To do so, they crucially exploit nested
implications and existential assertions.

Our example involves a patron P accomplishing transactions with a bank teller T . We begin by
adopting a modal perspective on the informationof these agents. We use the operator [P] to represent
the knowledge of the patron P, and we use the operator [T] to represent the knowledge of the teller
T . In addition, we appeal to a restricted body of shared information that the two agents maintain as
part of their collaboration, a conversational record [Clark and Marshall, 1981, Thomason, 1990],
represented by the operator [CR]. The eight formal rules governing these modalities, given in (3),
represent a reasonable idealization of conversation [Stone, 1998b].

(3) [P]p⊃ p [T]p⊃ p [CR]p⊃ p (VER)
[P]p⊃ [P][P]p [T]p⊃ [T][T]p [CR]p⊃ [CR][CR]p (PI)

[CR]p⊃ [P]p [CR]p⊃ [T]p (INC)

We motivate DIALUP specifications for the patron P and the teller T by considring the DIALUP

queries that these agents might use to infer opportunities for efficient communication. To begin,
suppose that P has asked T whether P has sufficient funds to withdraw $50 without penalty. Suppose
further that T decides to convey two facts in response: that P does have the required funds, which
we abbreviate to q; and that in fact P’s account contains $600, which we abbreviate to r.

T might realize these facts efficiently, by reasoning as follows. T knows that P will be drawing
conclusions from T’s communication as T produces it. Once T communicates r, q will be clear to P
by inference. Accordingly, it suffices for T to streamline the response from both r and q to r alone.
As described by [Green and Carberry, 1994], such inferences—reducing a compound communica-
tive act to a simpler one when the other effects are clear from context—are characteristic of indirect
answers in discourse.

We can formalize this inference as a modal query by drawing on the link between sources of in-
formation and modal operators. To start, T envisages the consequences of communicating r. That
is, T restricts attention to developments of the situation compatible with what T knows, as repre-
sented by the content of [T], and T assumes further that r is put on the record, so that [CR]r is true.
Then, in that hypothetical context, T tests whether q can also be taken as part of the conversational
record. These operations correspond to the query in (4), a statement formulated in terms of modal
operators and an implication nested within a query.

(4) [T]([CR]r⊃ [CR]q)

So proving (4) would justify the use of r as an indirect answer, abbreviating r and q.
Now, in an evenly matched dialogue, it will be just as important to ask questions as to answer

them. For a more interesting example, then, consider a similar information-gathering exchange
from the patron P’s point of view. In formulating a question, P may have had to provide background
information to T in order for T to be able to provide an answer, as in (5).

(5) I have account 42. What is my balance?
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It is natural to assume that P’s background assertion, like T ’s reply, is calculated for its effect on
the conversational record. Indeed, by making use of existential specifications and queries, we can
formalize this calculation in terms of the same schema as (4).

Here is how. If P aims for T to provide an answer, then P must hope to establish that T knows
the answer. Following [Hintikka, 1971], we can formalize this condition as ∃b[S]bal(P,b): there
is a specific real-world value b which T knows to be P’s balance. The contribution P makes—
acct(P,42)—is intended to put this condition on the conversational record. By an analogous argu-
ment to that which suggested (4), this leads to a modal query with nested implications by which P
might justify or select the proper background to the question:

(6) [P]([CR]acct(P,42)⊃ [CR]∃b[T]bal(P,b))

For this query to represent a fruitful model of P’s conversational reasoning, however, it must
access an indefinite specification outlining shared information about T . The specification must en-
tail that T would know the answer given the background, but it cannot entail that P would know
the answer. Otherwise, P will have no reason ever to ask a question. The existential statement in
(7) provides such a specification.

(7) [CR]∀i(∃x[T]acct(i,x)⊃ ∃b[T]bal(i,b))

In effect, (7) registers the teller’s ability to look up the balance of any account as part of the common
ground; formally, it says it is common knowledge that if T knows what i’s account is, then T knows
what i’s balance is.

Informally, we can see why (7) entails (6), given the modal theory of (3). The query considers
P’s hypothetical view of the shared context, and asks us to obtain a specific conclusion about what
T knows according to this view. Now both the shared background—(7)—and hypothetical addi-
tions to it—[CR]acct(P,42)—retain their shared status in the queried view. Given [CR]acct(P,42),
it follows that ∃x[T]acct(i,x) for i = P (and x = 42); T knows what is shared. Thus (7) applies and
the needed conclusion follows.

In this paper, I will show how this reasoning is captured straightforwardly by a logic program-
ming search strategy for reasoning with indefinite modal specifications. Of course, the strategy also
respects the restricted logical scope of existential quantifiers—thus, with (7) we can infer that P has
a balance, but cannot infer that P knows what that balance is.

While (4), (6) and (7) are surely toy examples, I will suggest that indefinite specifications and
hypothetical queries provide an attractive perspective for reasoning about contributions to dialogue
generally. A generation system can produce a concise and precise discourse only by drawing in-
ferences about how the hearer will interpret that discourse as dependent on, and as an update to,
the conversational record. Such inference is naturally founded on a declarative framework, like the
modal specification presented above, for describing the knowledge of the participants in the con-
versation.

In order to give a more accurate picture of the dynamics of dialogue and the dependencies of
utterances on shared context, the logical content of utterances can be represented more precisely,
in terms of presuppositions and assertions [van der Sandt, 1992, Stone and Webber, 1998]. More-
over, a treatment of dialogues with multiple utterances can be obtained by appealing to AI for-
malisms of knowledge and ability [Davis, 1994, Stone, 1998a], and introducing a nested implica-
tion for each step of action. As outlined in Section 6, these two features allow a much more detailed
version of the teller’s and patron’s exchange above to be specified and validated in DIALUP.
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The strength of this inferential model is that the presuppositions and other facts that this dis-
course relies on can be explicitly represented without being explicitly communicated. In a robust
system, such facts cannot be ignored altogether; for instance, they are needed to answer questions
of clarification [Moore and Paris, 1993]. However, they cannot be uttered either—imagine the im-
plicatures ensuing from: “I have an account. It’s number 42. My account has a balance. What is
it?”. Such distracting restatements of the obvious have plagued earlier conversational agents, such
as [Power, 1977, Houghton, 1986, Cassell et al., 1994].

2.2 The Operational Force of Indefinite Modal Reasoning: Modular Search
A record of the possible interactions that may arise in problem-solving can be an important part of
a specification of how to reason in a domain. Here is a simple example.

In planning a trip, it is important to determine before you begin that you will be able to complete
the trip successfully. To be stranded midway would be a real disaster. Often, however, many de-
tails about the trip cannot be resolved in advance. For such situations, showing that the trip will be
successful means showing that you will be able to negotiate these details when the time comes, no
matter how they turn out. What makes it possible to quickly derive confidence in a planned journey
is the knowledge that such details cannot conspire together to require global revisions of the plan.

Thus, suppose one leg of a journey involves taking an early train. At the station, you have to get
a ticket for the train and (if you’re like me) get a cup of coffee. Tickets can be purchased from a teller
at a window or from automatic machines; the windows can have prohibitive lines and the automatic
machines can be out of order, but the station management always makes sure that one quick and easy
method is available. Similarly, there are a couple of places to get coffee at the station; you can be
sure at least one will be open at any time trains are leaving, but since their hours vary, you may not
know which. Using the abbreviations in Figure 3, we might formalize this situation by the logic
program of Figure 1. (The representation of these abilities by atomic propositions is a harmless
abbreviation that allows the modularity of the example—our main focus—to shine through. As we
will see in Section 6, we could also represent abilities in DIALUP using complex formulas in a logic
of knowledge and action, formulas more like those seen already in the example of Section 2.1.)

In general, without knowing more about a specification, we can expect a number of cases to be
considered in proof search that is exponential in the number of ambiguities in it. Here, for exam-
ple, searching automatically for proofs of take-journey is likely to require showing that take-journey
holds independently in the four cases that the program specifies (cases in which we assume either
use-machine or use-window and assume either visit-donuts or visit-starbucks). We will focus on the
use of a search strategy based on a naive restart rule; this algorithm performs case analysis by com-
pleting proof search with one disjunct then attempting a fresh proof of the main query (“restarting”)
using the other disjunct as an assumption. Consider proving take-journey this way. The first sub-
proof of take-journey takes care of the use-machine and visit-donuts case by using the first disjuncts.
This subproof requires two restarts of the goal take-journey, once assuming use-window and once
assuming visit-starbucks—leading to a proof of take-journey from use-window and visit-donuts and
a proof of take-journey from use-machine and visit-starbucks. The last case, proving take-journey
from use-window and visit-starbucks, arises as a restart goal in both of these subproofs. This is
good restart behavior; in multiple case analyses, subproofs can reintroduce cases so search never
terminates [Loveland, 1991]. Expanding the search space can delay the point where this happens,
but cannot avoid difficulties if the full space must be explored—whether because all solutions are
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get-ticket∧get-coffee⊃ take-journey.
use-machine⊃ get-ticket. visit-donuts⊃ get-coffee.
use-window⊃ get-ticket. visit-starbucks ⊃ get-coffee.
use-machine∨use-window. visit-donuts∨visit-starbucks.

Figure 1: Unstructured logic program

[TICKET]get-ticket∧ [COFFEE]get-coffee⊃ take-journey.
[TICKET](use-machine⊃ get-ticket). [COFFEE](visit-donuts⊃ get-coffee).
[TICKET](use-window⊃ get-ticket). [COFFEE](visit-starbucks⊃ get-coffee).
[TICKET](use-machine∨use-window). [COFFEE](visit-donuts∨visit-starbucks).

Figure 2: Modular logic program

Symbol Content
take-journey I can have a successful train-trip
get-ticket I can obtain a ticket
get-coffee I can obtain coffee
use-machine I can use an automatic ticketing machine
use-window I can use a teller’s window
visit-donuts I can get coffee from Dunkin Donuts
visit-starbucks I can get coffee from Starbucks

Figure 3: Interpretations of symbols for the example

needed or because a dead end must fail before an alternative is tried.
In fact, the ambiguities in this problem are independent. Where one gets one’s ticket doesn’t

affect where one gets one’s coffee, and vice versa. The specification of Figure 1 omits this fact, and
as a result an automatic system must search for different ways of proving get-coffee, depending on
whether it has assumed use-machine or assumed use-window. If we provide a better specification,
including the knowledge that these alternatives are independent, the search strategy will be able to
break up the proof in advance. It will restrict the alternatives from use-machine∨ use-window to
proving get-ticket, and it will restrict the alternatives from visit-donuts∨visit-starbucks to proving
get-coffee. In general, when alternatives are specified not to interact, worst-case proof size increases
only linearly as new independent ambiguities are added. This makes for fast failure as well as fast
success.

We will use modal specifications to indicate that alternatives do not interact. Such a specifica-
tion is given for our train problem in Figure 2. The specification invokes two necessity operators,
[TICKET] and [COFFEE], to distinguish the goals and program clauses describing getting a ticket
from those describing getting coffee. A simple metaphor for understanding why the ambiguities in
the resulting specification must be interpreted independently derives from the well-known use of
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modal operators to describe the knowledge of agents. By this metaphor, Figure 2 describes how
problem-solving tasks in catching a train can be assigned to separate problem-solving agents with
specialized information—an agent T that knows just about tickets and an agent C that knows just
about coffee.

This metaphor leads directly to intuitions about search. The problem of getting a ticket is as-
signed to agent T by the goal [TICKET]get-ticket. T has certain alternatives to consider in getting the
ticket, use-machine or use-window. T considers these alternatives and no others in solving its task.
Likewise, the problem of getting coffee is assigned to agent C by the goal [COFFEE]get-coffee. In
solving this problem, C considers just its alternatives: visit-donuts or visit-starbucks. Since the two
agents are reasoning separately about different goals and ambiguities, the record of their problem
solving is just a combined record of their independent steps—not, as before, an interacting record
with combined resolutions of ambiguities.

In this paper, we will see how this intuitive account of modularity in search can be realized
formally in a logic programming interpreter. In brief, the interpreter must keep track of the uses
of assumptions (such as use-machine), in order to determine which modular context its inferences
currently contribute toward (for example, T ’s information). The interpreter must keep track of al-
ternative modular goals (for example, both take-journey and [TICKET]get-ticket), in order to recon-
sider only goals that match this context. Finally, the interpreter must orchestrate the subsequent
uses of assumptions once goals are restarted (such as the assumption use-window for a restart of
[TICKET]get-ticket), in order to ensure that the interpreter’s subsequent inferences remain within
the context it is committed to. Because any modal proof can be transformed to respect the inter-
preter’s discipline, the interpreter can reason correctly about a specification while considering only
a restricted set of proofs with this explicit modular structure.

3 The DIALUP interpreter
In Section 2, we have seen that modal operators can endow specifications with a notion of modu-
larity that suggests intuitions about content and proof-search. In this section, we shall describe the
data structures that DIALUP uses to realize this modularity, and then present a precise description
of DIALUP’s modular operational behavior. We begin by situating DIALUP within the program of
abstract logic programming languages [Miller et al., 1991].

3.1 Abstract Logic Programming
Logic programming languages embody simple, specific search procedures for building proofs. At
each step in logic programming search, the goal is to find a way to use the available assumptions
to establish a specific query. If the query is complex, its logical structure directly determines the
available alternatives for search. Thus, logical symbols in queries can be seen as instructions for
decomposing and transforming the search problem that the interpreter faces. Similarly, the atomic
formulas that an assumption can be used to derive—the head (or heads) of that assumption—serve
as indexes that regulate whether an assumption can be applied. And the logical structure of the as-
sumption provides an instruction for creating a set of new search problems whenever the assumption
is used.

This general perspective on logic programming has been formalized and analyzed under the
framework of abstract logic programming languages [Miller et al., 1991]; the framework has been
applied to intuitionistic, linear and classical logics [Miller et al., 1991, Hodas and Miller, 1994,
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Miller, 1994, Nadathur and Loveland, 1995]. Mathematically, this formalization begins by estab-
lishing a correspondence between search problems posed to the logic programming interpreter and
sequents in a proof calculus. The action of the interpreter in transforming search problems can then
be seen as the construction of a proof in a restricted sequent calculus; the rules of this calculus are
specialized so as to model the constrained search entertained by the logic programming interpreter.
The key result required to show the correctness of a logic programming language in this framework
is then to show that the restricted sequent calculus permits a derivation of a goal exactly when the
goal is provable in a general sequent calculus for the logic.

In some cases, the logic programming proof system can be quite familiar. In
[Miller et al., 1991], for instance, any goal of the interpreter is represented as an ordinary se-
quent Γ - G. The interpreter is distinguished as building uniform proofs, where ordinary
sequent rules are used in a distinguished order. More generally, however, a logic programming
proof system must be augmented with information to correctly capture the state of the interpreter.
For example, the structure of sequent rules may have to distinguish the current goal, as well as
the program clause currently being matched against that goal. This gives a focusing proof system,
whose deductions are called focusing proofs [Andreoli, 1992]. Then the correctness of the logic
programming language lies in showing that the restricted proof system is sound and complete—that
every proof in the ordinary system can be transformed into a proof with the restricted form, and
vice versa.

To describe DIALUP search in particular, sequents must be augmented with two kinds of in-
formation that enforce the modularity of DIALUP programs: specifications of possible worlds con-
straining the use of formulas; and records of restarts, cancellations and suppressions constraining
case analysis for disjunctive assertions.

3.2 Possible Worlds
A modal query [M]G must be established solely from program statements that describe the content
of [M]. Some proof systems [Onishi and Matsumoto, 1957, Kanger, 1957, Fitting, 1983] and mod-
ular logic programming languages [Miller et al., 1991, Giordano and Martelli, 1994] restrict appli-
cable formulas directly by syntactic criteria. However, DIALUP achieves the restriction by draw-
ing on modal semantics [Kripke, 1963] and semantics-based path deduction for modal logic devel-
oped by Fitting [Fitting, 1972, Fitting, 1983] and investigated computationally in [Wallen, 1990,
Ohlbach, 1991, Nonnengart, 1993, Auffray and Enjalbert, 1992].

In this scheme, the language of logical formulas is extended in proofs to permit explicit refer-
ence to possible worlds; in proofs, each program statement and each query is associated with a term
recording the possible world where it holds. Instead of naming a world atomically, these terms name
the sequence of transitions or path that is needed to reach a world from a designated starting point
(the real world). Before using an atomic assertion to establish an atomic query, DIALUP must equate
the possible-world paths associated with the two statements. The solution to such an equation must
respect the types of logic variables and parameters for transitions, and must take into account an
equational theory encoding the applicable (VER), (PI) and (INC) axiom schemes. Because of this,
this equation implements the constraint that the program statement specifies the kind of information
that the query describes. In writing path terms, I will use α and β etc. to name parametric transi-
tions; x and y will represent logic variables over transitions; and µ, ν are metavariables over whole
paths. I represent the association between a proposition P and a world µ by superscript: Pµ.
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The logical treatment of connectives in DIALUP can be seen as alternating translation of modal
formulas into classical formulas based on modal semantics with classical reasoning about the trans-
lations. For example, to reduce a query [M]Gµ, DIALUP introduces a parametric transition of [M]-
accessibility, α, and considers a new query Gµα. Dually, to apply a statement [M]Pµ, DIALUP intro-
duces a fresh logic variable x over transitions of [M]-accessibility and considers applying the state-
ment Pµx. DIALUP’s other, classical connectives are interpreted by applying classical reasoning at
the current world. For example, a query (G1 ∧G2)µ is broken down into the two queries Gµ

1 and
Gµ

2 .

3.3 Restarts, Cancellations and Suppressions
DIALUP’s approach to disjunctive assertions refines the restart rule of Near-Horn Prolog
[Loveland, 1991]. In this regime, a logic programming derivation consists of a series of
blocks. Each block analyzes an overall query in a single way for a single case described by the
program. Thus, to apply a disjunctive assertion A∨B in a derivation, we first complete the current
block, using one disjunct (say A) directly to establish the current goal G. Then we introduce a new
block in which the other assumption is available (say B) and an appropriate new query H is posed.
Recall that we cast any logic programming inference as the application of an appropriate sequent
rule, so the logic programming derivation is a proof in a sequent calculus. We regard the restart
treatment of disjunction in particular as a sequent rule, as schematized in (8):

(8)
. . .,A - G . . .,B - H

. . .,A∨B - G (∨→)

The root of this sequent represents a state of the interpreter which applies A∨B. The left subtree
continues the block by reasoning from A; the right subtree starts a new block by reasoning from
B to establish the new goal H. Thus, this formalism realizes a block by a maximal tree of con-
tiguous inferences in which the right subtree of any (∨ →) inference in the block is omitted. See
[Nadathur and Loveland, 1995, Nadathur, 1998] for more on the relationship between the restart
rule and the structure of sequent calculus derivations.

The restart discipline in (8) is encoded by the new goal H which we prove using the new as-
sumption B; the precise sequent rule that describes the interpreter must account for the choice of
H. In classical logic, it suffices in the new block to consider the original, overall query given to the
interpreter. To obtain modularity for modal logic, we need a more restrictive policy.

A key fact behind this policy is that the restart rule in (8) ultimately treats the assumptions A and
B on a par, despite the apparent asymmetry in the goals G and H associated with them. Now, the
symmetry must follow from the logical correctness of the rule, but we can motivate it more precisely
by considering the schematic structure of a block in which (8) is used. The logic programming
derivation which that block initiates can be represented as follows.
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(9)

DA

. . .A - G

[DB]
DH

. . .B - H
. . .,A∨B - G

D∨
ΣG
DG
ΣH

D0

At the root are performed inferences D0, possibly empty, which introduce the restart goal H. At
this point the state of the interpreter is represented by ΣH , and H is in fact the goal the interpreter is
considering (or is a goal the interpreter could consider at this restart step, if D0 is empty). Further
inferences DG (again possibly empty) follow, until the interpreter reaches the goal G for which case
analysis is introduced, at state ΣG. Now any inferences D∨ are required to reach the disjunction, and
the case analysis for it is introduced. Within this block, we perform inferences DA to use the first
disjunct. In the other block, we perform inferences DH; at various stages here we will entertain
subproofs which we schematize DB, where inferences will be applied to B and further reasoning
undertaken.

By rearraging these inferences, we can construct an alternative derivation in which case analysis
for B is considered first. This derivation has the form schematized in (10).

(10)


DB

. . .B - H′

DA

. . .A - G
DG

. . .A - H
. . .A∨B - H′

D∨


DH
ΣH
D0

That is, we derive the goal H again using inferences D0, but now we immediately apply any rea-
soning DH that we had previously applied towards H in the B block. Within this reasoning, there
are a number of places where access to B (using inferences DB) is called for. At each such place,
we provide this by first reasoning with D∨ to access the disjunction, and then handling the B case
using the original reasoning. That now leaves an A case, which we treat using a restart to the goal
H. The new block contains the reasoning DG previously applied after H in the first block of (9)
followed by the reasoning DA previously applied to discharge the A case there.

The derivations in (9) and (10) show that it is possible to treat logic programming case analysis
in either order, even using an asymmetrical restart rule. Of course, the alternative proofs may differ
in size—(9) can be much smaller if B is used many times in DH . More importantly, the alternative
proofs differ in how they assign reasoning to blocks. Both proofs locate inferences D0 and D∨
within the first, lower block. But whereas (9) locates DA and DG in the first block and locates DH

(and any DB’s) in the second, (10) locates DH (and any DB’s) in the first and locates DA and DG in
the second.
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Now, let us use this symmetry to describe the order in which cases should be treated, and the
restart goals we should consider in case analysis. We consider the inference figure of (8), and sup-
pose that the assumption B is made at a particular ground path ν. So if we can guarantee that Bν will
be used in the new block, we can restrict the restart to goals Hµ where ν is a prefix of µ—to modular
restarts. Adapting terminology from [Loveland, 1991] to this restricted context, I will refer to any
use of a disjunctive premise in the first block of case analysis where it is assumed as a cancellation.
If we have cancellations, we can enforce modular restarts.

Having cancellations is already very attractive from the point of view of implementation. It
gives a simple invariant that drastically prunes the search space for the logic programming inter-
preter. We can illustrate this by observing that our hypothetical disjunct Bν must be used in some
block after it is assumed. Otherwise these later blocks form the basis of an independent proof of the
query, which the interpreter must already consider elsewhere in its search space; the case analysis
at (A∨B)ν is superfluous. Such redundancies in search must be pruned in practice.

Thus, by considering the right combination of disjuncts in the block where Bν is introduced, we
can and should guarantee the cancellation for Bν in that block. We cannot say in advance, how-
ever, which disjuncts must be introduced in this block. For example, suppose the program contains
another disjunctive assertion C∨D that we must use to establish the query. If B combines only
with C in inference to prove the query, we must be prepared to consider the C case first to obtain
a cancellation—this would mean that the derivation from the assumption B with case analysis for
C∨D has the form schematized by (9). However, if B combines only with D, we must be prepared
to consider the D case first to obtain a cancellation—the derivation from the assumption B with case
analysis for C∨D should have the form schematized by (10). The danger this raises is that B might
be required in cases both for C and D. The same proof could then be reported twice: once contain-
ing a subproof like (9), with C considered first, then D; and again containing a subproof like (10),
with D considered first, then C.

Let us say that a disjunct D is exceptional in a block if D occurs as part of a disjunctive program
statement in which other disjuncts precede D (textually), but D is the disjunct that is immediately
analyzed in this block in a use of that program statement. Call the disjuncts that precede D delayed,
and by extension, call the block in which D is treated an exceptional block and the blocks in which
the delayed disjuncts are first treated delayed blocks. For example, then, B counts as an exceptional
disjunct for any case analysis of A∨B in the lower block in (10), and that block is an exceptional
block. Meanwhile, A is a delayed disjunct for any case analysis of A∨B in the lower block in (10)
and the blocks in (10) where we restart by A are delayed.

The ambiguity just illustrated shows that the only occasions when we should consider an excep-
tional disjunct (and make the current block an exceptional one) are those which enable a cancella-
tion for a premise introduced in the current block that would not get a cancellation here otherwise.
We can refer to these as the key premise and the key cancellations of the exceptional block.

These occasions can be identified by conditions on the inferences that constitute exceptional and
delayed blocks. First, the delayed blocks cannot have given rise to cancellations for the key premise
of the exceptional block. In terms of the schemas of (9) and (10), there can be no cancellations for
the key premise in the inferences DH and DA which make up the delayed block and which would
have appeared in the first block if the disjunct had not been delayed. We can ensure that no such
inferences are entertained by suppressing that key premise—temporarily preventing this premise
from being used—during any block where a delayed disjunct is first treated.
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Second, the exceptional block cannot introduce a key cancellation inference in the reasoning
it implicitly shares with the delayed block. In terms of the schemas of (9) and (10), there can be
no cancellations for the key premise in the inferences D0 and D∨ which appear in the lower block
regardless of which case is analyzed first. We take separate strategies to protect D0 and D∨. In
protecting D∨, we need to avoid a key cancellation during the proof of the disjunction itself. To
avoid this, we will again suppress the key premise—this time for the proof of goals introduced by
backward chaining to establish exceptional disjuncts. There can be no suppression with D0, because
we have inferences that have perhaps already been performed when case analysis is considered.
To protect D0, we will restrict the set of restart goals we consider. A lower restart goal H will be
associated with a smaller body of inferences D0; thus, selection of a sufficiently low restart goal
will eliminate any key cancellations from the corresponding D0. We will call such a goal a free
restart goal: we restart delayed blocks only to free restart goals. The stack-based data structures of
logic programming proof search makes free restart goals easy to identify.

This reasoning accounts for the discipline of modular restarts, cancellation, and suppression that
DIALUP follows. DIALUP records the initial query and any subsequent query where a new world
parameter is first introduced as a possible restart goal. When case analysis is introduced for one dis-
junct, DIALUP records the need to restart to one of these goals with the remaining disjuncts (more-
over, the disjunct analyzed immediately cannot be exceptional unless a cancellation is needed). At
restart-time, DIALUP picks a restart goal Gµ such that the new assumption Pν has ν a prefix of µ, for
modularity; for delayed disjuncts, Gµ is also chosen to be free. Pν is a key assumption that must be
cancelled in the new block; previously suppressed assumptions are now exposed, and, if the block is
delayed, the previous key assumption is suppressed. Finally, once the block is completed, DIALUP

checks for a cancellation of the key premise Pν. If there is none, the proof under construction is
discarded as redundant.

3.4 Operational Rules
We can now describe DIALUP’s operational behavior more precisely. We write a DIALUP task as a

judgment (κ,κI,κO)Γ ?
- Gµ, indicating that DIALUP has to derive the goal formula G at world-

path µ using the program Γ. Within the program Γ we optionally distinguish a formula Pν that
describes the current state of the interpreter in applying a particular program clause to the current
goal.

The records κ and κI provides information about the overall structure of the proof being
constructed; DIALUP’s computation in the proof search task determines additional structure of
the proof, as returned in κO. In regarding the context for the proof search problem in terms
of input and output records associated with it, we follow the technique adopted for example in
[Lincoln and Shankar, 1994]. In these context records, we abstract a number of representations that
the interpreter accumulates (according to a straightforward discipline) about values of variables and
analysis of cases.

κ, records features of the proof that are already set; we represent κ as a tuple of the form
〈G;K; s?;F 〉. G gives the potential restart goals that have been introduced; K gives the key premise
for cancellation in this block, if any; s? indicates whether any formulas are currently suppressed; F
gives a pointer to the final list of restart goals that will count as free in the current block.

κI allows partial information to accumulate about the overall structure of the proof. We repre-
sent κI as a tuple of the form 〈C ;E;c?〉. C records what elements and logic variables have been have
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been introduced in the proof for paths and first-order terms and what equations on these variables
must be solved to complete the proof; E records the restart goals that have not been ruled out as
free given the contributions made so far to the current block; c? records whether any cancellation
has taken place thus far in the block.

Finally, we represent κO with a tuple of the form 〈C ;E;c?; (d?)〉. C , E and c? record values for
the provisional constraints, the provisional free restart goals and the provisional cancellations, given
the additional information accumulated during the current proof task; and d? indicates whether the
use of the active current program clause (if any) involves the creation of delayed disjuncts (this is
only meaningful when breaking down program clauses).

Suppose we have a specific program Γ consisting of modal formulas and a specific goal con-
sisting of a modal formula G; We regard each of these expressions as a formula prefixed with the
empty prefix; we formulate an initial state of proof of the form

κ = 〈G; ; ;F 〉,κI = 〈;G; false〉

This indicates that G is the only available restart goal; that there is no formula to cancel, no sup-
pressions in force, no constraints that yet need to be solved, no cancellation that has yet occurred,
and only G as a possibly free restart goal. We use the rules defined below in (11)–(15) to establish
the judgment

(κ,κI,κO)Γ ?
- G

for some κ0. In case κO takes the form 〈C ;F ;c?〉, supplying constraints C on values of variables
which can be satisfied by an appropriate substitution of values to variables and supplying goals F
that fill the placeholder supplied for the free restart goals of the block, the result provides a DIALUP

answer for the query G against the program Γ. Sections 4 and 5 argue that there is such an answer
just in case G holds in all modal models at all worlds where Γ is true, according to the usual Kripke
semantics.

We begin by specifying the instructions for search that break down complex goals into atomic

ones. These cases apply in handling the task (κ,κI,κO)Γ ?
- Gµ whenever G is not an atomic

formula; the rule selected is a function of the structure of G as specified in (11).

(11) a If G is of the form B∧C, search proceeds by first solving (κ,κI,κO1)Γ ?
- Bµ and then

continues by solving (κ,κ′I,κO)Γ ?
- Cµ. Since the first task yields a record

κO1 = 〈C1;E1;c?
1; (d?

1)〉, we construct κ′I as 〈C1;E1;c?
2〉.

b If G is of the form B∨C, search proceeds either by solving (κ,κI,κO)Γ ?
- Bµ, or by

solving (κ,κI,κO)Γ ?
- Cµ.

c If G is of the form ∃xA, search proceeds by solving

(κ, 〈C ,NLVF(X,µ);E;c?〉,κO)Γ ?
- A[X/x]µ. C , E and c? name the elements of κI; the

additional constraint NLVF(X,µ) characterizes substitutions that send the new logic
variable X to some first-order term t defined at world µ.

d If G is of the form [M]∀xA, we revise the context to (κ′,κ′I,κO) to record a new
parameter α representing a transition of [M]-accessibility and a new parameter c
representing a first-order individual defined (only) at world µα. We solve

(κ′,κ′I,κO)Γ ?
- A[c/x]µα. Explicitly, we require constraints NPT(α, [M],µ) and
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NPF(c,µα) describing the new terms. If κ is 〈G;K; s?;F 〉, κ′ is 〈G,A[c/x]µα;K; s?;F 〉.
If κI is 〈C ;E;c?〉 then if c? is true, then κ′I is 〈C ,NPT(α, [M],µ),NPF(c,µα);E;c?〉 and if
c? is false then κ′I is 〈C ,NPT(α, [M],µ),NPF(c,µα);E,A[c/x]µα;c?〉.

e If G is of the form [M](B⊃ C), we revise the context to (κ′,κ′I,κO) to record a new
parameter α representing a transition of [M]-accessibility; search proceeds by solving

(κ′,κ′I,κO)Γ,Bµα ?
- Cµα. If κ is 〈G;K; s?;F 〉, κ′ is 〈G,Cµα;K; s?;F 〉. If κI is

〈C ;E;c?〉 then if c? is true, then κ′I is 〈C ,NPT(α, [M],µ);E;c?〉 and if c? is false then κ′I
is 〈C ,NPT(α, [M],µ);E,Cµα;c?〉.

f In other cases where G is of the form [M]C, search proceeds by solving

(κ′,κ′I,κO)Γ ?
- Cµα where α is a new parameter representing a transition of

[M]-accessibility and κ′ and κ′I are constructed according to a rule which is textually
identical to that of (11e).

The search instructions in (11) describe the processing DIALUP will do in breaking down any
complex goal into a combination of atomic goals. Once this process is completed, the program itself
is consulted; the interpreter performs an appropriate version of backward chaining. The interpreter
chooses a clause that might match the goal nondeterministically from the program and dissects it—
by rules dual to the ones above that dissect goals—to obtain an atomic fact and a sequence of new
subgoals. Backward chaining is described by the decision rule of (12):

(12) Suppose Gµ is an atomic formula and Pν is a program clause in Γ that is not suppressed

(by s? in κ = 〈G;K; s?;F 〉). Then search for (κ,κI,κO)Γ ?
- Gµ may proceed by

solving (κ,κI,κ′O)Γ;Pν ?
- Gµ. Unless Pν is the key premise K, κO and κ′O are

identical. Otherwise, say κ′O is 〈C ;E;c?;d?〉. κO is set to 〈C ;E∩G; true ;d?〉; this
records the inference as a cancellation that contributes towards the currently active
goals.

Obviously, for implementation, the choice of clause Pµ in (12) can be restricted by typical heuristics
such as a match between the predicate of G and a head predicate in P.

Backward chaining introduces a new kind of interpreter state in which the program clause P
that the interpreter must apply to the current goal is distinguished. In such a state, the structure of
P clause gives rise to instructions for search according to the specifications of (13).

(13) a If P is of the form B∧C, search proceeds either by solving (κ,κI,κO)Γ;Bν ?
- Gµ, or

by solving (κ,κI,κO)Γ;Cν ?
- Gµ.

b If P is of the form ∀xA, search proceeds by constructing κ′I to introduce a fresh logic
variable X to leave open some first-order term t defined at world ν. Then we proceed

with (κ,κ′I,κO)Γ;A[X/x]ν ?
- Gµ. Explicitly, if κI is 〈C ;E;c?〉, κ′I is

〈C ,NLVF(X,µ);E;c?〉.
c If P is of the form B⊃C, search proceeds by first solving (κ,κI,κ′O)Γ;Cν ?

- Gµ; we

then construct appropriate κ′ and κ′I and solve (κ′,κ′I,κ
′′
O)Γ ?

- Bν. Explicitly, suppose
κ′O is 〈C ;E;c?;d?〉. Then κ′I is 〈C ;E;c?〉. Meanwhile, if d? is true, κ′ is exactly like κ
except that the key formula K is now suppressed in s? in κ; otherwise κ′ and κ are
identical. Finally if κ′′O is 〈C ′;E ′;c′?;d′?〉, then κO is 〈C ′;E ′;c′?;d?〉 (propagating the
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values accumulated throughout, except for passing down information about delayed
disjuncts only from the first subproof).

d If P is of the form [M]B, search proceeds by constructing κ′I to introduce a fresh logic
variable x to leave open a new logic variable representing a transition of

[M]-accessibility from ν. Then we proceed with (κ,κ′I,κO)Γ;Bνx ?
- Gµ. Explicitly, if

κI is 〈C ;E;c?〉, κ′I is 〈C ,NLVT(x, [M],µ);E;c?〉; the additional constraint NLVT(x, [M],ν)
characterizes substitutions that send the new logic variable x to an appropriate path.

e If P is of the form B∨C, search proceeds in either of two ways. The ordinary case is to

solve (κ,κI,κ′O)Γ;Bν ?
- Gµ and to solve a further search problem

(κ,κ′I,κ
′′
O)Γ,Cν ?

- by restarting ordinarily with key premise Cν. We construct κ′I from
κ′O = 〈C ;E;c?;d?〉 as 〈C ;G; false〉 (using G from κ). Assuming κ′′O is 〈C ′;E ′;c′?;d′?〉,
we construct κO as 〈C ′;E;c?;d?〉. The restart problem is delayed until the block in
progress is completed and the value for F in κ is determined.
The exceptional case, when κ contains a key premise R, is to solve

(κ,κI,κ′O)Γ;Cν ?
- Gµ and to solve a further search problem (κ,κ′I,κ

′′
O)Γ,Bν ?

- by
delayed restart with key premise Bν; this search problem is again delayed until the
block in progress is completed and the value for F in κ is determined; we construct κ′I
from κ′O as above. Finally, κO is defined from κ′O and κ′′O as above except that here we
use true in place of d?.

f If P is of the form ∃xA, we update κI to κ′I to leave open a fresh parameter c as a witness
for the existential quantifier by Skolemizing; search proceeds by solving

(κ,κ′I,κO)Γ;A[c/x]ν ?
- Gµ. Explicitly, we assume that the existential quantifier in the

program is associated with a function f, and the sequence of logic variables that have
been introduced during matching is given by the list V. We introduce a constraint
SFP(c,ν, f,V) indicating that c must correspond to a term in which f is applied to
arguments V to name an individual existing at world ν; if κI is 〈C ;E;c?〉 then κ′I is
〈C , SFP(c,ν, f,V);E;c?〉.

The definitions outlined so far leave only two gaps in the specification of the interpreter. First,
to match an atomic clause against an atomic goal, we must unify:

(14) Solve (κ,κI,κO)Γ;Aν ?
- Gµ where both A and G are atoms by constructing

appropriate κO. If κI is 〈C ;E;c?〉 then κO is 〈C ,A = G,ν = µ;E;c?; false 〉; if the new
constraints will not be satisfiable the proof in progress may be rejected.

Second, to handle a disjunctive case, we must do an appropriate restart with new key premise Pν:

(15) Solve (κ,κI,κO)Γ ?
- selecting a restart goal Gµ from κ, constructing appropriate κ′

and κ′I, and solving (κ′,κ′I,κO)Γ ?
- Gµ. Say κ is 〈G;K; s?;F 〉 and κ′ is 〈C ;E;c?〉.

Then Gµ must have Gµ ∈ G, and, if this is a delayed restart, Gµ ∈ F . If this is an
ordinary restart, we define s′? so that no premises are suppressed; otherwise, we define
s′? so that K is suppressed. We enforce the constraint that ν is a prefix of µ by
constructing κ′I = 〈C ,ν ≤ µ;E;c?〉. Finally, we require that κO takes the form
〈C ;F ; true;d?〉.
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4 Why DIALUP is correct
In this section, we describe the design of DIALUP from a logical point of view. We begin by pre-
senting a cut-free path-based sequent calculus for multi-modal deduction which uses Herbrand
terms to reason correctly about parameterized instances of formulas. Since this calculus repre-
sents our basic lifted sequent calculus for modal logic, we refer to it as SCL here. SCL is de-
rived explicitly in [Stone, 1999a], where it is proved that SCL provides a sound and complete
characterization of Kripke models for first-order multi-modal logic. But SCL should offer few
surprises to those familiar with prefixed tableaux [Fitting, 1983], the logical foundation of Her-
brand terms [Lincoln and Shankar, 1994], and the possibilities for enforcing a proof-theoretic sep-
aration in modal deduction between constraints on accessibility and general first-order reasoning
[Frisch and Scherl, 1991, Basin et al., 1998].

SCL has the advantage that inferences can be freely interchanged, allowing arbitrary proofs to
be transformed easily into goal-directed proofs—we show in Theorem 1, presented in Section 4.2,
how to obtain goal-directed proofs in this calculus. The very same flexibility of inference, how-
ever, means that this calculus neither respects nor represents the potential of modal inference to
give proofs an explicitly modular structure.

We therefore rely on further proof-theoretic analyses of path-based sequent calculi to refine the
uniform proof system and guarantee modular behavior. These analyses establish that path represen-
tations enforce modularity and locality in the uses of formulas in proofs, even with otherwise clas-
sical reasoning. The operational rules of DIALUP are obtained by transforming the uniform proof
system to take advantage of these results; as a consequence, the interpreter can dynamically exploit
locality in the use of modular assumptions. The transformation starts in Section 4.3 by dividing uni-
form proofs into separate segments which apply one axiom from the program. The transformation
continues in 4.4 by dividing uniform proofs into separate blocks to analyze separate cases. As a pre-
liminary to modularity, we organize these blocks so that each one contains a cancellation whereby
the most-recently introduced case contributes to the goal being proved [Loveland, 1991]. Finally,
in Section 4.5, we combine the presence of cancellations and the inherent ability of the modal lan-
guage to modularly restrict the contributions premises can make (together with the uniformity of
proof search and the independence of cases) to derive a final sequent calculus (in Figures 23 and 24)
which can be regarded as a formal specification for the interpreter of a logic programming language.
We relate this specification explicitly to the operational rules of Section 3.4 in Section 5.

4.1 Modal sequent calculus
All the proof systems in this paper are parameterized by a modal regime, which describes the re-
lationships among the modal operators of the language. This regime is derived from the specifi-
cation input to DIALUP. DIALUP assumes increasing first-order domains across worlds, and offers
four kinds of modal operators: T, subject just to (VER); K4, subject just to (PI); S4, subject to both;
and K, subject to neither. Further, the relationships among operators are characterized by a rela-
tion i ≤ j that holds when we have a schema 2iP ⊃ 2 jP. Thus, for DIALUP, we set up a regime
as a tuple 〈A,N , increasing〉, where A is a function associating each modal operator with a type
from K, K4, T and S4; N is a (strict) partial order on the modal operators obtained by taking the
transitive closure of ≤; and increasing codes the relationships among first-order domains across
worlds. The regime is a convenient structure for identifying classes of modal frames and classes
of Kripke modal models where the accessibility relations and the domains of quantification respect
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intended constraints, in the usual way (see for example [Fitting, 1983, Auffray and Enjalbert, 1992,
Debart et al., 1992, Stone, 1999a]).

The basic constituent in the proof system is a tracked, prefixed formula. The formulas extend
the basic languages D(C) and G(C) of definitions and goals (parameterized by atomic constants
C and collectively identified as L(C)) defined in (1) by allowing additional terms—representing
arbitrary witnesses of first order quantifiers, and arbitrary transitions of modal accessibility among
possible worlds—to be introduced into formulas for the purposes of proof. We begin by assuming
two countable sets of symbols: a set H of first-order Herbrand functions and ϒ of modal Herbrand
functions. We can now define sets PH of first-order Herbrand terms, κϒ of modal Herbrand terms,
and Π(κϒ) of Herbrand prefixes by mutual recursion:

Definition 1 (Herbrand terms and prefixes) Assume that t0 is a Herbrand prefix and let t1, . . ., tn
be a sequence (possibly empty), where each ti is either an element of C, a first-order Herbrand term,
or a Herbrand prefix. Then if h is a first-order Herbrand function then h(t0, t1, . . ., tn) is a first-order
Herbrand term. If η is a modal Herbrand function then η(t0, t1, . . ., tn) is a modal Herbrand term.
A Herbrand prefix is any finite sequence of modal Herbrand terms.

A prefixed formula is now an expression of the form Aµ with A a formula and µ a Herbrand prefix—
we use D(C∪PH)Π(κϒ) and G(C∪PH)Π(κϒ) to refer to prefixed definitions and prefixed goals. For
Herbrand calculi, formulas must also be tracked to indicate the sequence of instantiations that has
taken place in the derivation of the formula.

Definition 2 (tracked expressions) If E denotes the expressions of some class, then the tracked
expressions of that class are expressions of the form eI where e is an expression of E and I is a
finite sequence (possibly empty) of elements of C∪PH∪Π(κϒ).

We say that a tracked expression eI tracks a term t just in case t occurs as a subterm of some term
in I.

In order to reason correctly about multiple modal operators, we need to keep track of the kinds
of accessibility that any modal transition represents. To endow the system with correct first-order
reasoning on increasing domains, we also need to keep track of the worlds where first-order terms
are introduced. We use the following notation to record these judgments: µ/ν : i indicates that world
ν is accessible from world µ by the accessibility relation for modality i; and t : µ indicates that the
entity associated with term t exists at world µ.

It is convenient to keep track of this information by anticipating the restricted reasoning required
for the DIALUP fragment L(C) and exploiting the structure of Herbrand terms, as follows. It is
clear that there are countably many first-order Herbrand terms, Herbrand prefixes, and formulas
in L(C∪PH). We can therefore describe a correspondence as follows. If A is a formula of the form
∀xB or ∃xB, we define a corresponding first-order Herbrand function hA so that each first-order Her-
brand function is hA for some A and no first-order Herbrand function is hA and hB for distinct A and
B. Likewise, if A is a formula of the form2iB and u is a natural number, we define a corresponding
modal Herbrand function ηu

A so that each modal Herbrand function is ηu
A for some A and no modal

Herbrand function is ηu
A and ηv

B for distinct A and B or distinct u and v. Now we have:

Definition 3 (Herbrand Typings) A Herbrand typing for the language L(C∪PH) (under a corre-
spondence as just described) is a set Ξ of statements, each of which takes one of two forms:
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1. µ/µη : i where: µ is a Herbrand prefix and η is a modal Herbrand term of the form ηu
A(µ, I)

and A is 2iB3

2. t : µ where t is a first-order Herbrand term of the form h(µ, I).

A sequence of modal and first-order Herbrand terms X determines a Herbrand typing ΞX, consist-
ing of the appropriate µ/µη : i for each modal Herbrand term η that occurs in X (possibly as a
subterm) and the appropriate h : µ for each first-order Herbrand term h that occurs in X (possibly
as a subterm).

This definition of Herbrand terms specializes the definition of [Stone, 1999a] to the DIALUP lan-
guage by eliminating cases for inference rules that are not required in DIALUP; it also anticipates
our arguments about transformations between Herbrand proofs by indexing Herbrand terms by nat-
ural numbers; in [Stone, 1999a] Herbrand terms are indexed only by formulas. This move is correct
and complete since we can translate back and forth by erasing the numerical index (in one direction)
and decorating with the index 0 (in the other).

Definition 4 (Typings) Suppose that Ξ is a Herbrand typing over a language L(C∪P)Π(κ), and
that S = 〈A,N , increasing〉 is a modal regime. We define the relation that E is a derived typing from
Ξ with respect to S, written S,Ξ.E, as the smallest relation satisfying the following conditions:

• (K). S,Ξ.µ/ν : i if µ/ν : i ∈ Ξ.

• (T). S,Ξ.µ/µ : i if A(i) is T or S4, and µ occurs in Ξ.

• (4). S,Ξ.µ/ν : i if µ/µ′ : i ∈ Ξ, S,Ξ.µ′/ν : i, and A(i) is K4 or S4.

• (Inc). S,Ξ.µ/ν : j if S,Ξ.µ/ν : i and i≤ j according to N .

• (V). S,Ξ. t : µ if t : µ ∈ Ξ.

• (I). S,Ξ. t : ν if S,Ξ.µ/ν : i for some i and S,Ξ. t : µ.

Inspection of these rules shows that S,Ξ.µ/ν : i only if ν and µ occur in Ξ. Moreover, given these
rules, an easy induction on the length of typing derivations gives that S,Ξ.µ/ν : i only if ν = µν′
for some prefix ν′. Thus, suppose that S,Ξ .µ/ν : i for some Herbrand typing Ξ: each step in the
derivation must concern some prefix of ν and thus S,Ξν.µ/ν : i. These invariants permit some sim-
plifications in reasoning in the fragment L(C∪P) over more expressive modal regimes containing
other modal operators and other uses of connectives. (In particular, we can streamline the formu-
lation of axiom inferences and the tracking of terms at modal and quantifier rules over the general
case; see [Stone, 1999a, Section 5].)

These definitions allow us to describe the modal Herbrand sequent calculus precisely. For the
DIALUP fragment of modal logic, it suffices to consider sequents of the form ∆ - Γ, where ∆ is
a multiset of prefixed definitions (from D(C∪PH)Π(κϒ)), and Γ is a multiset of prefixed goals (from
G(C∪PH)Π(κϒ)). We can then specialize a cut-free modal sequent calculus—for example the one
presented in [Stone, 1999a]—to the DIALUP fragment by omitting unneeded inference figures, and
by exploiting the DIALUP invariant that S,Ξ.µ/ν : i only if ν is of the form µν′. Such a calculus,
SCL, is given in Definition 5.

3including as a special case 2i(B⊃C), which we will abbreviate to B>i C.
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Definition 5 (Herbrand sequent calculus) For basic first-order multi-modal Herbrand deduc-
tions in the DIALUP fragment over a regime S, we will use the sequent rules defined here, which
comprise the system SCL. The rules consist of an axiom rule and recursive rules—each recursive
rule relates a base sequent below to one or more spur sequents above; it applies to the base in virtue
of an occurrence of a distinguished tracked, prefixed formula in the sequent; we refer to this as the
principal expression or simply the principal of the inference. Similarly, each of the sequent rules
introduces new expressions onto each spur, which we refer to as the side expressions of the rule.
We will also refer to the two named expression occurrences at axioms as the principal expressions
or principals of the axiom. Now we have:

1. axiom—A atomic:
∆,Aµ

X
- Γ,Aµ

Y

2. conjunctive:
∆,A∧Bµ

X ,A
µ
X,B

µ
X
- Γ

∆,A∧Bµ
X
- Γ

∆ - Γ,A∨Bµ
X ,A

µ
X,B

µ
X

∆ - Γ,A∨Bµ
X

∆,Aµ
X
- Γ,A⊃ Bµ

X ,B
µ
X

∆ - Γ,A⊃ Bµ
X

3. disjunctive:
∆ - Γ,A∧Bµ

X ,A
µ
X ∆ - Γ,A∧Bµ

X ,B
µ
X

∆ - Γ,A∧Bµ
X

∆,A∨Bµ
X ,A

µ
X
- Γ ∆,A∨Bµ

X ,B
µ
X
- Γ

∆,A∨Bµ
X
- Γ

∆,A⊃ Bµ
X
- Aµ

X ,Γ ∆,A⊃ Bµ
X ,B

µ
X
- Γ

∆,A⊃ Bµ
X
- Γ

4. possibility—where η is ηu
2iA

(µ,X) for some u:

∆ - Γ,2iA
µ
X ,A

µη
X,µη

∆ - Γ,2iA
µ
X

5. necessity—subject to the side condition S,Ξν .µ/µν : i:

∆,2iA
µ
X ,A

µν
X,µν

- Γ
∆,2iA

µ
X
- Γ

6. existential—subject to the side condition that h is hB(µ,X) for Bµ
X the principal of the rule
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(either ∃xA or ∀xA):

∆,∃xAµ,A[h/x]µX,h
- Γ

∆,∃xAµ
X
- Γ

∆ - Γ,∀xAµ
X,A[h/x]µX,h

∆ - Γ,∀xAµ
X

7. universal—subject to the side condition S,Ξt,µ . t : µ:

∆,∀xAµ
X,A[t/x]µX,t

- Γ
∆,∀xAµ

X
- Γ

∆ - Γ,∃xAµ
X,A[t/x]µX,t

∆ - Γ,∃xAµ
X

A S-proof or S-derivation for a sequent ∆ - Γ is a tree built by application of these inference
figures (in such a way that any side conditions are met for regime S), with instances of the axiom as
leaves and with the sequent ∆ - Γ at the root. A tree similarly constructed except for containing
some arbitrary sequent S as a leaf is a derivation from S. In [Stone, 1999a] it is shown that there is
an S-proof for a sequent using these rules just in case that sequent is valid in all Kripke models that
respect the regime S.

Our syntactic methods for reasoning about derivations exploit permutability of inference—the
general ability to transform derivations so that inferences are interchanged [Kleene, 1951]. To de-
velop the notion of permutability of inference, we need to make some observations about the SCL
sequent rules. First, the reasoning that is performed in subderivations is reasoning about subfor-
mulas (and vice versa). That is, in any spur sequent, the occurrence of the principal expression and
the side expression all correspond to—or as we shall say, are based in—the occurrence of the prin-
cipal in the base sequent. Likewise, each of the remaining expressions in the spur are based in an
occurrence of an identical expression in the base. Here, as in [Kleene, 1951], we are assuming an
analysis of each inference to specify this correspondence in the case where the same expression
has multiple occurrences in the base or in a spur. Thus, our proof techniques, where they involve
copying derivations, sometimes involve (implicit) reanalyses of inferences.

Now, in any derivation, the spur of one inference serves as the base for an adjacent inference
or an axiom. We can therefore associate any tracked prefixed formula occurrence E in any sequent
in the derivation with the occurrence in the root (or end-sequent) which E is based in. A similar
notion can relate inferences, as follows. Suppose O is the inference at the root of a (sub)derivation,
and L is another inference in the (sub)derivation. Then L is based in an expression E in the spur of
O if the principal expression of L is based in E; L is based in O itself if E is a side expression of
O. An important special case is that of an axiom based in an inference O. In effect, such an axiom
marks a contribution that inference O contributes to completing the deduction.

To define interchanges of inference, we appeal to the two basic operations of contraction and
weakening, which we cast as transformations on proofs. (In other proof systems, contraction and
weakening may be introduced as explicit structural rules.)

Lemma 1 (Weakening) Let D be an SCL proof, let ∆0 be a finite multiset of tracked prefixed defi-
nitions and let Γ0 be a finite multiset of tracked prefixed goals (in the same language as D). Denote
by ∆0 + D + Γ0 a derivation exactly like D, except that where any node in D carries ∆ - Γ, the
corresponding node in ∆0 +D +Γ0 carries ∆,∆0

- Γ,Γ0. (When ∆0 or Γ0 is empty, we drop the
corresponding + from the notation.) Then ∆0 + D + Γ0 is also an SCL proof.
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Lemma 2 (Contraction) Let D be an SCL proof whose root carries ∆ - Γ,E,E. Then we can
construct an SCL proof D′ whose root carries ∆ - Γ,E, whose height is at most the height of
D and where there is a one-to-one correspondence (also preserving order of inferences) that takes
any inference of D′ to an inference with the same principal and side expressions in D. We can
likewise transform an SCL proof D whose root carries ∆,E,E - Γ into an SCL proof D′ whose
root carries ∆,E - Γ.

These lemmas follow from straightforward induction on the structure of derivations. These conse-
quences continue to hold, suitably adapted, for the intermediate proof systems that we will construct
from SCL in later sections (including SCLU and SCLV).

Now consider two adjacent inferences in a derivation, a base inference R and an inference S
(whose base is a spur of R). If S is not based in R, we may replace the derivation rooted at the base
of R by a new derivation of the same end-sequent in which S applies at the root, R applies adjacent,
and the remaining subderivations are copied from the original derivation (but possibly weakened to
reflect the availability of additional logical premises). Performing such a replacement constitutes
an interchange of rules R and S and demonstrates the permutability of R over S; see [Kleene, 1951].
SCL is formulated so that any such pair of inferences may be exchanged in this way.

We also observe that we can correctly introduce an abbreviation for goal occurrences of
2i(A⊃ B) by a single formula (A >i B) and the consolidation of corresponding inferences (→2i)
and (→⊃) into a single figure (→>i). Again when the inference applies to principal Aµ

X , the figure
is formulated using η for ηu

A(µ,X) as:

Γ,Aµη
X,µη

- Bµη
X,µη,A>i Bµ

X,∆
Γ - A>i Bµ

X ,∆
→>i

We will refer to the calculus using (→>i) in place of (→ 2i) and (→⊃) as SCLI.
To transform an SCLI deduction into an SCL deduction, we can eliminate (→>i) figures induc-

tively as follows. Take a derivation of this form:

D
Γ,Aµη

X
- Bµη

X ,A>i Bµ
X ,∆

Γ - A>i Bµ
X ,∆

→>i

Transform D inductively into an SCL derivation D′; then construct:

D′+ A⊃ Bµη
X,µη

Γ,Aµη
X,µη

- Bµη
X,µη,A⊃ Bµη

X,µη,2i(A⊃ B)µ
X ,∆

Γ - A⊃ Bµη
X,µη,2i(A⊃ B)µ

X ,∆
→⊃

Γ -
2i(A⊃ B)µ

X ,∆
→2i

For the converse construction, we assume an SCL derivation whose end-sequent—Γ - ∆—
takes a special form. ∆ is the multiset union of ∆+ and ∆∗ where ∆∗ consists of all and only the
occurrences of expressions of the form A⊃ Bµη

X,µη in ∆; moreover, for each A⊃ Bµη
X,µη ∈ ∆∗ there is

a A >i Bµ
X ∈ ∆+ with η as determined for the (→2i) or (→>i) figure. (This assumption is met by

DIALUP search problems, as they are in fact specified without any bare⊃-formulas in goals.) Under
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this assumption, we construct an SCLI proof of Γ - ∆+ inductively. The problematic case is an
SCL derivation that ends:

D
Γ,Aµη

X,µη→ Bµη
X,µη,A⊃ Bµη

X,µη,∆
Γ→ A⊃ Bµη

X,µη,∆
→⊃

Since by assumption we have A >i Bµ
X ∈ ∆+, we derive an SCLI proof D′ for D inductively then

construct:
D′

Γ,Aµη
X,µη→ Bµη

X,µη,A>i Bµ
X ,∆

+

Γ→ A>i Bµ
X ,∆

+ →⊃

Here (as always) the status of Bµη
X,µη as a ∆+ expression is guaranteed by the DIALUP fragment and

the fact that ∆+ is a multiset of tracked elements of G(C∪AH)Π(κϒ).

4.2 Uniform proofs and eager proofs
[Miller, 1994] uses Definition 6 to characterize abstract logic programming languages.

Definition 6 A cut-free sequent proof D is uniform if for for every subproof D′ of D and for every
non-atomic formula occurrence B in the right-hand side of the end-sequent of D′ there is a proof
D′′ that is equal to D′ up to a permutation of inferences and is such that the base inference in D′′
introduces the top-level logical connective of B.

Definition 7 A logic with a sequent calculus proof system is an abstract logic programming lan-
guage if restricting to uniform proofs does not lose completeness.

It is easy to show that the sequent calculi SCL and SCLI are abstract logic programming languages
in this sense. In fact, by this definition every SCL or SCLI derivation is uniform.

To anticipate our analysis of permutability in later sections, let us introduce the notion of an
eager derivation in SCL or SCLI.

Definition 8 Consider a derivation D containing a right inference R that applies to principal E.
R is delayed exactly when there is a subderivation D′ of D where: D′ contains R; D′ has a left
inference L at the root; and the principal E of R is based in an occurrence of E in the end-sequent
of D′.

Consider this schematic diagram of such a subderivation D′:

...
. . .E . . .
↓

R

. . .E . . . L

On an intuitive conception of a sequent proof as a record of proof search constructed from root
upwards, R is delayed in that we have waited in D to apply R until after consulting the program by
applying L, when we might have applied R earlier. Thus, we will also say in the circumstances of
Definition 8 that R is delayed with respect to L.
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Definition 9 D is eager exactly when it contains no delayed applications of right rules.

By transforming any derivation D into an eager derivation D′ by permutations of inferences, we
witness that D is uniform and provide a starting point for further analysis.

Theorem 1 Any SCL(I) derivation D is equal to an eager derivation D′ up to permutations of in-
ferences.

The proof follows [Kleene, 1951, Theorem 2]. A double induction transforms each derivation into
an eager one; the inner induction rectifies the final rule of a derivation whose subderivations are
eager by an interchange of inferences (and induction) [Kleene, 1951, Lemma 10]; the outer one
rectifies a derivation by rectifying the furthest violation from the root (and induction).

The proof depends on a generalization of delayed inferences, which we can term misplaced in-
ferences since we intend to eliminate them. We assume an overall derivation D, and consider a
right inference R that applies to principal E within some subderivation D′ of D.

Definition 10 We say a right inference R is right-based on an inference R′ in D if R = R′ or R is
based on R′ and every inference on which R is based above and including R′ is a right inference.
Then R is misplaced in D′ exactly when there are inferences M and R′ in D′ such that, in D, M is
based on an inference L, R is right-based on R′, and R′ is delayed with respect to L.

In this case we will also say R is misplaced with respect to M. We can abstract a key case of mis-
placed inferences by the following schematic derivation:

R

Right inferences and infer-
ences R not based in

{
...

M

R′ delayed wrt L
(M based in L)

{
. . .E . . .
↓

R′

. . .E . . .
L

This schematic derivation shows informally how misplaced inferences help provide an inductive
characterization of the inferences that stand in the way of obtaining an eager derivation. In an eager
derivation, it will be impossible for R to appear above L. For R′ cannot be delayed with respect
to L, but once R′ and L are interchanged, we will obtain a new delayed inference that R is based
in, until finally we must interchange L and R. Of course, to do this, we must first interchange R
with the misplaced inferences, such as M, which stand between R and L and cannot themselves be
interchanged with L because they are based in L.

Observe that the relation R is misplaced with respect to M is asymmetrical. To see this, suppose
R is misplaced with respect to M. By definition, R is right-based on R′ which is delayed with respect
to a left inference L on which M is based. Meanwhile, for M to be misplaced with respect to R, by
definition, we must have M right-based on M′ and R based in some left rule LR. Any such M′ would
have to be based in L since no left inferences intervene between M and M′; M′ must thus appear
inside a schematic like that above. At the same time, since no left inferences intervene between R
and R′, R′ would have to be based in any such LR, which must thus appear outside such a schematic,
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closer to the root of the overall derivation. Accordingly, any such LR must occur closer to the root
of D than L; meanwhile the principal of M′ is introduced further from the root than L. So we will
not have M′ delayed with respect to LR.

Call R badly misplaced in D′ if R is misplaced with respect to M and M occurs closer to the root
than R. A subderivation D′with no badly misplaced inferences will be called good. An overall good
derivation is also eager, since any delayed inference is badly misplaced.

We can now present the proof in full using a lemma.

Lemma 3 Consider a subderivation D′ of an overall derivation D, with the property that D′ has
good immediate subderivations and that D′ ends in inference M. From D′ we can construct a
derivation with the same end-sequent that is good.

Proof. The assumption that the immediate subderivations of D′ are good is a very powerful one.
For suppose that some inference is badly misplaced with respect to some other in D′. Then we
can only have some rule R badly misplaced with respect to M—anything else would contradict that
assumption.

In fact, we can show that some such R must be adjacent to M. Consider an inference S that
intervenes between R and M: we will show that S must be badly misplaced with respect to M too.
By the definition of misplaced, M is based on some left rule L in D, R is right-based on R′, and R′ is
delayed with respect to L. Now consider the inferences that S is based on above L. If any of these is
a left inference L′, or S is itself a left inference, then R is also misplaced with respect to S—indeed,
badly misplaced. This contradicts the assumption that the subderivations of D′ are good. So none
of these inferences can be a left inference, which means S is a right inference that is right-based on
some inference S′ above L. S′ must be delayed with respect to L. Hence S is badly misplaced with
respect to M.

Now we can proceed after [Kleene, 1951, Lemma 10]. Define the grade of D′ as the number of
badly misplaced inferences in D′. We show by induction on the grade that D′ can be transformed
to a good one.

The base case is a derivation of grade 0. This case has D′ itself good. Thus, suppose the lemma
holds for derivations of grade g, and consider D′ of grade g + 1. By the argument just given, one
immediate subderivation—call it D′′—must end with an inference R which is badly misplaced with
respect to M. Such an R of course cannot be based in M, so we interchange inferences R and M.
In the result, the subderivation(s) ending in M satisfy the condition of the lemma with grade g or
less. By applying the induction hypothesis, we can replace these subderivations with good ones.
By asymmetry, M is not now badly misplaced with respect to R, nor can any of the other inferences
be badly misplaced with respect to R, since they were not so in the original derivation. It follows
that the result is a good derivation.

Now, continuing the proof of Theorem 1, define the reluctance of D to be the number of rule
applications R such that the subderivation DR of D rooted in R is not good. We proceed by induction
on reluctance. If reluctance is zero, D is itself good.

Now suppose the theorem holds for derivations of reluctance d, and consider D of reluctance d+
1. Since D is finite, there must be a highest inference R such that some inference is badly misplaced
with respect to R in the subderivation DR rooted at R. This DR satisfies the condition of Lemma 3.
Therefore this DR can be replaced with a corresponding eager derivation, giving a new derivation of



IN MODAL LOGIC PROGRAMMING 27

smaller reluctance. The induction hypothesis then shows that the resulting derivation can be made
eager.

4.3 Segment structure
Eager derivations do not make a satisfactory specification for a logic programming interpreter be-
cause they do not embody a particularly directed search strategy, in a number of respects. For one
thing, eager derivations are free to work in parallel on different disjuncts of a goal using different
program clauses; in logic programming we want segments in which a single program clause and a
single goal is in force. Moreover, eager derivations can reuse work across separate case analyses;
in logic programming we want blocks where particular cases are investigated separately. Finally,
because of their classical formulation, eager derivations do not enforce or exploit any modularity
in their underlying logic.

We will now remedy these faults of eager derivations. We begin with a trick that for now is
purely formal—introducing an articulated SCLI. We represent assumptions as a pair Π;Γ with Π
encoding the global program and Γ encoding local clauses; eventually local clauses will be pro-
cessed only in the current segment and then discarded. (Compare the similar notation and treat-
ment from [Girard, 1993].) Similarly, we represent goals as a pair ∆;Θ, with Θ encoding the restart
goals and ∆ encoding the local goals; ultimately, we will also describe inference rules which will
discard ∆ between segments. With this representation, principal formulas of logical rules are local
formulas, in Γ or ∆; so are the side formulas—with these exceptions: the (→ 2) and (→>) rules
augment Π instead of Γ (when they add a new program clause) and Θ instead of ∆ (when they add
new restart goals).

New (decide) and (restart) rules keep this change general; they allow a global formula—a pro-
gram clause or restart goal—to be selected and added to the local state.

Π,Aµ
X ;Γ,Aµ

X
- ∆;Θ

Π,Aµ
X ;Γ - ∆;Θ (decide)

Π;Γ - ∆,Gµ
X;Θ,Gµ

X
Π;Γ - ∆;Θ,Gµ

X
(restart)

Lemma 4 (articulation) Every SCLI deduction can be converted into an articulated SCLI deduc-
tion with an end-sequent of the form Π; - ;Θ in such a way that if the initial derivation is eager
then so is the resulting derivation (and vice versa).

The proof forward argues by straightforward structural induction that the derivation can be trans-
formed assuming each formula in the end-sequent is allocated somehow either to Π or Γ. We pre-
serve and extend this allocation in immediate subderivations, introducing instances of (decide) and
(restart) as necessary when the principal expression is assigned occurrences in Π only; then argue
by induction. Backward, another straightforward structural induction shows we return to SCLI by
forgetting the distinction between Π and Γ, forgetting the (decide) and (restart) rules, and contract-
ing copied formulas.

The next step is to introduce an inference figure (⊃→S) that imposes a segment structure on
derivations, thus:

Π; - Aµ
X ,∆;Θ Π;Γ,A⊃ Bµ

X ,B
µ
X
- ∆;Θ

Π;Γ,A⊃ Bµ
X
- ∆;Θ (⊃→S)

The distinctive feature of the (⊃→S) figure is that the local results inferred from the program are
discarded in the subderivation where the new goal is introduced. In an eager derivation, this will
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begin a new segment where first the new goal will be considered and then a new program clause
will be selected to establish that goal.

We will define two calculi using (⊃→S). The first, SCLS, eliminates the (⊃→) inference of
the articulated SCLI and instead has (⊃→S). The second, SCLV, is a calculus like the articulated
SCLI but also allows (⊃→S); (⊃→) and (⊃→S) can appear anywhere in an SCLV derivation. We
introduce SCLV to facilitate the incremental transformation of articulated SCLI proofs into SCLS
proofs. We show in this section that an SCLI proof with end-sequent Π - Θ corresponds to an
SCLS proof with end-sequent Π; - ;Θ, and vice versa. In fact, to transform SCLS to articulated
SCLI we have a simple structural induction which replaces (⊃→S) with (⊃→) using the weakening
lemma; the soundness of SCLS over SCLI then follows by Lemma 4. Thus, here we are primarily
concerned with completeness of a new sequent inference figure.

Definition 11 (segment) A segment of an SCLV derivation D is a maximal tree of contiguous in-
ferences in which the left subtree of any (⊃→S) inference is omitted.

The use of (⊃→S) in eager derivations ensures that the processing of each new goal refers di-
rectly to global program clauses. To formalize this idea, we introduce the notion of a fresh inference.

Definition 12 (fresh) Let D be an SCLV derivation. An inference R in D is fresh exactly when R is
a right inference and the path from R to the root never follows the left spur of any (⊃→) inference.

Lemma 5 Let D be an eager SCLV derivation with an end-sequent of the form

Π;→ ∆;Θ

and consider a subderivation D′ of D rooted in a fresh inference R. Then the end-sequent of D′
also has the form

Π′;→ ∆′;Θ′

Proof. Suppose otherwise, and consider a maximal D′ whose end-sequent contains a non-empty
multiset of local clauses Γ. We can describe D′ equivalently as the subderivation of D that is rooted
in a lowest fresh inference R when the end-sequent of D contains some local clauses. R cannot be
the first inference of D, so there must be an inference S in D immediately below R. If S is a left rule,
then the fact that D is eager leads to a contradiction. R must be based in S, or else R will be delayed.
This means S is an implication inference; but given that R is fresh, R must appear along the branch
of (⊃→S) without local clauses. Meanwhile, if S is a right rule, it follows from the formulation of
the rules that if the end-sequent of DR has nonempty local clauses then the end-sequent of DL must
also. This contradicts the assumption that R is first.

Lemma 6 An eager articulated SCLI derivation whose end-sequent is of the form

Π;→ ∆;Θ

can be transformed to an eager SCLS derivation of the same end-sequent.

Proof. We assume an eager SCLV derivation D with such an end-sequent; we show that we can
transform it into an eager SCLS derivation D′ with the same end-sequent. The proof is by induction
on the number of occurrences of (⊃→) inferences in D.
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In the base case, there are no (⊃→) inferences and D′ is just D.
Suppose the claim holds for derivations where (⊃→) is used fewer than n times, and suppose D

is a derivation in which (⊃→) is used n times. Choose an inference L of (⊃→) with no other (⊃→)
inference closer to the root of D; we must rewrite the left subderivation at L to match the (⊃→S)
inference figure. We distinguish a subderivation D′ of D as a function of L and draw on the infer-
ences in D′ to replace this subderivation—in particular, we identify D′ as the largest subderivation
of D containing L but no right inferences or segment boundaries below L.

Using Lemma 5, we develop a schema of D′ thus:

DA

Π;Γ,A⊃ Bµ
X → Aµ

X ,∆;Θ
DB

Π;Γ,A⊃ Bµ
X ,B

µ
X → ∆;Θ

DL


Π;Γ,A⊃ Bµ

X
- ∆;Θ

...
Π; - ∆;Θ

L

(Segment boundary or right rule)

We suppose L applies to an expression A⊃ Bµ
X; the left subderivation of L, DA adds the goal A; the

right, DB, uses the assumption B. The subderivation of D′ from the end-sequent of L abstracts the
left inferences performed elsewhere in this segment (and any subgoals that these inferences trigger).
We notate this tree of inferences DL. By Lemma 5, D′ ends with a sequent of the form Π; - ∆;Θ.
Because of the form of the intervening rules, we have the same succedent ∆;Θ at L, as well as the
same global clauses Π.

We use DL to construct an eager SCLS derivation A corresponding to DA; we will substitute
the result for the left subtree at L to revise L to fit the (⊃→S) figure. In outline, the derivation we
aim for is an eager SCLS version of:

DA

DL + Aµ
X

The problem is that if DA is rooted in a right inference to A, we will not obtain an eager derivation
when we reassemble L. The SCLS derivation A we use is actually constructed by recursion on the
structure of DA, applying this kind of transformation at appropriate junctures. At each stage, we
call the subderivation of DA we are considering D′A.

For the base case, this subderivation is an axiom, and we construct this subderivation as a result.
If D′A ends in a right rule, the construction proceeds inductively by constructing corresponding sub-
derivations and recombining them by the same right rule. With a right inference here, the resulting
derivation must be eager since the subderivations are eager.

If D′A ends in a left inference, the construction is not inductive. We observe that D′A has an
end-sequent of the form

Π,Π′; - ∆,∆′;Θ,Θ′

(The inventory of expressions can only be expanded, and that only in certain places, as we follow
right inferences to reach D′A.) So we first weaken DL by the needed additional expressions—Π′
on the left and ∆′ (locally) and Θ′ (globally) on the right; then we identify the open leaf in DL with
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D′A, obtaining a larger derivation DI defined as:

D′A
Π′+ D′L + Aµ

X + ∆′;Θ′

Any delayed inference in DI would in fact be delayed in D′A, so this is an eager derivation. The
result has, moreover, fewer than n (⊃→) inferences, since it omits at least L from D′. Then the
induction hypothesis applies to give the needed SCLS derivation A .

Given the derivation A so constructed, we substitute A for DA in D. The result D∗ is an eager
derivation; D∗ contains an (⊃→S) inference corresponding to L and therefore contains fewer than
n uses of (⊃→). The induction hypothesis applies to transform D∗ to the needed overall derivation.

4.4 Block structure
We now revise how we perform case analysis from assumptions. We introduce new rules where lo-
cal work is discarded in the subderivation written on the right. Some global work may be discarded
there also! (This helps clarify the structure of derivations.) The right subderivation may address ei-
ther the (textually) first disjunct or the second disjunct, leading to the two inference figures below.

Π,Π′;Γ,A∨Bµ,Aµ - ∆;Θ,Θ′ Π,Bµ; - ;Θ
Π,Π′;Γ,A∨Bµ - ∆;Θ,Θ′ ∨ →B

L

Π,Π′;Γ,A∨Bµ,Bµ - ∆;Θ,Θ′ Π,Aµ; - ;Θ
Π,Π′;Γ,A∨Bµ - ∆;Θ,Θ′ ∨ →B

R

We call these inferences blocking (∨→) inferences, or (∨→B) inferences. We will appeal to two
calculi in which these inferences appear. The first, SCLU, permits both ordinary(∨→) and (∨→B)
inferences, without restriction. SCLU is convenient for describing transformations between proofs.
The second, SCLB, permits (∨→B) inferences but not ordinary (∨→) inferences. Obviously, we
can use weakening to transform an SCLB or SCLU derivation into a SCLS derivation, so the block-
ing inference figures are sound. The completeness of SCLB is a consequence of Lemma 9, pre-
sented below in Section 4.4.3.

Blocks are more than just boundaries in the proof; they provide a locus for enforcing modularity.
We will ensure that a disjunct contributes inferences to the new block where it is introduced. Thanks
to this contribution, we can narrow down the choice of goals to restart in a modular way.

This result is made possible only by maintaining the right structure as we introduce (∨→B) in-
ferences. Section 4.4.1 describes a tool that we can use to render explicit, with path prefixes, the
connection between program clauses and any goals that they help establish. Section 4.4.2 trans-
forms individual blocks using this tool to achieve a streamlined form, which already implicitly
reflects the logic programming search strategy of focused search on particular goals and program
clauses. Section 4.4.3 applies both results in stages to create proofs with an overall modular block
structure.

4.4.1 Replacing Herbrand terms
To begin, it is convenient to observe that the use of indexed Herbrand terms allows us to rename
Herbrand terms in a proof under certain conditions. These conditions are analyzed in terms of char-
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acterizations of the form of sequents in proofs; the key notions are spanning and simplicity.

Definition 13 (carrier) The carrier of a nonempty Herbrand prefix µη is Bµη
X,µη if η is ηu

A>iB
(µ,X)

and otherwise, when η is ηu
2iA

(µ,X), is Aµη
X,µη.

Definition 14 (spanned) Say one multiset of tracked prefixed formulas, Π, is spanned by another,
Θ, if for every expression occurrence Aµ

X and every nonempty prefix ν of µ there is an occurrence of
the carrier of ν in Θ. It is easy to see there is a minimal set Θ that spans Π and that such Θ spans
itself. A sequent Π;Γ - ∆;Θ is spanned if Π is spanned by Θ, Γ is spanned by Θ, ∆ is spanned
by Θ and Θ is spanned by Θ. A derivation or block is spanned if every sequent in it is spanned.

Definition 15 (simple) A multiset Ψ is simple if no expression occurs multiple times in Ψ; a se-
quent of the form Π;Γ - ∆;Θ is simple if Π and Θ are simple. A derivation or block is simple
iff every sequent in it is simple.

Lemma 7 (Substitution) Let D be an SCLU derivation with end-sequent

Π; -;Θ

in which no Herbrand terms or Herbrand prefixes appear; consider a spanned simple subderivation
D′ in which a modal Herbrand function ηu

A occurs in some sequent, but does not occur in the end-
sequent. Let ηv

A be a Herbrand function that does not occur in D. Then we can construct a proof D∗
containing corresponding inferences in a corresponding order to D but in which Herbrand terms
and Herbrand prefixes are adjusted so that ηv

A is used in place of ηu
A precisely in the subderivation

corresponding to D′.

The proof follows the proofs of Lemma 24, Lemma 25 and Lemma 26 in [Stone, 1999a]. The result
is an induction on the structure of derivations, in which certain technical details must be satisfied
because the Herbrand calculus may require not only the replacement of ηu

A itself but also the re-
placement of Herbrand terms that depend indirectly on ηu

A. It is convenient to begin by replacing
any first-order Herbrand term not introduced by a (∃ →) or (→ ∀) inference by a distinguished
constant c0—starting with leaves of the derivation and working downward. This replacement is to
ensure that each first-order and modal Herbrand term in D is determined from an expression in the
end-sequent of D by a finite number of steps of inference. We continue with the systematic replace-
ment of ηu

A and its dependents. In both cases, the form of D ensures that a finite substitution can
systematically rename all these Herbrand terms as required. We use the fact that each sequent is sim-
ple and spanned to extend this substitution inductively upward. Because each sequent is spanned
the substitution does not need to be extended at (2→) inferences; because each sequent is sim-
ple the substitution can be extended freshly at (→ 2) and (→>) inferences. Finally, the form of
first-order Herbrand terms ensures that a finite extension of the substitution suffices for (→∃) and
(∀→) inferences. .

4.4.2 Rectifying blocks
In any calculus which involves blocking (∨→B) inferences, we appeal to the following definitions
in understanding how these inferences constrain the goal-directed search of a logic-programming
interpreter. First, we have the constituents which the (∨→B) inferences allow us to find in deriva-
tions.
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Definition 16 (block) A block of a derivation is a maximal tree of contiguous inferences in which
the right subtree of any (∨→B) inference in the block is omitted.

Second, we will sometimes insist that global work be discarded symmetrically, using the notion
of balanced sequents and derivations.

Definition 17 (balanced) A pair of multisets of tracked, prefixed formulas Π,Θ is balanced if

• for any η = ηu
B>iC

(µ,X), η occurs in Θ exactly when the expression Bµη
X,µη occurs in Π and

exactly when the expression Cµη
X,µη occurs in Θ; and

• for any η = ηu
2A(µ,X), η occurs in Θ exactly when the expression Aµ

X,µη occurs in Θ.

A sequent Π;Γ - ∆;Θ is balanced if the pair Π,Θ is balanced. A block or derivation is balanced
if every sequent in the block is balanced.

Third, we refine the form of proofs which we are willing to count as goal-directed. Now it will
often happen that, while each block of a derivation may be eager, the derivation as a whole will not
be eager. As observed in [Nadathur and Loveland, 1995], derivations with blocks can nevertheless
be seen as eager throughout by reconstructing the (restart) rule as backchaining against the negation
of a subgoal. But we will simply consider blockwise eager derivations from now on.

Definition 18 (blockwise delayed) R is blockwise delayed exactly when there is a tree of contigu-
ous inferences D′ within a single block of D where: D′ contains R; D′ has a left inference L at the
root; and the principal E of R is based in an occurrence of E in the end-sequent of D′.

Definition 19 (blockwise eager) D is blockwise eager exactly when it contains no blockwise de-
layed applications of right rules.

We use the notion of an isolated block to obtain an even stronger characterization of a derivation
in which work is discarded. In an isolated block, the only expressions preserved across a blocking
inference are those that are in some sense intrinsic to the restart problem created by that inference.

Definition 20 (isolated block) Let D be an SCLU derivation, and let B be a block of D. Write the
end-sequent of B as Π;Γ - ∆;Θ and consider the right subproof of some (∨→B) inference L at
the boundary of B has an end-sequent of the form Π′,E; - ;Θ′. The exported expressions in Π′,
Π′e, consist of the occurrences of expressions F in Π′ such that either is F based in an occurrence
of F in Π or is based in an occurrence of F as the side expression of an inference in which E is also
based.

B is isolated if the right subproof of each (∨→B) inference L at the boundary of B has an end-
sequent of the form Π′,E; - ;Θ′ meeting the following conditions: E is the side-expression of L;
Θ′ is the minimal multiset of expressions which spans Π′e,E; and Π′ is the smallest multiset includ-
ing Π′e,E for which Π′,Θ′ is balanced. D is isolated iff every block of D is isolated.

Isolation allows us to keep close tabs on the uses of formulas within blocks, which is important
for establishing modularity later. In particular, isolation provides a key notion in formalizing the
obvious fact that an inference that makes no contribution to an SCLU derivation can be omitted.
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Definition 21 (linked) An expression E in a sequent in an SCLU derivation D is linked if the prin-
cipal formula of an axiom in the same block of D as that sequent is based in E. An inference R is
linked in D if some side expression of R is linked in each spur of R. A block is cancelled if it con-
tains the root of D, or if the side expression E of the (∨→B) inference whose spur is the root of the
block is linked. A derivation or block is linked iff all of the inferences in it are linked.

Definition 22 (required) Given a derivation D with end-sequent

Π;Γ - ∆;Θ

we say that an expression occurrence E in Θ or Π is required iff either it is linked or some block in
D is adjacent to the root block and has an end-sequent

Π′; -;Θ′

in which Π′ or Θ′ contains an expression occurrence based in E.

Lemma 8 (Rectification) We are given a blockwise eager SCLU derivation D such that: every
block in D is cancelled and isolated; every block in D other than the root is spanned, linked, bal-
anced and simple; and the end-sequent of D is balanced. We transform D to an SCLU derivation
D′ in which every block is cancelled, linked, isolated, balanced and simple and every block other
than the root is spanned. Every block in D′ other than the root block is identical to a block of D;
and the inferences in the root block of D correspond to inferences in the same order in D (and so
D′ is blockwise eager). If the end-sequent of D is spanned then D′ is spanned and isolated.

Proof. We describe a transformation that establishes the following inductive property given D.
There are simple multisets ΠM ⊆Π and ΘM ⊆ Θ, together with multisets Γ′ ⊆ Γ and ∆′ ⊆ ∆ such
that: any Θ′ that spans ΠM includes ΘM; and for any simple Π′ with ΠM ⊆Π′ ⊆Π and any simple
Θ′ with Θ′ ⊆Θ such that Π′ and Θ′ are spanned by Θ′ and the pair Π′,Θ′ is balanced, there is a D′
in which every block is cancelled, linked, balanced, balanced and simple, with end-sequent:

Π′;Γ′ - ∆′;Θ′

In this D′, each expression in Γ′ is linked; each expression in ∆′ is linked; each ΠM expression that
occurs in Π′ is required and each ΘM expression that occurs in Θ′ is linked. Every block in D′ other
than the root block is identical to a block of D; and the inferences in the root block of D correspond
to inferences in the same order in D. Finally, if Γ′ and ∆′ are spanned by Θ′ then D′ is spanned; if
D is linked then D′ contains all the axioms of D.

At axioms, for D of
Π;Γ,Aµ

X
- Aµ

Y ,∆;Θ

ΠM and ΘM are empty, while Γ′ = Aµ
X and ∆′ = Aµ

X . Assume we are given simple Π′ from Π and
simple Θ′ from Θ with Π′ and Θ′ spanned by Θ′. We construct D′ of

Π′;Aµ
X
- Aµ

Y ;Θ′

If Aµ
X is spanned by Θ′, this axiom is spanned too; the remaining conditions are immediate.
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At inferences, consider as a representative case (∨→). D ends:

D1
Π;Γ,A∨Bµ

X,A
µ
X
- ∆;Θ

D2
Π;Γ,A∨Bµ

X ,B
µ
X
- ∆;Θ

Π;Γ,A∨Bµ
X
- ∆;Θ

The blocks of D1 and D2 either contain the root or are blocks from D; the Herbrand prefixes in the
end-sequents of D1 and D2 occur with the same distribution as in D. Therefore we can apply the
induction hypothesis to get ΠM1, ΘM1, Γ′1 and ∆′1 for D1; we can apply it to get ΠM2, ΘM2, Γ′2 and
∆′2 for D2. To transform D itself, we perform case analysis on Γ′1 and Γ′2.

If Γ′1 does not contain an occurrence of Aµ
X , then ΠM = ΠM1, ΘM = ΘM1, Γ′ = Γ′1 and ∆′ = ∆′1;

D′1 suffices to carry through the induction hypothesis.
Similarly, if Γ′2 does not contain an occurrence of Bµ

X , then ΠM = ΠM2, ΘM = ΘM2, Γ′ = Γ′2 and
∆′ = ∆′2; D′2 suffices to carry through the induction hypothesis.

Otherwise, we will set up ΠM = ΠM1 ∪ΠM2 and ΘM = ΘM1∪ΘM2 (as sets); by the inductive
characterization of ΠM1, ΠM2, ΘM1 and ΘM2, any Θ′ that spans both ΠM2 and ΠM2 includes both
ΘM1 and ΘM2. We also set up Γ′ as the multiset containing at least one occurrence of A∨Bµ

X and
as many expression occurrences of any expression as either are found in Γ′1\A

µ
X or are found in

Γ′2\B
µ
X ; we set up ∆′ as the multiset containing as many expression occurrences of any expression

as are found in either ∆′1 or ∆′2.
To continue, we now consider simple Π′ from Π and simple Θ′ from Θ such that ΠM1 ⊆ Π′,

ΠM2 ⊆Π′, Π′ and Θ′ are spanned by Θ′, and the pair Π′,Θ′ is balanced. We know that Θ′ includes
ΘM. We can apply the inductive property to transform D1 and D2 into derivations with the inductive
property:

D′1
Π′;Γ′1

- ∆′1;Θ′
D′2

Π′;Γ′2
- ∆′2;Θ′

We weaken the lowest block of D′1 on the left by the expressions in Γ+ and not already in Γ′ and
on the right by the expressions in ∆+ and not already in ∆′, giving D+

1 . We similarly weaken the
lowest block of D′2 on the left by the expressions in Γ+ and not already in Γ′2 and on the right by
the expressions in ∆+ and not already in ∆′2, giving D+

2 . Only the lowest blocks are affected by the
weakening transformations, so other blocks remain cancelled, linked, spanned, isolated and simple;
the lowest block in each case remains cancelled. The lowest blocks also remain linked since no
inferences are added; and they remain simple (and balanced) because no weakening occurs in the
global areas. Construct D′ as

D+
1

Π′;Γ+,Aµ
X
- ∆+;Θ′

D+
2

Π′;Γ+,Bµ
X
- ∆+;Θ′

Π′;Γ+ - ∆+;Θ′

The end-sequent is simple and balanced so the root block is simple and balanced; the inference is
linked since Aµ

X and Bµ
X are linked in the subderivations, so the root block is linked. The root block

remains cancelled as always.
Any ΠM expression is required here because it is required either in D+

1 in virtue of its mem-
bership in ΠM1 or in D+

2 in virtue of its membership in ΠM2; likewise any ΘM expression is linked
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here because it is linked either in D+
1 in virtue of its membership in ΘM1 or in D+

2 in virtue of its
membership in ΘM2. Thus, except for the spanning conditional, we have shown everything we need
of this D′.

Finally, then, if Γ′ and ∆′ is spanned by Θ′, ∆′1 and ∆′2 are spanned by Θ′ and Γ′1 and Γ′2 are
spanned by Θ′ in the resulting (spanned) subderivations D′1 and D′2. This shows that the end-sequent
of D′ is also spanned, so D′ itself is spanned.

This reasoning is representative of the construction required also for (∧ →), (∃ →), (∀ →),
(→∧), (→∨), (→ ∃), (→ ∀), (decide) and (restart). It applies also for (⊃→S), with the obvious
caveat that we do not weaken the left subderivation to match local left expressions, since the form
of the (⊃→S) inference requires there to be none.

Next we have (∨→B); we consider the representative case of (∨→B
L). D ends:

D1
Π0,Π;Γ,A∨Bµ

X,A
µ
X
- ∆;Θ0,Θ

D2
Π0,B

µ
X; - Θ0

Π0,Π;Γ,A∨Bµ
X
- ∆;Θ0,Θ

We treat this specially to respect the block boundary before D2. In particular, we apply the induction
hypothesis to D1 (as we may since its end-sequent has the same distribution of Herbrand prefixes
as does that of D), to get ΠM1, ΘM1, Γ′1 and ∆′1. If Aµ

X does not occur in Γ′1, we let ΠM = ΠM1,
ΘM = ΘM1, Γ′ = Γ′1 and ∆′ = ∆′1; any derivation D′1 constructed from appropriate Π′ and Θ′ suffices
to carry through the induction hypothesis.

Otherwise, we get ΠM = ΠM1 ∪Πe0 (as a set), ΘM = ΘM1; any Θ′ that spans ΠM also spans
ΠM1 and so includes ΘM. ∆′ = ∆′1 and Γ′ contains Γ′1 with the occurrence of Aµ

X removed, together
with an occurrence of A∨Bµ

X if Γ′1 does not already contain such an expression.
Assume simple Π′ with ΠM ⊆ Π′ ⊆Π and simple Θ′ with Θ′ ⊆ Θ with Π′ and Θ′ spanned by

Θ′ and the pair Π′,Θ′ balanced. As before, we must have ΘM included in Θ′. We therefore obtain
D′1 by the inductive property; we then weaken D′1 locally within the lowest block by A∨Bµ

X on the
left if necessary, to obtain a good derivation D∗1 .

The needed D′ is now constructed as:

D∗1
Π′;Γ′,Aµ

X
- ∆′;Θ′

D2
Π0,B

µ
X; - Θ0

Π′;Γ′ - ∆′;Θ′

We first argue that the construction instantiates the (∨→B
L) inference rule. Every Herbrand prefix in

Π0e and Bµ
X occurs in Π′ or Γ′, so Π0e and Bµ

X are spanned by Θ′. But because the root block in D is
isolated, Π0e and Bµ

X are spanned minimally by Θ0. Thus Θ0 ⊆Θ′. Π0e ⊆ΠM by construction; by
isolation Π0 is the smallest set such that the pair of Π0,Θ0 is balanced. But since Π′,Θ′ is balanced,
Π0 ⊆Π′.

Now we show that D′ so constructed has the needed properties. The end-sequent is simple and
balanced so the root block is simple and balanced. The inference is linked: Aµ

X is linked in D′1 by
the induction hypothesis; Bµ

X is linked in D2 because D2 begins a new block which by assumption
is cancelled. The root block remains cancelled as always. Any ΠM expression is required here
because either a corresponding expression Π0e in the new block at the left subderivation is based
on it, or because it is required in D′1. Every ΘM is linked because it is linked in D∗1 .
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Finally, if Γ′ and ∆′ are spanned by Θ′, then ∆′1 and Γ′1 are spanned by Θ′1. The new subderivation
D′1 is therefore spanned by the inductive property; this ensures that the overall derivation is spanned.

Next consider (2→). D ends:

D1
Π;Γ,2iA

µ
X ,A

µν
X,µν

- ∆;Θ
Π;Γ,2iA

µ
X

- ∆;Θ

As always, we apply the induction hypothesis to D1 (as we may since the Herbrand prefixes on Π
and Θ formulas remain the same) to obtain ΠM1, ΘM1, Γ′1 and ∆′1. If Aµν

X,µν does not occur in Γ′1, we
let ΠM = ΠM1, ΘM = ΘM1, Γ′ = Γ′1 and ∆′ = ∆′1; any subderivation D′1 obtained by the inductive
property suffices to witness the inductive property for D.

Otherwise we obtain Γ′ by extending Γ′1 by the principal expression2iA
µ
X if necessary and elim-

inating the side expression Aµν
X,µν; ΠM = ΠM1, ΘM = ΘM1 and ∆′ = ∆′1. (Since these are common

to the subderivation, any Π′ that spans ΠM includes ΘM.) Now we consider Π′ with ΠM ⊆Π′ ⊆Π
and Θ′ with Θ′ ⊆ Θ, Π′ and Θ′ spanned by Θ′ and the pair Π′,Θ′ balanced. As always, we have
ΘM ⊆ Θ′. We obtain D′1 using Π′ and Θ′, and weaken the lowest block by local formulas; calling
the result D+

1 , we can produce D′ by the following construction:

D+
1

Π′;Γ′,Aµν
X,µν

- ∆′;Θ′

Π′;Γ′ - ∆′;Θ′

Everything is largely as before. The key new reasoning comes when we assume that Γ′ and ∆′ are
spanned by Θ′. We must argue that Γ′,Aµν

X,µν is in fact spanned by Θ′. Since Aµν
X,µν is linked in D+

1 ,

there must be an axiom in this block which is based in Aµν
X,µν; indeed, since the expression occurs

as a local antecedent, this axiom must occur within the segment. This axiom must pair expressions
prefixed by a path µ′ where µν is a prefix of µ′. But because D′ remains blockwise eager, no in-
ferences apply to ∆′ or Θ′ formulas within the segment (nor can they in this fragment augment the
∆′ or Θ′ formulas within the segment); therefore some ∆′ expression is associated with Herbrand
prefix µ′. But since ∆′ is spanned by Θ′, we have that every prefix of µ′ is associated with some Θ′
expression; so every prefix of µν is associated with some Θ′ expression. Thus D+

1 is spanned and
in turn D′ is spanned.

We have one last representative class of inferences in D: (→2) and (→>). We illustrate with
the case where D ends in (→>):

D1

Π,Aµη
X,µη;Γ - ∆,A>i Bµ

X ;Θ,Bµη
X,µη

Π;Γ - ∆,A>i Bµ
X ;Θ

We begin by applying the induction hypothesis to D1 (as we can, given the symmetric extension of
Π and Θ by labeled expressions). We obtain ΘM1, ΠM1, Γ′1 and ∆′1; we consider alternative cases
in response to Θ and ΘM1. First we suppose Bµη

X,µη 6∈ Θ. It follows by our assumption about D
that Aµη

X,µη 6∈ Π either, nor does η occur in Θ. For this case, we start by defining an overall ΠM
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and ΘM: ΘM is ΘM1 with any occurrence of Bµη
X,µη eliminated; ΠM is ΠM1 with any occurrence of

Aµη
X,µη eliminated. ΠM contains no occurrences of µη, since Π does not; thus given the inductive

property of ΘM1 and ΠM1, any Θ′ that spans ΠM spans ΘM. We define Γ′ and ∆′ so that Γ′ = Γ′1
and ∆′ contains ∆′1 together with an occurrence of A >i Bµ

X , provided ∆′1 does not already contain
one and Bµη

X,µη ∈ΘM1 or Aµη
X,µη ∈ΠM1. So, assume we are given simple Π′ with ΠM ⊆Π′ ⊆Π and

simple Θ′ with Θ′ ⊆Θ (and so ΘM ⊆Θ′) such that Π′ and Θ′ are spanned by Θ′ and the pair Π′,Θ′
is balanced.

We consider whether Bµη
X,µη ∈ΘM1 or Aµη

X,µη ∈ΠM1. If neither, we apply the induction hypothesis
to D1 for the case that Θ′1 is Θ′ and Π′1 is Π′. The resulting derivation D′1 serves as D′.

Otherwise, Bµη
X,µη ∈ ΘM1 or Aµη

X,µη ∈ ΠM1; we apply the inductive property of D1 for the case

that Θ′1 is Θ′,Bµη
X,µη and Π′1 is Π′,Aµη

X,µη (clearly Π′1 and Θ′1 are spanned by Θ′1 assuming Π′ and Θ′

are spanned by Θ′; the pair Π′1,Θ
′
1 is also balanced given its symmetric extension). If Bµη

X,µη ∈ΘM1,

by the inductive property it is linked. If Aµη
X,µη ∈ΠM1, it is required, but we shall show that it is in

fact linked. By the definition of being required, the other possibility is that there is a block adjacent
to the root block of D′1 with end-sequent

Π′′,E; - Θ′′

in which the (∨ →B) inference R that bounds the block is based in E and Π′′,E or Θ′′ contains an
expression occurrence based in Aµη

X,µη. But since the original block is isolated in the original D, it

is E that must be based in Aµη
X,µη. But then R is based in Aµη

X,µη and R is linked: in particular its side

expression in the left spur) must be linked; so Aµη
X,µη is linked too.

Thus we can weaken D′1 in its lowest block if necessary by A >i Bµ
X as a local right formula

(in Γ), producing D+
1 ; D+

1 remains good by the same argument as the earlier cases. Thus we can
construct D′ as:

D+
1

Π′,Aµη
X,µη;Γ′ - ∆′,A>i Bµ

X ;Θ′,Bµη
X,µη

Π′;Γ′ - ∆′;Θ′

The end-sequent here is simple and balanced, so the whole root block is simple and balanced. The
new inference is linked (in virtue of the linked occurrence of one side expression—Aµη

X,µη or Bµη
X,µη)

so the whole root block is linked. The root block is of course cancelled. Each element of ΠM is
required because it is an element of ΠM1 and required in the immediate subderivation; each element
of ΘM is linked, because it is an element of ΘM1 and therefore linked in the immediate subderivation.

To conclude the case, suppose the end-sequent of D is spanned and that Γ′ and ∆′ are spanned
by Θ′; it follows that same property applies to D1 so the subderivation is spanned. Then the end-
sequent must also be spanned.

The alternative case has Bµη
X,µη ∈Θ. By assumption, it also has Aµη

X,µη ∈Π. We therefore define
an overall ΠM and ΘM directly as ΠM1 and ΘM1, respectively; similarly Γ′ = Γ′1 and ∆′ = ∆′1. To
construct the needed D′ for appropriate Π′ and Θ′, we simply apply the induction hypothesis to D1
for the case that Θ′1 is Θ′ and Π′1 is Π′. The resulting derivation D′1 suffices.

Having completed the induction, we argue that we can obtain an overall D′ that is isolated, as-
suming the original D is not only isolated but spanned. Apply the inductive result to D for the case



38 INDEFINITE INFORMATION

Π′ = Π and Θ′ = Θ; since Γ′ ⊆ Γ and ∆′ ⊆ ∆ we obtain a spanned derivation D′ ending

Π;Γ′ - ∆′;Θ

Consider the end-sequent of any block other than the root in D′; it is

Π0,E; -;Θ0

where a corresponding block occurs in D. I argue by contradiction that for any F ∈Π0 either F ∈Π
or F is based in an occurrence of F as the side expression of an inference in D′ in which E is also
based. (This will show that D′ is isolated.) So consider an exceptional F. Since D is isolated, if
F 6∈ Π, F is based in an occurrence of F as the side expression of an inference in D in which E
is also based; this inference introduces some path symbol η which occurs in the label of F and E.
In D′, E can not be based in such an inference; otherwise F would also be based in that inference,
since D′ is simple. (We have assumed that F is not based in such an inference.) But in this case the
expression in the end-sequent of D′ on which E is based must contain η. Because the end-sequent
of D′ is spanned the form of Π and Θ is constrained in D, F must occur in Π. This is absurd.

We conclude Section 4.4.2 by observing some facts about this construction. First, let D′ be a
derivation obtained by the construction of Lemma 8, and suppose D′ is weakened (in a spanned
and balanced way) to D′′ by adding occurrences of global expressions that either already occur in
the end-sequent of D′ or never occur as global expressions in D′. Then a straightforward induction
shows that D′ is obtained again from D′′ by the construction of Lemma 8.

Second, observe that if D′ is a derivation obtained by the construction of Lemma 8, and D′′
is obtained from D′′ by the renaming of Herbrand prefixes (as in Lemma 7), then straightforward
induction shows that D′′ is obtained again from D′′ by the construction of Lemma 8.

Third, let D′ be a derivation for which the construction of Lemma 8 yields itself. Let ν be a
prefix and let the Π;Θ be the smallest balanced pair where Θ contains all the carriers of prefixes of
ν introduced in D′. Suppose each expression in Π and Θ has the property that at most one inference
of D′ has an occurrence of that expression as a side expression. Consider a derivation D′′ obtained
from D′ by weakening globally by Π (on the left) and by Θ (on the right). Let D∗ be the result of
applying the construction of Lemma 8 to D′′. Then D∗ contains any subderivation of D′ whose
end-sequent contains Π and Θ as global formulas. Again this is a straightforward induction; the
base case considers a subderivation of D′ whose end-sequent contains Π and Θ as global formu-
las; in this case we apply the first observation. Unary inferences extend the claim immediately. At
binary inferences, one subderivation must be unchanged, by the first observation: since Π and Θ
are introduced on a unique path, each Π and Θ formula never occurs or already occurs in the end-
sequent in that subderivation. Thus the other subderivation necessarily appears in the derivation
obtained by the construction of Lemma 8.

4.4.3 Block conversion
We now have the background required to perform the conversion to block structure.

Lemma 9 We are given a blockwise eager SCLS derivation D whose end-sequent is spanned and
balanced and takes the form:

Π; -;Θ
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We transform D into a blockwise eager SCLB derivation in which every block is cancelled, linked,
isolated, simple, balanced and spanned.

Proof. Our induction hypothesis is stronger than the lemma. We assume a blockwise eager
SCLU derivation D with end-sequent of the form

Π; -;Θ

in which every block is cancelled, linked, isolated, simple, balanced and spanned, such that that the
subproof rooted at any (∨→) inference in D is an SCLS derivation. And we identify a distinguished
expression occurrence E in the end-sequent of D which is linked. By Lemma 8, it is straightfor-
ward to obtain such a derivation from the SCLS derivation (containing only a single block) that we
have assumed. We transform D into a blockwise eager SCLB derivation in which every block is
cancelled, linked, isolated, simple, balanced and spanned and in which E is also linked; we perform
induction on the number of (∨→) inferences in D.

In the base case there are no (∨→) inferences, so D itself is an SCLB derivation.
In the inductive case, we assume D with n (∨ →) inferences, and assume the hypothesis true

for derivations with fewer. We find an application L of (∨→) with no other closer to the root of D.
We will transform D to eliminate L.

Let D′ denote the smallest subderivation of D containing the full block of D in which L oc-
curs. Explicitly, D′ may be D itself; otherwise, D′ is rooted at the right subderivation of the highest
(∨→B) inference below L—an inference we will refer to as H. In either case, our assumptions al-
low us to identify a distinguished linked expression F in the end-sequent of D′: either the assumed
E from D, or the side expression of the inference H (assumed cancelled). Suppose A∨Bν

Y is the
principal of L. We can apply Lemma 7 to rename A∨Bν

Y to A∨Bµ
X in such a way that each sym-

bol in µ that is introduced in D′ is introduced by a unique inference there. Now we can infer the
following schema for D′: DA

Π0,F,Π;Γ,A∨Bµ
X,A

µ
X
- ∆;Θ0,Θ

DB

Π0,F,Π;Γ,A∨Bµ
X,B

µ
X
- ∆;Θ0,Θ

Π0,F,Π;Γ,A∨Bµ
X
- ∆;Θ0,Θ

L


DL

Π0,F; -;Θ0

That is, the subderivation of D′ below L isDL; the right subderivation above L (in which B is as-
sumed) is DB; the left is DA.

We will use the inferences from DL to construct alternative smaller derivations in place of DA

and DB. By Θ′, indicate the minimal set of formulas required in addition to Θ0 to span Aµ
X ; by Π′

indicate the minimal set of formulas required in addition to Π0,F and Aµ
X to ensure that the pair given

by Π0,Π′,F,A
µ
X and Θ0,Θ′ is balanced. (This is well-defined because the sequent Π0,F

- Θ0 is
already spanned and balanced.) Now we can construct two new subderivations D′A and D′B given
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respectively as follows: Π′+ Aµ
X + DA + Θ′

Π0,F,Π,Π′,A
µ
X ;Γ,A∨Bµ

X,A
µ
X
- ∆;Θ0,Θ,Θ′

Π0,F,Π,Π′,A
µ
X;Γ,A∨Bµ

X
- ∆;Θ0,Θ,Θ′

decide


Π′+ Aµ

X + DL + Θ′
Π0,F,Π′,A

µ
X; - ;Θ0,Θ′ [Π′+ Bµ

X + DB + Θ′]
Π0,F,Π,Π′,B

µ
X ;Γ,B∨Bµ

X,B
µ
X
- ∆;Θ0,Θ,Θ′

Π0,F,Π,Π′,B
µ
X;Γ,B∨Bµ

X
- ∆;Θ0,Θ,Θ′

decide


Π′+ Bµ

X + DL + Θ′
Π0,F,Π′,B

µ
X; - ;Θ0,Θ′

That is, we weaken DA and DB by global versions of the side expression of inference L throughout
their lowest blocks; we apply a (decide) inference to obtain a new subderivation to substitute for
the subderivation rooted at L in DL. We weaken by sufficient additional formulas globally in the
lowest blocks to ensure that the end-sequents of these derivations are balanced and spanned.

Since we have changed only the lowest block here, we can now apply Lemma 8 to obtain cor-
responding derivations DA

I and DB
I in which every block is cancelled, linked, isolated, simple, bal-

anced and spanned. In light of our first observation about the construction of Lemma 8, we can
see that the inferences of DA are preserved up to the new (decide) inference. And in light of our
third observation about the construction of Lemma 8, given the unique inferences introducing Θ0
and Π0, this (decide) inference must be preserved in DA

I . Thus Aµ
X is linked in DA

I and for analo-
gous reasons Bµ

X is linked in DB
I . These derivations satisfy the induction hypothesis as deductions

with fewer than n (∨ →) inferences; we can apply the induction hypothesis with Aµ
X and Bµ

X as
the distinguished linked formulas to preserve. This results in SCLB derivations A and B with the
same end-sequents as D′A and D′B, in which every block is cancelled, linked, isolated, simple and
spanned, and in which respectively Aµ

X and Bµ
X are linked.

We need only one of A and B to reconstruct D′ using blocking inferences. For example, we
obtain a proof using (∨→B

L) by using B in place of DB as schematized below: DA

Π0,F,Π;Γ,A∨Bµ
X,A

µ
X
- ∆;Θ0,Θ

B
Π0,F,Π′,B

µ
X
- Θ0,Θ′

Π0,F,Π;Γ,A∨Bµ
X
- ∆;Θ0,Θ

∨→B
L


DL

Π0,F; -;Θ0
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In a complementary way, we obtain a proof using (∨→B
R) by using A in place of DA as schematized

below:  DB

Π0,F,Π;Γ,A∨Bµ
X,B

µ
X
- ∆;Θ0,Θ

A
Π0,F,Π′,A

µ
X
- Θ0,Θ′

Π0,F,Π;Γ,A∨Bµ
X
- ∆;Θ0,Θ

∨→B
L


DL

Π0,F; -;Θ0

Note that the root block is isolated in both cases, because we have added only as many formulas
to Π′ and Θ′ as are necessary to obtain a balanced, spanned sequent; the remaining expressions
originate in the end-sequent of the previous block, which we know was isolated. Thus, in both cases,
we have blockwise eager derivations in which every block is cancelled, isolated, simple, balanced
and spanned, in which fewer than n (∨ →) inferences are used, and in which only the root block
may fail to be linked. We thus need to apply the construction of Lemma 8 again to ensure that
the root block is linked. It is possible for the distinguished occurrence of F not to be linked in
one of the resulting derivations, but not both. To see this, consider applying the construction of
Lemma 8 to D′ itself, as a test: the result will be D′ since D′ is linked. Starting from DA and DB and
axioms elsewhere, each inference in D′ corresponds to an inference in the alternative derivations
schematized above. We can argue by straightforward induction that no formula is linked in the
reconstructed D′ unless it is also linked in the one of the corresponding reconstructed alternative
derivations. And F is linked in D′.

Call the derivation in which F is linked D′′; we substitute D′′ for D′ in D. Since F remains
linked in D′′, when we do so, we obtain a blockwise eager SCLU derivation with an appropriate
end-sequent, with fewer original (∨ →) inferences, and in which every block remains cancelled,
linked, isolated, simple, balanced and spanned, and in which (∨ →) inferences lie at the root of
SCLS derivations. Applying the induction hypothesis to the result gives the required SCLB deriva-
tion.

4.5 Modularity
The final step in the justification of the calculus is to enforce modularity. This again is accomplished
by adapting the rules of the sequent calculus. We rewrite inference figures so that every sequent in
the proof has at most one formula in the left and right local areas, and further if a right rule applies
the left local area is empty. The new inferences are presented in Definition 23 and 24 as the sequent
calculus SCLP. Definition 23 shows the rules for decomposing program statements; Definition 24
shows the rules for decomposing goals.

Definition 23 (Logic programming calculus—programs) The following inference figures de-
scribe the logic programming sequent calculus SCLP as it applies to program clauses.

1. axiom—A atomic:
Γ;Aν - Aν;∆
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2. decision (program consultation)—again A atomic:

Γ,Pµ
X ;Pµ

X
- Aν

Y ;∆
Γ,Pµ

X; - Aν
Y ;∆ decide

3. conjunctive:
Γ;Pµ

X
- Aν

Y ;∆
Γ;P∧Qµ

X
- Aν

Y ;∆ ∧→L

Γ;Qµ
X
- Aν

Y ;∆
Γ;P∧Qµ

X
- Aν

Y ;∆ ∧→R

4. disjunctive:
Γ;Pµ

X
- Aν

Y ;∆ Γ,Qµ
X; - ;∆

Γ;P∨Qµ
X
- Aν

Y ;∆ ∨→L

Γ;Qµ
X
- Aν

Y ;∆ Γ,Pµ
X; - ;∆

Γ;P∨Qµ
X
- Aν

Y ;∆ ∨→R

5. implication:
Γ; - Qµ

X;∆ Γ;Pµ
X
- Aν

Y ;∆
Γ;Q⊃ Pµ

X
- Aν

Y ;∆ ⊃→

6. necessity—subject to the side condition that there is a typing derivation S,Ξν .µ/µν : i:

Γ;Pµν
X,µν

- Aν′
Y ;∆

Γ,2iP
µ
X
- Aν′

Y ;∆ 2i→

7. existential—subject to the side condition that h is h∃xP(µ,X):

Γ;P[h(X)/x])µ
X
- Aν

Y ;∆
Γ;∃x.Pµ

X
- Aν

Y ;∆ ∃→

8. universal—subject to the side condition that there is a typing derivation S,Ξt,µ . t : µ:

Γ;P[t/x]µX,t
- Aν

Y ;∆
Γ;∀x.Pµ

X
- Aν

Y ;∆ ∀→

Definition 24 (Logic programming calculus—goals) The following inference figures describe
the logic programming sequent calculus SCLP as it applies to goals.

1. restart:
Γ; - Gν

X;Gν
X,∆

Γ; - ;Gν
X ,∆

restart



IN MODAL LOGIC PROGRAMMING 43

2. conjunctive goals:
Γ; - Fµ

X ;∆ Γ; - Gµ
X ;∆

Γ; - F∧Gµ
X;∆ →∧

3. disjunctive goals:
Γ; - Fµ

X ;∆
Γ; - F∨Gµ

X;∆→∨L

Γ; - Gµ
X ;∆

Γ; - F∨Gµ
X;∆→∨R

4. necessary goals—where η is ηu
A(µ,X) for Aµ

X the principal of the rule and for some u for
which ηu

A does not occur in ∆ or Γ:

Γ,Fµη
X,µη; - Gµη

X,µη;Gµη
X,µη,∆

Γ; - F >i Gµ
X ;∆ →2i ⊃

Γ; - Gµη
X,η;Gµη

X,µη,∆
Γ; -

2iG
µ
X ;∆ → 2i

5. universal goals—subject to the side condition that h is h∀xG(µ,X):

Γ; - G[h/x]µX,h;∆
Γ; - ∀x.Gµ

X;∆ →∀

6. existential goals—subject to the side condition that there is a typing derivation S,Ξt,µ . t : µ:

Γ; - G[t/x]µX,t;∆
Γ; - ∃x.Gµ

X;∆ →∃

SCLP proofs can be rewritten to SCLB rules by a weakening transformation. Conversely,
rewriting SCLB proofs to SCLP proofs is accomplished by induction on the structure of proofs.
The transformation is possible because multiple formulas in sequents are needed only for passing
ambiguities and work done across branches in the search; this is ruled out by the use of (∨ →L),
(∨→R) and (⊃→L).

Lemma 10 Given a blockwise eager SCLB derivation D, with end-sequent

Π; -;Θ

in which every block is linked, simple and spanned, we can construct a corresponding SCLP deriva-
tion of the same end-sequent.

Proof. We construct by induction on the structure of the linked, simple, spanned, blockwise eager
SCLB derivation D with end-sequent

Π;Γ - ∆;Θ
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an SCLP derivation D′ of which four additional properties hold:

• the end-sequent of D′ takes the form

Π;Γ′ - ∆′;Θ

with Γ′ ⊆ Γ and ∆′ ⊆ ∆;

• D′ contains in each segment or block all and only the axioms of the corresponding segment
or block of D;

• whenever D′ contains a sequent of the form

Π∗;Γ∗ → F;Θ∗

F is the only right formula on which an axiom in that block is based; and

• whenever D′ contains a sequent of the form

Π∗;F→ ∆∗;Θ∗

then F is the only left formula on which an axiom in that segment is based.

In the base case, D is
Π;Γ,Aµ

X
- Bν

X,∆;Θ

and D′ is
Π;Aµ

X
- Bν;Θ

Supposing the claim true for proofs of height h, consider a proof D with height h+1. We consider
cases for the different rules with which D could end.

The treatment of (→∧) is representative of the case analysis for the right rules other than (→>).
D ends

Π; - Aµ
X ,A∧Bµ

X,∆;Θ Π; - Bµ
X ,A∧Bµ

X ,∆;Θ
Π; - A∧Bµ

X ,∆;Θ →∧

(It is a consequence of Lemma 5 that in the initial derivation there is an empty local area.) We
simply apply the induction hypotheses to the immediate subderivations. If the resulting derivations
end with (restart), consider the immediate subderivation of the results, otherwise consider the results
themselves. These derivations end

Π; - C;Θ
Π; - D;Θ

We must have C = A; we know from the structure of D that A is linked, and A could not be linked
in D unless C = A since D′ shows that all of the axioms in D derive from C. For the same reason
D = B. So we can combine the resulting proofs by an (→∧) inference to give the needed D′.

The case of (→>) proceeds similarly, but relies on an additional observation. D ends

D1
Π,Aµη

X,µη; - ∆,A>i Bµ
X ;Bµη

X,µη,Θ
Π; - ∆,A>i Bµ

X ;Θ →>
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We apply the induction hypothesis to D1 and eliminate any final (restart) inference. This gives us
a derivation D′1 of

Π,Aµη
X,µη; - E;Bµη

X,µη,Θ

If we know that the B-side expression of this inference is linked in this block, then we can conclude,
as before, that E is an occurrence of the expression Bµη

X,µη. We show this as follows. We know from
the structure of D only that one of the A-expression and the B-expression must be linked. However,
it is straightforward to show that no left expression Aµη

X,µη is linked in an SCLP derivation with a
local goal Cν

Y unless µη is a prefix of ν. (The argument is a straightforward variant for example
of [Stone, 1999b, Lemma 2].) Since D is simple and spanned, η must be new; Bµη

X,µη is the only
expression whose associated path term has µη as a prefix.

Thus, we construct D′ using an SCLP inference as

D′1
Π,Aµη

X,µη; - Bµη
X,µη;Bµη

X,µη,Θ
Π; - A>i Bµ

X ;Θ →>

Now suppose D ends in a left rule other than (⊃→S) or (∨→B). We take (∧→) as a represen-
tative case; then D is:

D1
Π;Γ,A∧Bµ

X ,A
µ
X,B

µ
X
- ∆;Θ

Π;Γ,A∧Bµ
X
- ∆;Θ ∧→

Apply the induction hypothesis to D1. If the result ends in a (decide) inference, let D′1 be the im-
mediate subderivation of the result; otherwise let D′1 be the result itself. D′1 is an SCLP derivation
with an end-sequent of the form:

Π;E - F;Θ

E must be a side expression of the inference in question, here (∧→); otherwise the corresponding
inference could not have been linked in D. One of the inference figures (∧→L) and (∧→R) must
apply depending on which side expression E is. For concrete illustration, we suppose E is Aµ

X ; then
we construct D′ as:

D′1
Π;Aµ

X
- F;Θ

Π;A∧Bµ
X

- F;Θ ∧→L

Next, we suppose D ends in (⊃→S), as follows:

D1
Π; - Aµ

X ,∆;Θ
D2

Π;Γ,A⊃ Bµ
X ,B

µ
X
- ∆;Θ

Π;Γ,A⊃ Bµ
X
- ∆;Θ ⊃→S

We begin by applying the induction hypothesis to the subderivation D1. After stripping off any
(restart), we obtain an SCLP derivation D1 with end-sequent

Π; - C;Θ
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By the usual linking argument, the expression C must be identical to Aµ
X . We then apply the induc-

tion hypothesis also to the right subderivation. Again, after stripping off any (decide), we get an
SCLP derivation D2 with end-sequent

Π;D - E;Θ

By the usual linking argument, D must in fact be identical to Bµ
X . Thus we obtain the needed D′ by

combining the two derivations by the SCLP (⊃→) rule:

D′1
Π; - Aµ

X ;Θ
D′2

Π;Bµ
X
- E;Θ

Π;A⊃ Bµ
X
- E;Θ ⊃→

Finally, for (∨→B), we consider the representative case of D as schematized below:

D1
Π;Γ,Aµ

X
- ∆;Θ

D2
Π′,Bµ

X; - ;Θ′
Π;Γ,A∨Bµ

X
- ∆;Θ ∨→B

L

We begin by applying the induction hypothesis to D1, the subderivation in the current block; if nec-
essary, we strip off any initial (decide) inference, obtaining D′1 with an end-sequent that by linking
takes the form:

Π;Aµ
X
- E;Θ

Next, we apply the induction hypothesis to the other subderivation. Since both local areas are empty
in the input subderivation, they remain empty in the result subderivation: this gives D′2 with end-
sequent:

Π′,Bµ
X; - ;Θ′

The two subderivations can be recombined by the SCLP (∨→L) inference to obtain the needed D′:

D′1
Π;Aµ

X
- E;Θ

D′2
Π′,Bµ

X ; -;Θ′
Π;A∨Bµ

X ; - E;Θ ∨→L

The discussion of the previous subsections represents an outline of the proof of the following
theorem.

Theorem 2 Let Γ and ∆ be multisets of tracked prefixed expression in which each formula is
tracked by the empty set and prefixed by the empty prefix. There is a proof of Γ - ∆ in SCL
exactly when there is a proof of Γ; - ;∆ in SCLP in which every block is cancelled.

Proof. As observed already in Section 4.1, there is an SCL proof of Γ - ∆ exactly when there
is an SCLI proof of Γ - ∆. By Theorem 1 of Section 4.2, there is an SCLI proof of Γ - ∆
exactly when there is an eager SCLI proof of Γ - ∆. By Lemma 4, there is an eager SCLI proof
of Γ - ∆ exactly when there is an eager articulated SCLI proof of Γ; -;∆. And by Lemma 6,
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there is an eager articulated SCLI proof of Γ; -;∆ exactly when there is an eager SCLS proof of
Γ; - ;∆.

Continuing through the argument, we know from its simple form that the sequent Γ; - ;∆ is
spanned and balanced. By Lemma 9 of Section 4.4.3, then, there is an eager SCLS proof of Γ; -

;∆ exactly when there is a blockwise eager SCLB derivation of Γ; -;∆ in which every block is
cancelled, linked, isolated, simple, balanced and spanned. And by Lemma 10 which we have just
proved, there is a a blockwise eager SCLB derivation of Γ; - ;∆ in which every block is cancelled,
linked, isolated, simple, balanced and spanned exactly when there is an SCLP derivation of Γ; -

;∆ in which every inference is linked. And if every inference is linked, every block is cancelled.

5 Sequent Calculus and Operational Behavior
The action the interpreter specified by SCLP can be summarized as follows. A distinguished for-
mula on the right in sequents represents the current goal at any state in proof search; if possible, the
interpreter first breaks this goal down into its components. In particular, as outlined in Sections 2
and 3, modular goals like [COFFEE]get-coffee and [TICKET]get-ticket are processed by considering
transitions to fresh possible worlds where only the information from that module is available.

Once an atomic goal is derived, the program is consulted by applying (decide); the chosen clause
is decomposed and matched against the current goal by applicable logical rules. In particular, at
(∨→), the second case analysis allows the current goal to be chosen flexibly by the (restart) rule.
The (restart) rule is modular in that it limits the work that is reanalyzed to the scope of the ambiguity
just introduced; this conforms to the description in Sections 2 and 3.

The operational rules presented in Section 3.4 go beyond the skeleton implicit in the sequent
calculus SCLP by describing certain concrete data structures for managing search. We justify these
data structures briefly here.

5.1 Cancellations and modularity
First, the operational rules of Section 3.4 are specialized to deliver only cancelled blocks.

The specialization takes effect by the clause of rule (15), where we require that the bookkeeping
information κO obtained as a result from this block should have the value true for c?. Observe that
this variable c? is true exactly when there is a cancellation in the block. For the initial value for c? is
false, as set by rule (13e). Each rule except rule (12) simply passes the values for c? along unchanged
through its subproofs. And rule (12) sets c? exactly when the key premise for the block is accessed;
we have seen from the proof of Lemma 10 that this ensures a cancellation for this premise within
the segment. Of course, Lemma 10 ensures that an SCLP proof system that delivers only cancelled
blocks is sound and complete.

Given that the operational rules deliver only cancelled blocks, we can enforce modularity, using
the following observation. Using these rules, whenever an SCLP derivation D′ contains a sequent
of the form Π;→ Gν;Θ then Gν will be the only right formula on which an axiom in that block is
based. The observation we also appeal to in treating the (→>) case of Lemma 10—the variant of
[Stone, 1999b, Lemma 2]—shows that if a left formula Pµ from Π is the ancestor of a principal
formula of an axiom in such a block, µ must equal a prefix of ν. Now we have ensured that each
time a (∨ →) rule applies, the key disjunct Pµ has such a cancellation. Thus, in search, we can
restrict the subsequent (restart) rule to goals Gν with µ a prefix of ν. This accounts for the added
constraint of this form in rule (15).
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5.2 Pruning (∨→R) search paths
The second feature reflected in the operational rules of Section 3.4 but not in SCLP is the pruning
of search paths for (∨→R) inferences motivated by informal argument in Section 3.3. We can now
formalize the argument and show that the operational rules of Section 3.4 implement this argument.

Definition 25 (free restart goals) Let D be a cancelled SCLP derivation, and let B be a block in
D other than the root. By cancellation, B includes some axioms based in the side expression K of
the (∨→) inference at the root boundary of B. An expression F is free in B if every sequent in B
at which an inference applies to an occurrence of K also contains a global goal occurrence of F.

Now suppose D is a cancelled SCLP derivation in which there is a (∨→R) inference thus:

D1
Π;Bµ

X → G;Θ

D2
Π,Aµ

X ;→H;Θ
Π,Aµ

X;→;Θ restart

Π;A∨Bµ
X →G;Θ ∨→R

We will recreate the construction of (10) under certain conditions. To describe the construction, let
B be the block of D in which this (∨→R) inference occurs; let D′ be smallest subderivation of D
containing B. We situate this (∨→R) inference, L, within D′ as in:

D1
Π;Bµ

X → G;Θ

[DA]
DU

Π,Aµ
X ;→H;Θ

Π,Aµ
X;→;Θ restart

Π;A∨Bµ
X →G;Θ L

D∨
DG

D0

Namely, we define D∨ as the maximal subderivation of D′ from the end-sequent of L that contains
no right inferences below L. We define DG as the maximal subderivation of D′ from the end-sequent
of D∨ all of whose sequents have an occurrence of H on which the restart occurrence of H is based.
We let D0 be the subderivation of D′ from the end-sequent of DG. Finally, we use the notation [DA]
to abstract each of the subderivations of D2 which begin with a (decide) inference whose principal
expression is an occurrence of Aµ

X based in inference L. We use DU to name the remaining subtree
of D2.

Since we have identified DU so that no inference applies to an occurrences of Aµ
X based in L in

DU , we can construct a subtree like DU except omitting all occurrences of Aµ
X based in L. Call this

DV . Of course, this changes the form of all open leaves in DV . Consider any such open leaf

Π′; - H′;Θ′

We construct a derivation of this sequent inductively from D∨. With the exception of ∨→ in-
ferences and the open leaf of D∨ (where L occurs in D), this derivation is constructed by taking
subderivations inductively and recombining inductively obtained derivations by a corresponding
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inference. At (∨→) inferences, we may have to adapt the (restart) subderivation, if the restart is to
a goal not in Θ′. We do that by restarting to H, copying the necessary reasoning from DG, and then
supplying the original subderivation (minus its restart). At the site of L, we use a derivation of the
form schematized below—supplying the original reasoning for B, and, for A, copying the necessary
reasoning from DG, and—after an appropriate (decide) inference—supplying the reasoning for A
from D:

DB

Π′;Bµ
X
- H′;Θ′

DA

Π′;Aµ
X
- G

DG

Π′,Aµ
X
- H;Θ′

Π′;A∨B - H′

Now, if we replace all the open leaves in DV by derivations so constructed, and in turn substitute
the result at the open leaf of D0, we obtain a derivation of the same end-sequent as D0, in which
the occurrence L of (∨→R) has been turned into an occurrence of (∨→L).

Call the transformed proof D∗. Under what conditions is D∗ cancelled? Clearly, if L occurs in
the root block of D, D∗ remains cancelled. Otherwise, there is some key premise K which must be
cancelled in the block where L occurs. Suppose K is linked in D0: then H is not free and moreover
D∗ remains cancelled because these D0 inferences are not moved into a different block in the con-
struction of D∗. Suppose K is linked in D2: then these inferences are moved in the construction
of D∗, into the block where K must be cancelled. So D∗ remains cancelled. Finally, suppose K is
linked in D∨ (outside D1). These inferences also remain in the same block in the construction of
D∗: D∗ remains cancelled.

Thus, it is complete to use (∨ →R) only in a block other than the root with a key premise
K, where the restart goal of the new block is free, where K is suppressible in the new block—
corresponding to inferences D2—and where K is suppressible throughout the proofs of subgoals
introduced in reaching the disjunction—corresponding to inferences D∨. We can now immediately
account for the manipulation of d? to identify any D∨ subgoals and to enforce the necessary sup-
pression there in rule (13c); we can immediately account for the testing of suppression at rule (12).
Moreover, assuming E correctly accumulates the free restart goals in a block, we can use the con-
dition on κO setting F in rule (15), the propagation of F throughout the block, and the constraint
Gµ ∈ F for delayed restarts, to show that the use of (∨ →R) is limited to new blocks with free
restarts.

There are two cases for the incremental propagation of values of E throughout the proof. In
the case that c? is false, E is assigned all the possible restart goals that have been introduced. This
is because with c? false, E is initialized to the initial restart goals G in the block and augmented
whenever a new restart goal is introduced by rules (11d), (11e) or (11f). Thus, in the case of the first
cancellation, in rule (12), E is set to those goals that are present at every sequent where an inference
applies to K. Thereafter, E is updated only by the rule (12), so that E continues to hold all those
goals that are present at every sequent where an inference applies to K. It follows straightforwardly
that at the end of a block, which must contain some cancellation, E contains exactly the free restart
goals of the block.
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5.3 Constraints and unification
The only feature of the operational rules that remains to be accounted for is the use of logic variables
and constraints in place of ordinary instantiation of terms. The regime adopted in Section 3.4 rep-
resents one standard formalization of the inevitable need to lift logical calculi allow instantiations
to be solved for rather than searched over.

We can justify our particular constraints and constraint propagation technique as follows. We
start by following [Voronkov, 1996] in describing a range of parameterized atomic constraints on
substitutions. For each inference, an appropriate constraint can be selected and appropriate param-
eters provided to it, so as to ensure that when a substitution that satisfies the constraint is applied to
a proof, to replace logic variables with ordinary terms, the side condition on that inference is met.
These provide the vocabulary of constraints used in rules (11)–(15). Proofs themselves are now
conceived in two steps. In the first step, we build a lifted tree of inferences paired with an appro-
priate composite constraint. The constraints are accumulated from separate subtrees and composed
together to provide the constraints for a larger tree. In the second step, we find a substitution that
solves the constraints; we can obtain an ordinary proof from the lifted proof using this substitution.
For our modal system, in particular, we can naturally adapt the construction of [Stone, 1999a, Sec-
tion 4], which discusses the modal language and moreover shows how to formulate the constraints
as a conjunction of atomic constraints in the natural case where each inference in the proof intro-
duces distinct logic variables.

The accumulation of these constraints incrementally follows [Lincoln and Shankar, 1994].
Having argued that the constraints associated with a lifted deduction amount to a conjunction—
in effect, a multiset—of atomic constraints, it amounts to the same thing whether the constraints
are accumulated statically, by union, as in Voronkov’s presentation, or dynamically, by accumulat-
ing them throughout a proof, as in the Lincoln and Shankar presentation. The latter system offers
the advantage of representing the constraints in place in a partial proof more directly, allowing the
more natural statement of the unifiability constraint of rule (14).

6 A Worked Example
We illustrated some potential applications for DIALUP in section 2. Now that we have justified the
DIALUP interpreter in detail, we return to the first application, discourse planning, to consider the
action of that interpreter more precisely. We will consider the same discourse as before:

(16) I have account 42. What is my balance?

However, we will adopt an account of conversational action that is more sophisticated than the ear-
lier one in three important respects.

First, we now explicitly consider contributions to dialogue that span multiple utterances; we
will be interested in how both sentences of (16) combine together to achieve the patron P’s com-
municative goals.

Second, we will represent the communicative goals themselves more finely and with less in-
direction. Earlier we saw how the patron could conclude that, assuming certain information was
to be provided, the teller would be in possession of a specific piece of information that the patron
needed. In fact, what the patron wants is something more: the patron wants the teller to give that
information. Otherwise, we cannot explain why the patron actually goes on to ask the question.
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Third, we will represent the communicative actions more faithfully. We represent utterances
explicitly. Moreover, in describing how making an utterance adds to the conversational record, we
take into account both the knowledge that a speaker must have to contribute the utterance to the
discourse honestly, and the information the conversational record must already provide to satisfy
any presuppositions that the utterance carries.

Despite this richer representation, the outline—and the moral—of this example follows the ear-
lier example of Section 2.1. We represent and refer to the states of knowledge of the participants
in the conversation using modal operators. We construct a program that describes both the initial
state of the conversation and the available communicative actions; existential assertions figure will
prominently in both descriptions. Then, we give DIALUP a query that assesses the ability of the
speaker to achieve a communicative goal with some sequence of utterances. This query uses nested
implications to describe successive updates to the conversational record.

It is best to begin with the formalization of ability; it figures not only in the assessment of the
effect of multiple utterances but also in the formulation of the communicative goals themselves.
Consider how an agent A makes a decision of a single best communicative action to take next. A
must choose a single specific utterance u on the basis of the known effects that u will have in this
context. To assess what effects are known to A, we can consider A’s information only, assume that
A has uttered u normally and sincerely—uttered(A,u)—and query whether this adds some desired
fact G to the conversational record. This means we pose the query in (17).

(17) ∃u.[A](uttered(A,u)⊃ [CR]G)

This query is, not surprisingly, a variant of the query (4) used to assess the effects of communicative
action in Section 2.1. (A simplification: we have used a hypothesis uttered(A,u) to sidestep the tem-
poral reasoning required in general for planning. As a contingent assertion, any use of uttered(A,u)
must be made in the state of information available to A’s deliberation at this step.)

Our first use of this query will be to characterize the communicative goal that the patron P means
(16) to accomplish. P wants the teller to be able to provide an answer. Let us use the formula
has-answer(P) to represent the condition that P has needed information. We can now use (17) to
characterize situations where the teller S can get this condition on the conversational record:

(18) ∃u.[T](uttered(T,u)⊃ [CR]has-answer(P))

Be aware of two assumptions that (18) encodes. First, (18) implicitly appeals to our expectations
about cooperative conversation. In a cooperative conversation, P can expect that T will give a re-
sponse to the question simply because T recognizes T can give a response to the question. Second,
(18) exploits the formula has-answer in order to avoid more structured reasoning about information
needs. P and T ’s exchange depends on P signaling that P wants to know the balance; otherwise T
cannot know to provide it. Hence in (18), the formula [CR]has-answer(P) indicates that the con-
versational record contains not only P’s information, but also P’s information need itself.

We now return to the problem P faces of sequencing together some number of utterances which
together will establish the result expressed in (18). We imagine that P adopts an iterative deepening
planning strategy, considering first one-sentence contributions to conversation, then two-sentence
contributions, and so forth. In each case, P attempts to construct the plan by posing a corresponding
query. Following analyses of ability such as [Davis, 1994, Stone, 1998a], at each step in carrying
out a plan, the agent must only select a single concrete next action for its known effects. The effect
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the agent must verify at that step is that the agent can continue making appropriate choices as needed
in carrying out the plan until a goal is reached.

In this context, a two-sentence contribution will suffice. For such a plan, the agent makes a
single choice now, considers the consequences, and anticipates a single further choice. The corre-
sponding formula is (19).

(19) ∃u.[A](uttered(A,u)⊃ ∃u′.[A](uttered(A,u′)⊃ [CR]G))

(Overall, then, at each step in the plan, an additional level of nested knowledge is introduced that
includes the additional information that is available after that action is taken; the new information
may then be used to select what the subsequent action should be.)

We can combine (19) with communicative goal represented in (18) to describe what the patron
P must establish to justify the contribution in (16):

(20) ∃u.[P](uttered(P,u)⊃
∃u′.[P](uttered(P,u′)⊃

[CR]∃b∃u′′.[T](uttered(T,u′′)⊃ [CR]has-answer(P))))

That is: P selects utterances u and u′ in sequence because once they are added to the conversa-
tional record, the conversational record will also guarantee that the teller can—and, by reasoning
cooperatively from P’s wants, will—provide a reply by which P learns the balance value. What
we would then like to do is prove this query in DIALUP. This would not only check that P’s con-
tribution to discourse is sensible, it could use unification to arrive at that contribution. By assum-
ing the occurrences of events rather than unifying, we could get an abductive discourse planner
(cf. [Thomason and Hobbs, 1997]).

What do we need to complete this proof? Obviously we need to represent the update to the
conversation made by utterances. We now propose such a representation; it adopts some idealiza-
tions of cooperative conversation, in order to describe utterances as strongly and precisely as pos-
sible. First, we suppose that speakers only consider formulating utterances that they know to be
true. Second, we suppose that utterances carry presuppositions: for an utterance to be interpreted
appropriately, the common ground must provide a justification for these presuppositions. Provided
that an utterance is uttered normally, truly, and with its presuppositions met in this way—and pro-
vided only this—the content of the utterance becomes part of the conversational record. Of course,
this knowledge of how to use and interpret utterances must itself be common knowledge among a
speech community.

(21) formalizes this picture; it assumes an utterance u with assertion a and presupposition p, to
be uttered by agent A.

(21) [CR]([A]a∧ [CR]p∧uttered(A,u)⊃ [CR]a)

Note that we can easily accommodate the linguistically important anaphoric approach to
presupposition by treating the formulas p and a as open formulas [van der Sandt, 1992,
Stone and Webber, 1998]. The free variables of p must be instantiated by finding suitable
values (or discourse referents) from the context; that assertion a is then made about those values.
The contribution of the presupposition to interpretation on this account is in specifying how to
retrieve from the context the referents we want to talk about; we will see examples of this below.
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Figure 4: Modalities and inclusion relationships for the example.

From the point of view of logic programming search, this rule is somewhat problematic: if
[CR]a provides a way to establish [A]a, this rule may be applied recursively and so lead to an infinite
regress in proof search. Intuitively, it is clear that no agent should search for ways of convincing
itself of something by telling it to itself. We can use this insight for this example to reformulate
(21) to refer to some distinguished subset of the agent’s information—information that they bring
to the conversation initially and would consider communicating. (An alternative, which would take
us too far afield here, is to incorporate a more sophisticated account of time.) Notationally, we dis-
tinguish [A] (the agent’s increasing knowledge) from [IA] (the agent’s initial stock of information
to contribute). With this new expressive power, we will refine the template of (21) as (22):

(22) [CR]([IA]a∧ [CR]p∧uttered(A,u)⊃ [CR]a)

Our example now illustrates the specification of modular problem-solving described in Section 2.2
as well as the specification of agents motivated in Section 2.1! Figure 4 diagrams all the modalities
that we will use in this example.

Let us apply this formalization to our discourse starting with the initial utterance. It has the
presupposition that account 42 is mutually identifiable: that there is an a satisfying ϕ0(a) as defined
below:

(23) ϕ0(a)≡ (account(a)∧number(a,42)∧ identifiable(a))

It carries the assertion that a belongs to the patron P. Thus, we can describe the preconditions and
effects of the first utterance using the definition:

(24) [CR]∀a∃u[CR]([IP]belongs(a,P)∧ [CR]ϕ0(a)∧uttered(P,u)⊃ [CR]belongs(a,P))

(In Prolog, we would use an explicit structured term rather than an existential quantifier to specify
the utterance u. In our case Herbrand terms are the only compound terms the logical development
has described; the double nesting of modalities is therefore required to account for increasing do-
mains.)

Once the first utterance succeeds, the second requires that the balance b in P’s account a be
mutually identifiable, formalized as ϕ1(a,b):

(25) ϕ1(a,b)≡ (account(a)∧belongs(a,P)∧balance(a,b)∧ identifiable(b))

We treat this utterance as contributing the information that P’s information needs are to know what
the value of b is; accordingly, we can describe the preconditions and effects of the second utterance
in the following rules:
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(26) [CR]∀a∀b∃u′[CR]([IP](∃v[P]value(b,v)⊃ has-answer(P))∧
[CR]ϕ1(a,b)∧uttered(P,u′)⊃

[CR](∃v[P]value(b,v)⊃ has-answer(P)))

Finally, we need a specification of the hypothetical third utterance—the teller’s reply, which
might go along the lines: your balance is $600. We can assign this the same presupposition as (25),
and regard it as informing what the balance of the account is. That leads to the rule:

(27) [CR]∀a∀b∀v∃u′′[CR]([IT]value(b,v)∧ [CR]ϕ1(a,b)∧uttered(T,u′′)⊃
[CR]value(b,v))

As it happens, we cannot simply prove (20) from (24), (26) and (27). To establish this query,
we need first of all some general facts about banking. In fact, the whole point of formulating the
query is to allow us to draw on a variety of shared knowledge about banks and banking in stream-
lining the discourse. An important part of what makes these facts general is that they characterize
the information available to different participants abstractly, by making essential use of existential
assertions.

To facilitate reuse of these facts about banking, we can specify them using a special modality
[BANK] with [BANK]p⊃ [CR]p; we can add another modality [TELLER ] for what any teller knows.
Since T is the teller now, this is subject to [TELLER ]p ⊃ [IT]p. People familiar with banks know
that accounts are named by codes like 42:

(28) [BANK] ∀c.(code(c)⊃
∃a [BANK] (account(a)∧number(a,c)∧ identifiable(a)))

[BANK] code(42)

They also know that there is a balance for any account, that it is identifiable if the account is, that
the teller knows its value:

(29) [BANK] ∀a ∃b [BANK] (account(a)⊃ balance(a,b))
[BANK] ∀ab (balance(a,b)∧ identifiable(a)⊃ identifiable(b))
[BANK] ∀ab(balance(a,b)⊃ ∃v. [TELLER ]value(b,v))

We need not only general facts about banking, but we need the patron P to bring to the discourse
context the information that the two utterances in the discourse carry.

(30) [IP]∀a(account(a)∧number(a,42)⊃ belongs(a,P))
[IP]∀a∀b(account(a)∧number(a,42)∧balance(a,b)∧
∃c[P]value(b,c)⊃ has-answer(P))

By adding all these facts, it becomes possible to prove the query. In fact, DIALUP reports for
this example that there is a single proof—the expected one where the three utterances described in
(24), (26) and (27) are used as witnesses for the three corresponding existential quantifiers in (20).

Exhausting the search space for this example involves what may seem a surprising amount of
work. DIALUP attempts about one hundred possible applications of the (decide) rule for backward
chaining in the course of tabulating all ways to prove the query from the specification. In part this
reflects the size of the proof; in a logic programming derivation, for each communicative goal that
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the utterance helps establish, the interpreter must prove separately that the speaker knows the asser-
tion of the utterance and that the conversational record supports the presupposition of the utterance.
But the number also includes a quota of applications of program clauses that are discarded imme-
diately because of unification mismatches between the first-order terms or modal prefix associated
with the program clause and the current goal. It is clear therefore that it will be impossible to spell
out each step DIALUP takes in exploring the proof search space for this query.

We can, however, summarize the notable features of this exploration. DIALUP begins by un-
wrapping the query, introducing assumptions for the three communicative actions that we are
solving for and considering the goal has-answer(P). Although two clauses are headed by the
has-answer predicate corresponding to the resulting goal, the modal prefix of that goal (requiring
shared information at a certain stage) is only compatible with the communication clause (26). Thus,
DIALUP immediately turns to considering how P’s want could be communicated. The condition that
P know that want to start is established straightforwardly. (But observe again that only one of the
has-answer clauses applies; as we now require initial knowledge on the part of P, the communica-
tive clause is discarded.) Next we turn to establishing the presupposition as shared. Notably, for the
belongs presupposition, we must match a communication clause (again P’s knowledge is not rele-
vant to the shared goal); DIALUP thus recognizes the dependence of P’s question on the declarative
sentence that precedes it. DIALUP establishes that P knows the assertion of that first utterance, that
account 42 belongs to P, by the appropriate clause; the presupposition of the first utterance likewise
follows. Now there is an ambiguity: should we treat utterance one uttered by the first or the sec-
ond assumption we have made? DIALUP works through both alternatives—this redundancy is the
attraction of an abductive approach to discourse planning, in which a single unambiguous assump-
tion of utterance can be carried through. Having established the effects of utterance one and then
the presupposition of utterance two, we go to unify utterance two with a uttered assumption. At this
stage, because of the dependence of utterance two on utterance one and the modal prefixes in which
that dependence is encoded, the only possibility is that where utterance one is linked with the first
assumption and utterance two is linked with the second. DIALUP backtracks until this possibility is
recognized.

The communication clause associated with P’s question requires a further subgoal to be estab-
lished before we can establish has-answer: we must show that P knows the balance. The value
fact in question can be proved only assuming some communication. DIALUP use the teller’s initial
knowledge to establish the possibility of making the assertion; it uses the patron’s first, background
utterance to establish the presupposition; the utterance is identified with the teller’s assumed utter-
ance. With this the proof, and indeed the proof search, is concluded.

7 Conclusion
To execute modal specifications requires leveraging both the flexibility of efficient classical
theorem-proving and the distinctive modularity of modal logic. This is a significant problem be-
cause the two are at odds. On the one hand, flexible search strategies impose no constraints on the
relationships among inference and, by thus ignoring modularity, leave open hopelessly wild pos-
sibilities for search. On the other hand, brute-force modular systems may place such strong con-
straints on the order in which search must proceed that it becomes impossible to guide that search
in a predictable, goal-directed way. In this paper, we have explored one strategy for balancing the
flexibility of classical goal-directed search with the modularity of modal logic. This strategy cul-
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minates in the development of a modular logic programming sequent calculus SCLP and and asso-
ciated interpreter, DIALUP.

It may be delicate to construct these systems, but the SCLP presentation, and the associated
DIALUP operational rules that we justified here, work according to a simple intuition. A modular
goal can be thought of as an assignment of a problem to a new independent agent that has access
to precisely the information in the corresponding modular statements. This intuition provides a
powerful handle on the close connection between modularity and ambiguity, proof size and search
control in deductions. It supports applications that can be mocked up simply, as in Section 2, but
that can also be fleshed out substantially and usefully, as suggested in Section 6.
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