I ndefinite Information in Modal L ogic Programming®
Matthew Stone
Department of Computer Science and Center for Cognitive Science
Rutgers University
110 Frelinghuysen Road, Piscataway NJ 08854-8019
ndst one@s. r ut ger s. edu

Summary

We develop a modal logic programming language DIALUP in which programs can make dis-
junctive and existential assertions. Such assertions play an important role in specifications of
agents for reasoning about planning and interaction, where it is essential to describe agents
partia information. More broadly, such assertions allow programmers to describe the modular
structure of any specification. bIALUP isdesigned so that dijunctionsindicate local ambigui-
tiesin search. By forcing ambiguities to be considered independently, these modular disjunc-
tions can be used to construct efficiently executabl e specificationsin reasoning tasksinvolving
partial information that otherwise might require prohibitive search. To achieve this behavior
in DIALUP requires prior proof-theoretic justifications of logic programming to be extended,
strengthened, and combined with proof-theoretic analyses of modal deduction in anovel way.

Contents

1 Overview 2
2 Motivation and examples 3
3 TheDIALUP interpreter 9
4 Why DIALUP iscorrect 18
5 Sequent Calculus and Operational Behavior 47
6 A Worked Example 50
7 Conclusion 55

1Thanks to Mark Steedman, Rich Thomason, L. Thorne McCarty and Michael Fourman for extensive comments.
Thiswork was supported by an NSF graduate fellowship, an IRCS graduate fellowship, and a postdoctoral fellowship
from RUCCS, aswell as NSF grant |R195-04372, ARPA grant N6601-94-C6043, and ARO grant DAAHO05-94-G0426.
April 30, 2001.

2 INDEFINITE INFORMATION

1 Overview

Like al programming languages, logic programming languages need structuring constructs
to describe the modularity of programs and thereby to facilitate their design and reuse.
Modal logic provides a declarative setting to develop such structuring constructs [Miller, 1989,
Giordano and Martelli, 1994, Baldoni et a., 1993, Baldoni et a., 1996]. A necessary goal OG can
be seen as a modular goal because, in modal logic, only program clauses of the form OP can
contribute to its proof. With the right modal semantics, modularity also brings locality: a goal
O(P O G) introduces a local assumption P that can only contribute to the proof of G. This pa-
per extends this approach to modularity and locality to indefinite logic programs. We develop a
modal logic programming language DIALUP in which programs can establish digunctions and ex-
istentially quantified sentences.

Modal logic adready provides a general, declarative formalism for specify-
ing change over time, the knowledge of agents, and other specia-purpose do-
mains [Prior, 1967, Hintikka, 1971, Schild, 1991]. DIALUP, like the languages proposed in
[Farifias del Cerro, 1986, Debart et a., 1992, Baldoni et a., 1993, Baldoni et a., 1996], supports
such specifications—indeed, the indefinite assertions that DIALUP makes available play an impor-
tant role in applying modal formalisms to planning, information-gathering and communication
[Stone, 2000]. Nevertheless, DIALUP derives broad applicability even beyond these domains,
thanks to acrucial and direct connection between modularity and search.

In DIALUP, modal operators not only describe the content and structure of a specification, but
also resolveambiguitiesin executionin anintuitiveand useful way. DIALUP extendsthe Near-Horn
approach to digunctive logic programming [Loveland, 1991]. This approach implements digunc-
tion by arestart rule that can be highly ambiguous from the point of view of search. When using a
program clause AV B in aderivation, we may know to use aprivileged digunct (say A) to contribute
to the proof of the current goal G; however, the other digunct (B, here) may contributeto any earlier
goa inthederivation of G. Thus, after the overall proof iscompleted using A as an assumption, we
must be prepared to restart the entire proof using the assumption B instead. By making a program
clause AV B modular using a modal specification, we can constrain this restart process. With the
modular program, A must contribute to the proof of the current goal G; but now B may contribute
only toward earlier goals in its modular context. By constraining the scope of restarts, modular
disunction limits the size of proofs and the kinds of interactions that must be considered in proof
search. Such constraintsare crucial to the use of logical techniques in applicationsthat require au-
tomatic assessment of incomplete information, such as planning and natural language generation.

The correct design of our extended language requires a variety of proof-theoretic ideas about
logic programming to be extended, strengthened, and combined with proof-theoretic results about
modal logic in a novel way. To describe logic programming, we start with the idea of uniform
proof search described in [Miller et al., 1991] and extended to different kinds of digunctions in
[Miller, 1994, Nadathur and Loveland, 1995]. In uniform proof search, proof rules aternately de-
compose goals to atoms and then match these atoms against program clauses; this allows logical
connectives to be viewed as instructionsfor search.

To derive a uniform proof system in the presence of existential quantifiers, however, we
can no longer use the familiar quantifier rules used in previous logic programming research,
which simply introduce fresh parameters, we must apply a generalization of Herbrand’s theorem
[Lincoln and Shankar, 1994] and work with quantifier rulesthat introduce structured terms. More-

IN MODAL LOGIC PROGRAMMING 3

over, to handle modal operatorsin uniform proof, we use a path-based sequent cal culus for modal
logic that assimilates modal proof to classical proof. Path-based techniquesfor reasoning in modal
logic, pioneered by Fitting [Fitting, 1972, Fitting, 1983], have been extensively studied in recent
years[Wallen, 1990, Ohlbach, 1991, Nonnengart, 1993, Auffray and Enjalbert, 1992]; acombined
path-based Herbrand calculus for multi-modal logic is developed in detail in [Stone, 1999a]. The
key property of this calculus is that inferences can be freely interchanged. This alows arbitrary
proofsto be transformed easily into uniform proofs. But the very same property prevents this cal-
culus from enforcing modularity in the structure of proofs. For example, with free interchange,
inferences can be pulled outside the region of a proof where some local assumption is introduced,
even when those inferences use information provided by that assumption.

To guarantee the modular behavior of the uniform system, we require a new, detailed analysis
of cancellation in digunctive logic programming. Modular restarts depend on the invariant that
any digunct assumed in case analysis is used in proof, or cancelled, before another restart is at-
tempted. In some cases such cancellation requiresthe second disunct of a clause to be used before
thefirst. The DIALUP proof system achieves the invariant without reporting duplicate proofs using
anew discipline that temporarily suppresses the cancelled assumption on first restarting for adis-
junct analyzed out of order. ThisDIALUP regimeisjustified by transformationsrestricting uniform
proofs.

At the same time, the modular behavior of the uniform system depends on proof-theoretic anal -
yses of path-based sequent calculi adapted, in part, from [Stone, 1999b]. These analyses establish
that path representations enforce modularity and locality in the uses of formulas in proofs, even
with otherwise classical reasoning. Hence, although path-based calculi obscure the natural modu-
larity of modal inference, they do not eliminate it. The operational rules of DIALUP are obtained
by streamlining the uniform proof system to take advantage of these results; as a consequence, the
interpreter can dynamically exploit the local use of modular assumptions.

The remainder of thispaper isorganized asfollows. We outline the concrete motivationsand in-
tuitionsbehind DIALUP in Section 2. Next, we present an extended, precise description of DIALUP'S
behavior in Section 3. We give the logic that justifies DIALUP in Section 4; some additional ob-
servations that streamline the implementation are sketched in Section 5. We provide an extended
example of the system in usein Section 6.

2 Motivation and examples
DIALUP accepts program statements of the syntactic category D and goal sof the category G defined
recursively asfollows.

1) G:=A|[M|G|GAG|GVG|[M|(¥xG) | 3xG | [M](D > G)
D:=A|[MD|DAD|DVD|¥XD|3xD|G>D

In (1), A schematizes an atomic formula; atomic formulastake theform p(ay, ..., ax) where pisa
predicate symbol of arity k and each g; is either avariable or an atomic constant in some set C.

In (1), [M] schematizes a modal operator of necessity; intuitively, such modal operatorsalow a
specification to manipul ate constrained sources of information. That is, a program statement [M|D
explicitly indicates that D holds in the constrained source of information associated with the oper-
ator [M]. Conversely, agoal [M]G can be satisfied only when G is established by using information
from the constrained source associated with [Mm].

4 INDEFINITE INFORMATION

We will work in amulti-modal logic, in which any finite number of distinct necessity operators
may be admitted. (Necessity operatorswill also bewrittenasC or 0;.) In addition to ordinary pro-
gram clauses, a DIALUP specification may contain any of the following axiom schemes describing
the modalities to be used in program clauses and goals:

2 OipDp veridicality (VER)
O;p D O;djp positive introspection (PI)
OipD> 8;p inclusion (INC)

These axioms describe the nature of the information that an operator provides, and spell out rela-
tionships among the different sources of information in a specification. (VER) is needed for infor-
mation that correctly reflects the world; (P1), for information that provides a complete picture of
how things might be; and (INC), for a source of information, j, that elaborates on information from
another source, i.2 Because DIALUP uses this explicit axiomatization, we can take the names of the
modal operators as arbitrary.

We can appeal to modal operatorsin specifications both for their expressive power in character-
izing domains, and for their operational forcein constraining logic programming inference. Asan
illustration of DIALUP'S expressive resources, we cons der a specification of communicating agents
in Section 2.1. In this specification, modal operators represent the sources of information available
to any agent individually, and the sources of information that groups of agents share. With these
expressive resources, the specification accommodates the basi ¢ fact that each agent’sknowledgeis
limited but may increase as messages are exchanged.

Asanillustration of the the operational forceof DIALUP's modal reasoning, we consider a spec-
ification of a planning problem in Section 2.2. In this specification, modal operators identify re-
stricted sources of information that can be used to construct separate solutionsfor the subproblems
of theoverall task. Because it invokesthese operatorsto characterize dependenciesin the problem-
solving task, the specification can be executed without considering interactions in subtasks that
might otherwise potentially arise.

What these examples have in common is their dependence on the modularity of modal logic.
Modal formulas describe not only what needs to be derived in a proof, but also how derivations
should be broken down into parts and what information should be taken into account in each. As
we shall seein Sections 3, 4 and 5, some subtleties are involved in describing and justifying a cor-
rect inference procedure that does break down derivationsinto modular parts and does consider re-
stricted information in each. With these examples, then, we also motivate our inference procedure
and survey the modularity it can offer.

2.1 Characterizing Domains with Indefinite Modal Specifications. Communicating Agents

In collaborativetasks, agents coordinatetheir decisionsin pursuit of acommon goal. To succeedin
such collaboration, agents may need to communicate. For example, one agent may need to supply
its partner with key information which will allow the partner to decide what to do next. Planning
a contribution to conversation therefore requires agents to draw inferences about their partners

2For those used to thinking of modality semantically, in terms of accessibility relations among possible worlds,
(VER) can be captured by areflexive accessibility relation, (P1) can be captured by atransitive accessibility relation,
and (INC) can be captured by if j-accessibility entailsi-accessibility.

IN MODAL LOGIC PROGRAMMING 5

changing information. Of course, agents generally cannot characterize what their partners know
specifically. More frequently, each agent has an incomplete, abstract description of the other.

This section shows how communi cating agents in such circumstances can assess the effects of
communicative actions, and can thereby plan contributionsto a collaborative exchange, by posing
gueriesagainst DIALUP specifications. These specificationsexplicitly model thepartia andincreas-
ing body of information that communicating agents enjoy. To do so, they crucially exploit nested
implications and existential assertions.

Our example involves a patron P accomplishing transactions with abank teller T. We begin by
adopting amodal perspective on theinformation of these agents. We usethe operator [P| to represent
the knowledge of the patron P, and we use the operator [T] to represent the knowledge of the teller
T. In addition, we appeal to arestricted body of shared information that the two agents maintain as
part of their collaboration, a conversational record [Clark and Marshall, 1981, Thomason, 1990],
represented by the operator [CR]. The eight formal rules governing these modalities, givenin (3),
represent a reasonable idealization of conversation [Stone, 1998b].

3 Plp>p [TIpDp [CRIpD P (VER)
[Plp D [PI[PIp [T]p 2 [T][T]p [CRIp D [CR][CR]p (PI)
[CRIpD [Plp [CR]pD [T]p (INC)

We motivate DIALUP specifications for the patron P and theteller T by considring the DIALUP
gueries that these agents might use to infer opportunities for efficient communication. To begin,
supposethat P hasasked T whether P has sufficient fundsto withdraw $50 without penalty. Suppose
further that T decides to convey two factsin response: that P does have the required funds, which
we abbreviateto g; and that in fact P’s account contains $600, which we abbreviatetor.

T might realize these facts efficiently, by reasoning asfollows. T knowsthat P will be drawing
conclusionsfrom T'scommunicationas T producesit. Once T communicatesr, q will beclear to P
by inference. Accordingly, it sufficesfor T to streamline the response from both r and qto r alone.
As described by [Green and Carberry, 1994], such inferences—reducing a compound communica-
tive act to asimpler one when the other effectsare clear from context—are characteristic of indirect
answers in discourse.

We can formalizethisinference asamodal query by drawing on thelink between sources of in-
formation and modal operators. To start, T envisages the consequences of communicating r. That
is, T restricts attention to developments of the situation compatible with what T knows, as repre-
sented by the content of [T], and T assumes further that r is put on the record, so that [CR]r istrue.
Then, in that hypothetical context, T tests whether g can also be taken as part of the conversational
record. These operations correspond to the query in (4), a statement formulated in terms of modal
operators and an implication nested within a query.

(4) [T]([cR]r > [CR]aq)

So proving (4) would justify the use of r as an indirect answer, abbreviating r and g.

Now, in an evenly matched dialogue, it will be just as important to ask questions as to answer
them. For a more interesting example, then, consider a similar information-gathering exchange
fromthe patron P’spoint of view. Informulating aquestion, P may have had to provide background
informationto T in order for T to be able to provide an answer, asin (5).

5) | have account 42. What is my balance?

6 INDEFINITE INFORMATION

It is natural to assume that P’s background assertion, like T'sreply, is calculated for its effect on
the conversational record. Indeed, by making use of existential specifications and queries, we can
formalize this calculation in terms of the same schema as (4).

Hereishow. If P aimsfor T to provide an answer, then P must hope to establish that T knows
the answer. Following [Hintikka, 1971], we can formalize this condition as 3b[s|bal (P, b): there
is a specific real-world value b which T knows to be P's balance. The contribution P makes—
acct(P, 42)—isintended to put this condition on the conversational record. By an analogous argu-
ment to that which suggested (4), this leadsto amodal query with nested implications by which P
might justify or select the proper background to the question:

(6) [P]([cR]acct(P,42) O [cr]3b[T]bal (P, b))

For this query to represent a fruitful model of P's conversational reasoning, however, it must
access an indefinite specification outlining shared information about T. The specification must en-
tail that T would know the answer given the background, but it cannot entail that P would know
the answer. Otherwise, P will have no reason ever to ask a question. The existential statement in
(7) provides such a specification.

(7 [CR]Vi(3x[T]acct(i,x) D Jb[T]bal(i, b))

Ineffect, (7) registerstheteller’sability to ook up the balance of any account as part of the common
ground; formally, it saysitiscommon knowledgethat if T knowswhat i’saccount is, then T knows
what i’s balanceis.

Informally, we can see why (7) entails (6), given the modal theory of (3). The query considers
P’s hypothetical view of the shared context, and asks us to obtain a specific conclusion about what
T knows according to this view. Now both the shared background—(7)—and hypothetical addi-
tions to it—[CR|acct(P, 42)—retain their shared status in the queried view. Given [CR]acct(P,42),
it followsthat 3x|T]acct(i,x) fori = P (and x = 42); T knowswhat is shared. Thus (7) appliesand
the needed conclusion follows.

In this paper, | will show how thisreasoning is captured straightforwardly by alogic program-
ming search strategy for reasoning with indefinitemodal specifications. Of course, the strategy aso
respectstherestricted logical scope of existential quantifiers—thus, with (7) we caninfer that P has
abalance, but cannot infer that P knows what that balanceis.

While (4), (6) and (7) are surely toy examples, | will suggest that indefinite specifications and
hypothetical queries provide an attractive perspective for reasoning about contributionsto dialogue
generaly. A generation system can produce a concise and precise discourse only by drawing in-
ferences about how the hearer will interpret that discourse as dependent on, and as an update to,
the conversational record. Such inferenceis naturally founded on adeclarative framework, likethe
modal specification presented above, for describing the knowledge of the participants in the con-
versation.

In order to give a more accurate picture of the dynamics of dialogue and the dependencies of
utterances on shared context, the logical content of utterances can be represented more precisely,
in terms of presuppositions and assertions [van der Sandt, 1992, Stone and Webber, 1998]. More-
over, a treatment of dialogues with multiple utterances can be obtained by appealing to Al for-
malisms of knowledge and ability [Davis, 1994, Stone, 1998a], and introducing a nested implica-
tion for each step of action. Asoutlined in Section 6, these two features allow amuch more detailed
version of theteller’'sand patron’s exchange above to be specified and validated in DIALUP.

IN MODAL LOGIC PROGRAMMING 7

The strength of this inferential model is that the presuppositions and other facts that this dis-
course relies on can be explicitly represented without being explicitly communicated. In arobust
system, such facts cannot be ignored atogether; for instance, they are needed to answer questions
of clarification [Moore and Paris, 1993]. However, they cannot be uttered either—imagine the im-
plicatures ensuing from: “I have an account. 1t's number 42. My account has a balance. What is
it?’. Such distracting restatements of the obvious have plagued earlier conversational agents, such
as [Power, 1977, Houghton, 1986, Cassell et al., 1994].

2.2 The Operational Force of Indefinite Modal Reasoning: Modular Search
A record of the possible interactions that may arise in problem-solving can be an important part of
a specification of how to reason in adomain. Hereis asimple example.

In planning atrip, itisimportant to determinebefore you begin that you will be ableto complete
the trip successfully. To be stranded midway would be area disaster. Often, however, many de-
tails about the trip cannot be resolved in advance. For such situations, showing that the trip will be
successful means showing that you will be able to negotiate these details when the time comes, no
matter how they turn out. What makes it possibleto quickly derive confidencein aplanned journey
is the knowledge that such details cannot conspire together to require global revisions of the plan.

Thus, suppose oneleg of ajourney involvestaking an early train. At the station, you haveto get
aticket for thetrainand (if you’ relikeme) get acup of coffee. Ticketscan be purchased fromateller
at awindow or from automatic machines; the windows can have prohibitivelines and the automatic
machines can be out of order, but the station management alwaysmakes sure that one quick and easy
method is available. Similarly, there are a couple of places to get coffee at the station; you can be
sure at least onewill be open at any timetrains are leaving, but since their hours vary, you may not
know which. Using the abbreviations in Figure 3, we might formalize this situation by the logic
program of Figure 1. (The representation of these abilities by atomic propositions is a harmless
abbreviation that allows the modul arity of the example—our main focus—to shine through. Aswe
will seein Section 6, we could also represent abilitiesin DIALUP using complex formulasin alogic
of knowledge and action, formulas more like those seen already in the example of Section 2.1.)

In general, without knowing more about a specification, we can expect a number of casesto be
considered in proof search that is exponential in the number of ambiguitiesin it. Here, for exam-
ple, searching automatically for proofsof take-journeyislikely to require showing that take-journey
holds independently in the four cases that the program specifies (cases in which we assume either
use-machine or use-window and assume either visit-donuts or visit-starbucks). Wewill focusonthe
use of asearch strategy based on anaiverestart rule; this agorithm performs case analysis by com-
pleting proof search with one digunct then attempting afresh proof of the main query (“restarting”)
using the other digunct as an assumption. Consider proving take-journey thisway. The first sub-
proof of take-journey takes care of the use-machine and visit-donutscase by using thefirst disuncts.
This subproof requires two restarts of the goal take-journey, once assuming use-window and once
assuming visit-starbucks—Ieading to aproof of take-journey from use-window and visit-donutsand
aproof of take-journey from use-machine and visit-starbucks. The last case, proving take-journey
from use-window and visit-starbucks, arises as a restart goal in both of these subproofs. Thisis
good restart behavior; in multiple case analyses, subproofs can reintroduce cases so search never
terminates [Loveland, 1991]. Expanding the search space can delay the point where this happens,
but cannot avoid difficultiesif the full space must be explored—whether because all solutions are

8 INDEFINITE INFORMATION

get-ticket A get-coffee D take-journey.

use-machine O get-ticket. visit-donuts D get-coffee.
use-window O get-ticket. visit-starbucks O get-coffee.
use-machine\ use-window. visit-donutsV visit-starbucks.

Figure 1. Unstructured logic program

[TICKET|get-ticket A [COFFEE]get-coffee D take-journey.
[TICKET](use-machine D get-ticket). [COFFEE](visit-donuts D get-coffee).
[TICKET](use-window D get-ticket). [COFFEE](visit-starbucks D get-coffee).
[TICKET](use-machineV use-window). [COFFEE](visit-donutsV visit-starbucks).

Figure 2: Modular logic program

Symbol Content

take-journey | can have asuccessful train-trip
get-ticket | can obtain aticket

get-coffee | can obtain coffee

use-machine | can use an automatic ticketing machine
use-window | can use ateller’swindow

visit-donuts | can get coffee from Dunkin Donuts

visit-starbucks | can get coffee from Starbucks

Figure 3: Interpretations of symbolsfor the example

needed or because a dead end must fail before an alternative istried.

In fact, the ambiguities in this problem are independent. Where one gets one's ticket doesn’'t
affect where one gets one's coffee, and vice versa. The specification of Figure1 omitsthisfact, and
as aresult an automatic system must search for different ways of proving get-coffee, depending on
whether it has assumed use-machine or assumed use-window. If we provide a better specification,
including the knowledge that these alternatives are independent, the search strategy will be able to
break up the proof in advance. It will restrict the alternatives from use-machine\/ use-window to
proving get-ticket, and it will restrict the alternatives from visit-donutsV visit-star bucks to proving
get-coffee. Ingeneral, when alternativesare specified not to interact, worst-case proof sizeincreases
only linearly as new independent ambiguities are added. This makes for fast failure aswell as fast
SucCess.

We will use modal specifications to indicate that alternatives do not interact. Such a specifica-
tion is given for our train problem in Figure 2. The specification invokes two necessity operators,
[TICKET] and [COFFEE], to distinguish the goals and program clauses describing getting a ticket
from those describing getting coffee. A simple metaphor for understanding why the ambiguitiesin
the resulting specification must be interpreted independently derives from the well-known use of

IN MODAL LOGIC PROGRAMMING 9

modal operators to describe the knowledge of agents. By this metaphor, Figure 2 describes how
problem-solving tasks in catching a train can be assigned to separate problem-solving agents with
specialized information—an agent T that knows just about tickets and an agent C that knows just
about coffee.

This metaphor leads directly to intuitions about search. The problem of getting aticket is as-
signedtoagent T by thegoal [TICKET|get-ticket. T hascertain alternativesto consider in getting the
ticket, use-machine or use-window. T considers these alternatives and no othersin solving its task.
Likewise, the problem of getting coffee is assigned to agent C by the goal [COFFEE|get-coffee. In
solving this problem, C considersjust itsalternatives: visit-donutsor visit-starbucks. Sincethetwo
agents are reasoning separately about different goals and ambiguities, the record of their problem
solving isjust a combined record of their independent steps—not, as before, an interacting record
with combined resolutions of ambiguities.

In this paper, we will see how this intuitive account of modularity in search can be realized
formally in alogic programming interpreter. In brief, the interpreter must keep track of the uses
of assumptions (such as use-machine), in order to determine which modular context itsinferences
currently contribute toward (for example, T'sinformation). The interpreter must keep track of al-
ternative modular goals (for example, both take-journey and [TICKET|get-ticket), in order to recon-
sider only goals that match this context. Finaly, the interpreter must orchestrate the subsequent
uses of assumptions once goals are restarted (such as the assumption use-window for a restart of
[TICKET|get-ticket), in order to ensure that the interpreter’s subsequent inferences remain within
the context it is committed to. Because any modal proof can be transformed to respect the inter-
preter’sdiscipline, theinterpreter can reason correctly about a specification while considering only
arestricted set of proofswith thisexplicit modular structure.

3 TheDIALUP interpreter

In Section 2, we have seen that modal operators can endow specifications with a notion of modu-
larity that suggests intuitions about content and proof-search. In this section, we shall describe the
data structures that DIALUP uses to realize this modularity, and then present a precise description
of DIALUP's modular operational behavior. We begin by situating DIALUP within the program of
abstract logic programming languages [Miller et al., 1991].

3.1 Abstract Logic Programming
Logic programming languages embody simple, specific search procedures for building proofs. At
each step in logic programming search, the goal isto find away to use the available assumptions
to establish a specific query. If the query is complex, itslogical structure directly determines the
available alternatives for search. Thus, logical symbolsin queries can be seen as instructions for
decomposing and transforming the search problem that the interpreter faces. Similarly, the atomic
formulasthat an assumption can be used to derive—the head (or heads) of that assumption—serve
asindexes that regulate whether an assumption can be applied. Andthelogical structure of the as-
sumption providesaninstructionfor creating aset of new search problemswhenever theassumption
is used.

This general perspective on logic programming has been formalized and analyzed under the
framework of abstract logic programming languages[Miller et al., 1991]; the framework has been
applied to intuitionistic, linear and classical logics [Miller et al., 1991, Hodas and Miller, 1994,

10 INDEFINITE INFORMATION

Miller, 1994, Nadathur and Loveland, 1995]. Mathematically, this formalization begins by estab-
lishing a correspondence between search problems posed to the logic programming interpreter and
sequentsin aproof calculus. The action of the interpreter in transforming search problems can then
be seen as the construction of a proof in a restricted sequent calculus; the rules of this calculus are
specialized so asto model the constrained search entertained by the logic programming interpreter.
The key result required to show the correctness of alogic programming languagein thisframework
is then to show that the restricted sequent cal culus permits a derivation of agoal exactly when the
goal is provable in ageneral sequent calculus for the logic.

In some cases, the logic programming proof system can be quite familiar. In
[Miller et ., 1991], for instance, any goa of the interpreter is represented as an ordinary se-
quent ' — G. The interpreter is distinguished as building uniform proofs, where ordinary
sequent rules are used in a distinguished order. More generally, however, a logic programming
proof system must be augmented with information to correctly capture the state of the interpreter.
For example, the structure of sequent rules may have to distinguish the current goal, as well as
the program clause currently being matched against that goal. This gives a focusing proof system,
whose deductions are called focusing proofs [Andreoli, 1992]. Then the correctness of the logic
programming language liesin showing that therestricted proof system is sound and compl ete—that
every proof in the ordinary system can be transformed into a proof with the restricted form, and
viceversa

To describe DIALUP search in particular, sequents must be augmented with two kinds of in-
formation that enforce the modularity of DIALUP programs:. specifications of possible worlds con-
straining the use of formulas; and records of restarts, cancellations and suppressions constraining
case analysis for digunctive assertions.

3.2 Possible Worlds

A modal query [M]G must be established solely from program statements that describe the content
of [M]. Some proof systems [Onishi and Matsumoto, 1957, Kanger, 1957, Fitting, 1983] and mod-
ular logic programming languages[Miller et a., 1991, Giordano and Martelli, 1994] restrict appli-
cable formulas directly by syntactic criteria. However, DIALUP achieves the restriction by draw-
ing on modal semantics [Kripke, 1963] and semantics-based path deduction for modal logic devel-
oped by Fitting [Fitting, 1972, Fitting, 1983] and investigated computationally in [Wallen, 1990,
Ohlbach, 1991, Nonnengart, 1993, Auffray and Enjalbert, 1992].

In this scheme, the language of logical formulasis extended in proofsto permit explicit refer-
enceto possibleworlds; in proofs, each program statement and each query isassociated with aterm
recordingthe possibleworldwhereit holds. Instead of naming aworld atomically, thesetermsname
the sequence of transitions or path that is needed to reach aworld from a designated starting point
(thereal world). Before using an atomic assertion to establish an atomic query, DIALUP must equate
the possible-world paths associated with the two statements. The solution to such an equation must
respect the types of logic variables and parameters for transitions, and must take into account an
equational theory encoding the applicable (VER), (PI) and (INC) axiom schemes. Because of this,
thisequation implementsthe constraint that the program statement specifiesthe kind of information
that the query describes. In writing path terms, | will use a and 3 etc. to name parametric transi-
tions, x and y will represent logic variables over transitions; and [, v are metavariables over whole
paths. | represent the association between a proposition P and aworld p by superscript: PH.

IN MODAL LOGIC PROGRAMMING 11

Thelogical trestment of connectivesin DIALUP can be seen as aternating translation of modal
formulasinto classical formulasbased on modal semanticswith classical reasoning about thetrans-
lations. For example, to reduce aquery [M]GH, DIALUP introduces a parametric transition of [M]-
accessibility, a, and considersanew query GH. Dually, to apply astatement [M]PH, DIALUP intro-
duces afresh logic variable x over transitions of [M]-accessibility and considers applying the state-
ment PH*, DIALUP's other, classical connectives areinterpreted by applying classical reasoning at
th& current world. For example, a query (G; A G,)H is broken down into the two queries Gi‘ and
Gs.

3.3 Restarts, Cancellations and Suppressions

DIALUP's approach to digunctive assertions refines the restart rule of Near-Horn Prolog
[Loveland, 1991]. In this regime, a logic programming derivation consists of a series of
blocks. Each block analyzes an overall query in a single way for a single case described by the
program. Thus, to apply adigunctive assertion AV B in aderivation, we first complete the current
block, using onedigunct (say A) directly to establish the current goal G. Then we introduce a new
block inwhich the other assumption is available (say B) and an appropriate new query H is posed.
Recall that we cast any logic programming inference as the application of an appropriate sequent
rule, so the logic programming derivation is a proof in a sequent calculus. We regard the restart
treatment of digunction in particular as a sequent rule, as schematized in (8):

., A—GB—H
(8) ,AVB—G

(V=)

The root of this sequent represents a state of the interpreter which applies AV B. The left subtree
continues the block by reasoning from A; the right subtree starts a new block by reasoning from
B to establish the new goa H. Thus, this formalism realizes a block by a maximal tree of con-
tiguous inferences in which the right subtree of any (V —) inferencein the block is omitted. See
[Nadathur and Loveland, 1995, Nadathur, 1998] for more on the relationship between the restart
rule and the structure of sequent calculus derivations.

The restart discipline in (8) is encoded by the new goa H which we prove using the new as-
sumption B; the precise sequent rule that describes the interpreter must account for the choice of
H. Inclassical logic, it sufficesin the new block to consider the original, overall query given to the
interpreter. To obtain modularity for modal logic, we need a more restrictive policy.

A key fact behind thispolicy isthat therestart rulein (8) ultimately treatsthe assumptions A and
B on a par, despite the apparent asymmetry in the goals G and H associated with them. Now, the
symmetry must follow from thelogical correctnessof therule, but we can motivateit more precisely
by considering the schematic structure of a block in which (8) is used. The logic programming
derivation which that block initiates can be represented as follows.

12 INDEFINITE INFORMATION

[Dg]
Da Dy
A— G B—H
,LAVB— G

Dy
2G
Dc
2H
(9) Do

At the root are performed inferences Dg, possibly empty, which introduce the restart goal H. At
this point the state of the interpreter is represented by >, and H isin fact the goal the interpreter is
considering (or isagoal the interpreter could consider at this restart step, if Dg isempty). Further
inferences D (again possibly empty) follow, until theinterpreter reachesthe goal G for which case
analysisisintroduced, at state . Now any inferences D, arerequired to reach thedisjunction, and
the case analysis for it is introduced. Within this block, we perform inferences Dy to use the first
digunct. In the other block, we perform inferences Dy; at various stages here we will entertain
subproofs which we schematize Dg, where inferences will be applied to B and further reasoning
undertaken.

By rearraging these inferences, we can construct an alternativederivationin which case analysis
for Bis considered first. This derivation has the form schematized in (10).

Da
L A—G
Dg Dg
B—H’ JA—-H
AvVvB—H’
Dy
Dy
2H
(10) Do

That is, we derive the goal H again using inferences Dy, but now we immediately apply any rea-
soning Dy that we had previously applied towards H in the B block. Within this reasoning, there
are anumber of places where access to B (using inferences Dg) is caled for. At each such place,
we provide this by first reasoning with D, to access the disjunction, and then handling the B case
using the original reasoning. That now leaves an A case, which we treat using arestart to the goa
H. The new block contains the reasoning D¢ previoudy applied after H in the first block of (9)
followed by the reasoning Da previously applied to discharge the A case there.

The derivationsin (9) and (10) show that it is possible to treat logic programming case analysis
in either order, even using an asymmetrical restart rule. Of course, the alternative proofsmay differ
in size—(9) can be much smaller if B isused many timesin Dy. Moreimportantly, the alternative
proofs differ in how they assign reasoning to blocks. Both proofs locate inferences Dy and D,
within thefirst, lower block. But whereas (9) locates Da and Dg in thefirst block and locates Dy
(and any Dg’s) inthe second, (10) locates Dy (and any Dg’s) inthefirst and locates Da and Dg in
the second.

IN MODAL LOGIC PROGRAMMING 13

Now, let us use this symmetry to describe the order in which cases should be treated, and the
restart goals we should consider in case analysis. We consider the inference figure of (8), and sup-
pose that the assumption B ismade at a particular ground path v. So if we can guaranteethat BY will
be used in the new block, we can restrict therestart to goalsH" wherev isaprefix of p—to modular
restarts. Adapting terminology from [Loveland, 1991] to thisrestricted context, | will refer to any
use of adigunctive premisein thefirst block of case analysis whereit isassumed as acancellation.
If we have cancellations, we can enforce modul ar restarts.

Having cancellations is already very attractive from the point of view of implementation. It
gives asimple invariant that drastically prunes the search space for the logic programming inter-
preter. We can illustrate this by observing that our hypothetical digunct B must be used in some
block after itisassumed. Otherwisethese later blocksform the basis of an independent proof of the
guery, which the interpreter must already consider elsewhere in its search space; the case anaysis
at (Av B)Y issuperfluous. Such redundancies in search must be pruned in practice.

Thus, by considering the right combination of digunctsin the block where BY isintroduced, we
can and should guarantee the cancellation for BY in that block. We cannot say in advance, how-
ever, which diguncts must beintroduced in thisblock. For example, suppose the program contains
another digunctive assertion CV D that we must use to establish the query. If B combines only
with C in inference to prove the query, we must be prepared to consider the C case first to obtain
a cancellation—this would mean that the derivation from the assumption B with case analysis for
CV D hasthe form schematized by (9). However, if B combinesonly with D, we must be prepared
to consider the D casefirst to obtain a cancell ation—the derivation from the assumption B with case
analysisfor CV D should have theform schematized by (10). The danger thisraisesisthat B might
be required in cases both for C and D. The same proof could then be reported twice: once contain-
ing a subproof like (9), with C considered first, then D; and again containing a subproof like (10),
with D considered first, then C.

Let ussay that adigunct D isexceptional in ablock if D occursas part of adigunctive program
statement in which other diguncts precede D (textually), but D isthe digunct that isimmediately
analyzedin thisblock in ause of that program statement. Call the digunctsthat precede D delayed,
and by extension, call the block in which D istreated an exceptional block and the blocksin which
the delayed digunctsarefirst treated delayed blocks. For example, then, B counts as an exceptional
disunct for any case analysis of AV B in the lower block in (10), and that block is an exceptional
block. Meanwhile, A isadelayed digunct for any case analysisof AV B in the lower block in (10)
and the blocksin (10) where we restart by A are delayed.

Theambiguity just illustrated showsthat the only occasions when we should consider an excep-
tional digunct (and make the current block an exceptional one) are those which enable a cancella-
tion for a premise introduced in the current block that would not get a cancellation here otherwise.
We can refer to these as the key premise and the key cancellations of the exceptional block.

These occasions can beidentified by conditionson theinferencesthat constitute exceptional and
delayed blocks. First, the delayed blocks cannot have givenriseto cancellationsfor the key premise
of the exceptional block. Interms of the schemas of (9) and (10), there can be no cancellations for
the key premise in the inferences Dy and D which make up the delayed block and which would
have appeared in the first block if the digunct had not been delayed. We can ensure that no such
inferences are entertained by suppressing that key premise—temporarily preventing this premise
from being used—during any block where a delayed digunct isfirst treated.

14 INDEFINITE INFORMATION

Second, the exceptional block cannot introduce a key cancellation inference in the reasoning
it implicitly shares with the delayed block. In terms of the schemas of (9) and (10), there can be
no cancellations for the key premise in the inferences Dg and D\, which appear in the lower block
regardless of which case is analyzed first. We take separate strategies to protect Dy and D,,. In
protecting D.,, we need to avoid a key cancellation during the proof of the disunction itself. To
avoid this, we will again suppress the key premise—thistime for the proof of goalsintroduced by
backward chaining to establish exceptional disjuncts. Therecan beno suppressionwith Dg, because
we have inferences that have perhaps already been performed when case analysis is considered.
To protect Do, we will restrict the set of restart goals we consider. A lower restart goal H will be
associated with a smaller body of inferences Dy; thus, selection of a sufficiently low restart goal
will eliminate any key cancellations from the corresponding Dg. We will call such a goal afree
restart goal: we restart delayed blocks only to free restart goals. The stack-based data structures of
logic programming proof search makes free restart goals easy to identify.

Thisreasoning accountsfor thediscipline of modular restarts, cancellation, and suppression that
DIALUP follows. DIALUP recordstheinitial query and any subsequent query where a new world
parameter isfirst introduced as apossiblerestart goal. When case analysisisintroduced for onedis-
junct, DIALUP recordsthe need to restart to one of these goals with the remaining diguncts (more-
over, the digunct analyzed immediately cannot be exceptional unless a cancellation is needed). At
restart-time, DIALUP picksarestart goal GH such that the new assumption PY hasv aprefix of y, for
modularity; for delayed diuncts, G* isalso chosen to befree. P is akey assumption that must be
cancelled in the new block; previously suppressed assumptions are now exposed, and, if theblock is
delayed, the previous key assumption is suppressed. Finally, once the block is completed, DIALUP
checks for a cancellation of the key premise PY. If there is none, the proof under construction is
discarded as redundant.

3.4 Operational Rules
We can now describe DIALUP's operationa behavior more precisely. We writeaDIALUP task as a

judgment (K, K;,Ko)l 7 GH, indicating that DIALUP hasto derive the goal formulaG at world-
path p using the program I'. Within the program I' we optionally distinguish a formula P" that
describes the current state of the interpreter in applying a particular program clause to the current
goal.

The records kK and Kk, provides information about the overal structure of the proof being
constructed; DIALUP'S computation in the proof search task determines additional structure of
the proof, as returned in Ko. In regarding the context for the proof search problem in terms
of input and output records associated with it, we follow the technique adopted for example in
[Lincoln and Shankar, 1994]. Inthese context records, we abstract anumber of representationsthat
theinterpreter accumulates (according to astraightforward discipline) about values of variablesand
analysis of cases.

K, records features of the proof that are already set; we represent K as a tuple of the form
(G;K;s’;F). G givesthe potential restart goalsthat have been introduced; K givesthe key premise
for cancellation in thisblock, if any; s° indicates whether any formulas are currently suppressed; F
gives apointer to thefinal list of restart goals that will count as freein the current block.

K, allows partial information to accumulate about the overall structure of the proof. We repre-
sent K, asatupleof theform (C; E; c?). C recordswhat elements and | ogic variableshave been have

IN MODAL LOGIC PROGRAMMING 15

been introduced in the proof for paths and first-order terms and what equations on these variables
must be solved to complete the proof; E records the restart goals that have not been ruled out as
free given the contributions made so far to the current block; ¢? records whether any cancellation
has taken place thus far in the block.

Finally, we represent Ko with atuple of theform (C; E;c? (d?)). C, E and ¢’ record valuesfor
theprovisional constraints, the provisional freerestart goalsand the provisional cancellations, given
the additional information accumulated during the current proof task; and d” indicates whether the
use of the active current program clause (if any) involves the creation of delayed diguncts (thisis
only meaningful when breaking down program clauses).

Suppose we have a specific program I' consisting of modal formulas and a specific goa con-
sisting of amodal formula G; We regard each of these expressions as a formula prefixed with the
empty prefix; we formulate an initial state of proof of the form

K=(G;;;F),k = (;G;false)

Thisindicates that G is the only available restart goal; that there is no formulato cancel, no sup-
pressions in force, no constraints that yet need to be solved, no cancellation that has yet occurred,
and only G asapossibly freerestart goal. We use the rules defined below in (11)—15) to establish
the judgment

(K,K1,Ko)l G

for some K. In case Ko takes the form (C; F ; ¢?), supplying constraints C on values of variables
which can be satisfied by an appropriate substitution of values to variables and supplying goals F
that fill the placeholder supplied for thefreerestart goals of the block, theresult providesabDIALUP
answer for the query G against the program I'. Sections 4 and 5 argue that there is such an answer
justin case G holdsin al modal models at all worldswherel™ istrue, according to the usual Kripke
semantics.

We begin by specifying the instructions for search that break down complex goals into atomic

ones. These cases apply in handling the task (K, K,Ko)l" —?» GH whenever G is not an atomic
formula; the rule selected is afunction of the structure of G as specified in (11).

(11) a If Gisof theformBA C, search proceeds by first solving (K, K, Ko1)l" —?» B" and then

continues by solving (K, Kj, ko)l —?» CH. Sincethefirst task yields arecord
Ko1 = (C1;Eq; ¢}, (d?)), we construct k| as (Cq; Ey; c3).

b If Gisof theform BV C, search proceeds either by solving (K,K;,Ko)l —» BH, or by
solving (K, K;,Ko)l - CH.

c If Gisof theform 3xA, search proceeds by solving
(K, (C,NLVF(X,n); E; c?), ko)l o A[X/x*. C, E and ¢’ name the elements of K, ; the
additional constraint NLVF (X, 1) characterizes substitutions that send the new logic
variable X to somefirst-order termt defined at world .

d If Gisof theform [M]VxA, werevise the context to (K, K], Kp) to record a new
parameter o representing atransition of [M]-accessibility and anew parameter ¢
representing afirst-order individual defined (only) at world pa. We solve
(K, K|, Ko)I —> Alc/X*®. Explicitly, we require constraints NPT, [M], 1) and

16 INDEFINITE INFORMATION

NPF(C, pHOl) deﬂ:rlblng the new terms. If k is (G; K;s% F), k' is (G, Alc/x**; K; s, F).
|fK| is(C;E; c}thenlfc istrue, then k| is (C, NPT(,[M], 1), NPF(C pa); E; c°> and if
c?isfasethen] is (C,NPT(a, [M],), NPF(c, pat); E, Alc/xH9; c?).

e |If Gisof theform [m](B D C), werevise the context to (K, K{[,Ko) to record a new
parameter o representing atransition of [M]-accessibility; search proceeds by solving
(K',K|,Ko)l,BH® 2 CH fk is(G;K;s”F), k' is (G,CH;K;s” F). If K is
(C;E;c? thenif c?istrue, thenk] is (C,NPT(a, [M],1); E;c?) and if ¢’ isfasethen k]
is (C,NPT(a, [M],p); E,CH; c?).

f Inother caseswhere G is of the form [M]C, search proceeds by solving
(K", K[, Ko)l —? CH wherea isanew parameter representing a transition of
[M]-accessibility and k" and K| are constructed according to arule which is textually
identical to that of (11e).

The search instructions in (11) describe the processing DIALUP will do in breaking down any
complex goal into acombination of atomic goals. Oncethisprocessiscompleted, the programitsel f
is consulted; the interpreter performsan appropriate version of backward chaining. The interpreter
chooses a clause that might match the goal nondeterministically from the program and dissectsit—
by rules dual to the ones above that dissect goals—to obtain an atomic fact and a sequence of new
subgoals. Backward chaining is described by the decision rule of (12):

(12 Suppose GH isan atomic formulaand P isaprogram clause in I" that is not suppressed
(by S ink = (G;K;s%F)). Then search for (K, K;,Ko)l —» GH may proceed by
solving (K, Ky, Kg)l; P —?» GM. Unless PY isthe key premise K, ko and Kp are
identical. Otherwise, say Kp is (C;E;c”d?). ko issetto (C;ENG; true;d?); this
records the inference as a cancellation that contributes towards the currently active
goals.

Obvioudly, for implementation, the choice of clause P+ in (12) can berestricted by typical heuristics
such as a match between the predicate of G and a head predicatein P.

Backward chaining introduces a new kind of interpreter state in which the program clause P
that the interpreter must apply to the current goal is distinguished. In such a state, the structure of
P clause givesrise to instructions for search according to the specifications of (13).

(13) a If Pisof theform BAC, search proceeds either by solving (K, K;,Ko)I™; BY > GH, or
by solving (K, K;,ko)l"; CY s GH,

b If Pisof theform VxA, search proceeds by constructing k| to introduce a fresh logic
variable X to leave open some first-order termt defined at world v. Then we proceed
with (K, k!, Ko)T; AX /XY —» GH. Explicitly, if k is (C;E;c?), K] is
(C,NLVF(X,); E;).

¢ If Pisof theform B S C, search proceeds by first solving (K, K, Ki)I;CY —» GH; we
then construct appropriate K’ and k| and solve (k’, K}, kG)I 7, BY. Explicitly, suppose
Kpis(C;E;c%d?). Thenk| is(C;E;c?. Meanwhile, if d’ istrue, k' is exactly likek
except that the key formulaK is now suppressed in s° in k; otherwise k’ and k are
identical. Finally if K} is (C';E’; ¢ d"?), thenko is (C’;E’;¢%; d?) (propagating the

IN MODAL LOGIC PROGRAMMING 17

values accumulated throughout, except for passing down information about delayed
diguncts only from the first subproof).

If Pisof theform [M]B, search proceeds by constructing K to introduce afresh logic
variable x to leave open anew logic variable representing a transition of
[M]-accessibility from v. Then we proceed with (K, K|, Ko)I™; BY 7 GH, Explicitly, if
K is(C;E;c?), k| is (C,NLVT(x,[M],1); E; c?); the additional constraint NLVT (X, [M],V)
characterizes substitutions that send the new logic variable x to an appropriate path.

If Pisof theform BV C, search proceedsin either of two ways. The ordinary case isto
solve (K, K, Kg)l; BY —?+ G and to solve a further search problem

(K,K], KT, CY —?» by restarting ordinarily with key premise C”. We construct K| from
Ky = (C;E;c%d? as(C;G; false) (using G fromk). Assuming kg is (C’;E’;¢%d"),
we construct Ko as (C’; E; c” d?). The restart problemis delayed until the block in
progress is completed and the valuefor F ink is determined.

The exceptional case, when k containsakey premise R, isto solve

(K,Kp,Kg)l; CY —?» G* and to solve a further search problem (K, K|,k4), BY o by
delayed restart with key premise BY; this search problem isagain delayed until the
block in progressis completed and the value for F in k is determined; we construct k|
from kg, as above. Finaly, Ko is defined from ki and k¢ as above except that here we
use true in place of d”.

If P isof theform 3xA, we update k; to K| to leave open afresh parameter c asawitness
for the existential quantifier by Skolemizing; search proceeds by solving

(K,K{,Ko)I; Alc/x]Y _?» GM. Explicitly, we assume that the existential quantifier in the
program is associated with afunction f, and the sequence of logic variables that have
been introduced during matching is given by thelist V. We introduce a constraint
SFP(c, v, f,V) indicating that ¢ must correspond to aterm in which f is applied to
argumentsV to name an individual existing at world v; if k; is (C; E;c?) thenk] is
(C,srp(c,v,f,V);E;c?).

The definitions outlined so far leave only two gaps in the specification of the interpreter. First,
to match an atomic clause against an atomic goal, we must unify:

(14)

Solve (K, K;,Ko)l; AY —?, GH where both A and G are atoms by constructing
appropriateko. If k| is (C;E;c?) thenko is(C,A= G,v = ; E;c’; false); if the new
constraints will not be satisfiable the proof in progress may be rejected.

Second, to handle adigunctive case, we must do an appropriaterestart with new key premise PV:

(15)

Solve (K, K}, Ko)l 7 slecti ng arestart goal GH from K, constructing appropriate k’
and K/, and solving (K’, K{,Ko)l" 7 GM. Say K is(G;K;s”;F)and K’ is (C;E;c?).
Then G* must have GH € G, and, if thisisadelayed restart, GH € F . If thisisan
ordinary restart, we define 7 so that no premises are suppressed; otherwise, we define
§? so that K is suppressed. We enforce the constraint that v is a prefix of p by
congtructing K| = (C,v < W; E;c?). Finaly, we requirethat ko takes the form
(C;F;true; d?).

18 INDEFINITE INFORMATION

4 Why DIALUP iscorrect

In this section, we describe the design of DIALUP from alogical point of view. We begin by pre-
senting a cut-free path-based sequent calculus for multi-modal deduction which uses Herbrand
terms to reason correctly about parameterized instances of formulas. Since this calculus repre-
sents our basic lifted sequent calculus for modal logic, we refer to it as SCL here. SCL is de-
rived explicitly in [Stone, 1999a], where it is proved that SCL provides a sound and complete
characterization of Kripke models for first-order multi-modal logic. But SCL should offer few
surprises to those familiar with prefixed tableaux [Fitting, 1983], the logical foundation of Her-
brand terms [Lincoln and Shankar, 1994], and the possibilities for enforcing a proof-theoretic sep-
aration in modal deduction between constraints on accessibility and general first-order reasoning
[Frisch and Scherl, 1991, Basin et al., 1998].

SCL has the advantage that inferences can be freely interchanged, allowing arbitrary proofsto
be transformed easily into goal-directed proofs—we show in Theorem 1, presented in Section 4.2,
how to obtain goal-directed proofsin this calculus. The very same flexibility of inference, how-
ever, means that this calculus neither respects nor represents the potential of modal inference to
give proofs an explicitly modular structure.

We thereforerely on further proof-theoretic analyses of path-based sequent calculi to refine the
uniform proof system and guarantee modular behavior. These analyses establish that path represen-
tations enforce modularity and locality in the uses of formulasin proofs, even with otherwise clas-
sical reasoning. The operational rules of DIALUP are obtained by transforming the uniform proof
system to take advantage of these results; as aconsequence, theinterpreter can dynamically exploit
locality inthe use of modular assumptions. Thetransformation startsin Section 4.3 by dividing uni-
form proofsinto separate segments which apply one axiom from the program. The transformation
continuesin 4.4 by dividing uniform proofsinto separate blocksto analyze separate cases. Asapre-
[iminary to modularity, we organize these blocks so that each one contains a cancellation whereby
the most-recently introduced case contributes to the goal being proved [Loveland, 1991]. Finally,
in Section 4.5, we combine the presence of cancellations and the inherent ability of the modal 1an-
guage to modularly restrict the contributions premises can make (together with the uniformity of
proof search and theindependence of cases) to deriveafinal sequent calculus (in Figures23 and 24)
which can beregarded asaformal specificationfor theinterpreter of alogic programming language.
We relate this specification explicitly to the operational rules of Section 3.4 in Section 5.

4.1 Modal sequent calculus

All the proof systems in this paper are parameterized by a modal regime, which describes the re-
lationships among the modal operators of the language. This regime is derived from the specifi-
cation input to DIALUP. DIALUP assumes increasing first-order domains across worlds, and offers
four kinds of modal operators: T, subject just to (VER); K4, subject just to (PI); $4, subject to both;
and K, subject to neither. Further, the relationships among operators are characterized by arela
tioni < j that holds when we have a schema 0O;P O O;P. Thus, for DIALUP, we set up aregime
asatuple (A N jincreasing), where A is a function associating each modal operator with a type
fromK, K4, T and $4; N isa(strict) partial order on the modal operators obtained by taking the
trangitive closure of <; and increasing codes the relationships among first-order domains across
worlds. The regime is a convenient structure for identifying classes of modal frames and classes
of Kripke modal modelswhere the accessibility relations and the domains of quantification respect

IN MODAL LOGIC PROGRAMMING 19

intended constraints, in the usual way (seefor example[Fitting, 1983, Auffray and Enjalbert, 1992,
Debart et a., 1992, Stone, 1999a)).

The basic constituent in the proof system is atracked, prefixed formula. The formulas extend
the basic languages D(C) and G(C) of definitions and goals (parameterized by atomic constants
C and collectively identified as L(C)) defined in (1) by allowing additional terms—representing
arbitrary witnesses of first order quantifiers, and arbitrary transitions of modal accessibility among
possible worlds—to be introduced into formulas for the purposes of proof. We begin by assuming
two countable sets of symbols: aset H of first-order Herbrand functions and Y of modal Herbrand
functions. We can now define sets By of first-order Herbrand terms, Ky of modal Herbrand terms,
and N (ky) of Herbrand prefixes by mutual recursion:

Definition 1 (Herbrand terms and prefixes) Assume that ty isa Herbrand prefixand lettq,. .., ty
be a sequence (possibly empty), where each t; iseither an el ement of C, afirst-order Herbrand term,
or aHerbrand prefix. Thenif hisafirst-order Herbrand function then h(to, ty, . . ., tn) isafirst-order
Herbrand term. If n isa modal Herbrand function then n(to,ty,...,tn) isa moda Herbrand term.
A Herbrand prefix is any finite sequence of modal Herbrand terms.

A prefixed formulais now an expression of the form A* with A aformulaand p aHerbrand prefix—
we use D(CUPR,)®Y) and G(CUPy)™(KY) to refer to prefixed definitions and prefixed goals. For
Herbrand calculi, formulas must also be tracked to indicate the sequence of instantiations that has
taken place in the derivation of the formula.

Definition 2 (tracked expressions) If E denotes the expressions of some class, then the tracked
expressions of that class are expressions of the form g where e is an expression of E and | isa
finite sequence (possibly empty) of elements of CU Ry UT(Ky).

We say that atracked expression g tracksatermt just in caset occurs as a subterm of some term
inl.

In order to reason correctly about multiple modal operators, we need to keep track of the kinds
of accessibility that any modal transition represents. To endow the system with correct first-order
reasoning on increasing domains, we also need to keep track of the worlds where first-order terms
areintroduced. We usethefollowing notation to recordthesejudgments: p/v : i indicatesthat world
v isaccessible from world p by the accessibility relation for modality i; andt : p indicates that the
entity associated with termt exists at world .

Itisconvenient to keep track of thisinformation by anticipating therestricted reasoning required
for the DiIALUP fragment L(C) and exploiting the structure of Herbrand terms, as follows. It is
clear that there are countably many first-order Herbrand terms, Herbrand prefixes, and formulas
inL(CUPy). We can therefore describe a correspondence asfollows. If Aisaformulaof theform
VxB or IxB, we define acorresponding first-order Herbrand function ha so that each first-order Her-
brand function is hp for some A and no first-order Herbrand function is hy and hg for distinct A and
B. Likewise, if Aisaformulaof the form 0;B and u is a natural number, we define a corresponding
modal Herbrand function nj so that each modal Herbrand functionisny for some A and no modal
Herbrand functionisnj and ng for distinct Aand B or distinct u and v. Now we have:

Definition 3 (Herbrand Typings) A Herbrand typing for the language L(CUPy) (under a corre-
spondence as just described) isa set = of statements, each of which takes one of two forms:

20 INDEFINITE INFORMATION

1. p/pn :iwhere: pisaHerbrand prefix and n isa modal Herbrand term of the formna (u, 1)
and Ais B3

2. t:pwheret isafirst-order Herbrand term of the form h(p, I).

A sequence of modal and first-order Herbrand terms X determines a Herbrand typing =y, consist-
ing of the appropriate p/un : i for each modal Herbrand term n that occurs in X (possibly as a
subterm) and the appropriate h : p for each first-order Herbrand term h that occursin X (possibly
as a subterm).

This definition of Herbrand terms specializes the definition of [Stone, 19994 to the DIALUP lan-
guage by eliminating cases for inference rules that are not required in DIALUP; it also anticipates
our argumentsabout transformations between Herbrand proofs by indexing Herbrand terms by nat-
ural numbers; in[Stone, 1999a] Herbrand termsareindexed only by formulas. Thismoveiscorrect
and complete since we can transl ate back and forth by erasing the numerical index (in onedirection)
and decorating with the index O (in the other).

Definition 4 (Typings) Suppose that = is a Herbrand typing over a language L(CUP)™®), and
that S = (A,N ,increasing) isamodal regime. We definetherelation that E isaderived typing from
= with respect to S, written S, = E, as the smallest relation satisfying the following conditions:

e (K).S,=Zpp/v:iifp/v:ie=.

T). S,=pp/p:iif A(i)isTor $4, and p occursin =.
4). S, =op/viiifp/p:iez, S,=sp/vii,and A(i) isK4 or SA.

Inc). S,=pp/v:jifS,=>p/v:iiandi < j accordingto N .

(
(
(
(

V). S,=pt:pift:ipe=.
e (I).S,=pt:vifS,=pp/v:ifor someiand S,=p>t: .

I nspection of theserulesshowsthat S,=>p/v ;i only if v and | occur in =. Moreover, given these
rules, an easy induction on the length of typing derivations givesthat S, =>p /v @i only if v = pv'’
for some prefix v'. Thus, suppose that S,=> /v : i for some Herbrand typing =: each step in the
derivation must concern some prefix of v and thusS, =, > /v : i. Theseinvariantspermit somesim-
plificationsin reasoning in the fragment L(CU P) over more expressive modal regimes containing
other modal operators and other uses of connectives. (In particular, we can streamline the formu-
lation of axiom inferences and the tracking of terms at modal and quantifier rules over the general
case; see [Stone, 19994, Section 5].)

These definitions allow us to describe the modal Herbrand sequent calculus precisely. For the
DIALUP fragment of modal logic, it suffices to consider sequents of theform A — I, where A is
amultiset of prefixed definitions (from D(CUPR,)™ (Xv)), and I isamultiset of prefixed goals (from
G(CuRry)" (kv)). We can then specialize a cut-free modal sequent calculus—for example the one
presented in [Stone, 1999a]—to the DIALUP fragment by omitting unneeded inference figures, and
by exploiting the DIALUP invariant that S,=>p/v ;i only if v is of the form pv’. Such acalculus,
SCL, isgiven in Definition 5.

Sincluding as a special case 0; (B O C), which we will abbreviateto B >; C.

IN MODAL LOGIC PROGRAMMING 21

Definition 5 (Herbrand sequent calculus) For basic first-order multi-modal Herbrand deduc-
tions in the DIALUP fragment over a regime S, we will use the sequent rules defined here, which
comprise the system SCL. The rules consist of an axiom rule and recursive rules—each recursive
rulerelates a base sequent below to one or more spur sequents above; it appliesto thebasein virtue
of an occurrence of a distinguished tracked, prefixed formula in the sequent; we refer to thisasthe
principal expression or simply the principal of the inference. Smilarly, each of the sequent rules
introduces new expressions onto each spur, which we refer to as the side expressions of the rule.
We will also refer to the two named expression occurrences at axioms as the principal expressions
or principals of the axiom. Now we have:

1. axiom—A atomic:
AN —T A

2. conjunctive:
A ANBY A BY — T
AANBY —T

A— T, AvBy, AL BY
A—T,AVBY

AN — T,AD By, BY
A—T,ADB}

3. digunctive:
A — T ANBL, AL A — T, ANBY, BY
A—T,ANBY

AAVBY A —T A AVBY, By —T
AAVBY —T

AADBY — AT AASBY,BY —T
AADBY —T

4. possibility—wheren isng (K, X) for some u:

AH AN
A— T, OAGAL
A—T,0A

5. necessity—subject to the side condition S, =y > /pv : i:

AH ARV
A, D,AX,AX’W — [

AOA, —T

6. existential—subject to the side condition that h is hg(p, X) for BY the principal of the rule

22 INDEFINITE INFORMATION

(either IxA or VxA):

A, IXA A/ —= T A —= T, vxAk, Alh/XY
AN —T A — T, VxAY

7. universal—subject to the side condition S, =¢ ; >t @

A,VxAgg,A[t/x];t — T A— r,axA§‘<,A[t/x]§‘<t
A VXA, — T A—T,3xAL

A S-proof or S-derivation for a sequent A — I" is atree built by application of these inference
figures (in such away that any side conditions are met for regime S), with instances of the axiom as
leaves and with the sequent A — I at theroot. A tree similarly constructed except for containing
some arbitrary sequent Sas aleaf isaderivation from S In [Stone, 19994 it is shown that thereis
an S-proof for asequent using these rulesjust in case that sequent isvalid in all Kripke modelsthat
respect the regime S.

Our syntactic methods for reasoning about derivations exploit permutability of inference—the
general ability to transform derivations so that inferences are interchanged [Kleene, 1951]. To de-
velop the notion of permutability of inference, we need to make some observations about the SCL
sequent rules. First, the reasoning that is performed in subderivations is reasoning about subfor-
mulas (and viceversa). That is, in any spur sequent, the occurrence of the principal expression and
the side expression al correspond to—or aswe shall say, are based in—the occurrence of the prin-
cipal in the base sequent. Likewise, each of the remaining expressions in the spur are based in an
occurrence of an identical expression in the base. Here, asin [Kleene, 1951], we are assuming an
analysis of each inference to specify this correspondence in the case where the same expression
has multiple occurrences in the base or in aspur. Thus, our proof techniques, where they involve
copying derivations, sometimes involve (implicit) reanalyses of inferences.

Now, in any derivation, the spur of one inference serves as the base for an adjacent inference
or an axiom. We can therefore associate any tracked prefixed formulaoccurrence E in any sequent
in the derivation with the occurrence in the root (or end-sequent) which E isbased in. A similar
notion can relate inferences, asfollows. Suppose O istheinference at theroot of a (sub)derivation,
and L is another inference in the (sub)derivation. Then L isbased in an expression E in the spur of
O if the principal expression of L isbased in E; L isbased in O itself if E is a side expression of
O. Animportant special caseisthat of an axiom based in an inference O. In effect, such an axiom
marks a contribution that inference O contributes to completing the deduction.

To define interchanges of inference, we appeal to the two basic operations of contraction and
weakening, which we cast as transformations on proofs. (In other proof systems, contraction and
weakening may be introduced as explicit structural rules.)

Lemma 1 (Weakening) Let D bean SCL proof, let Ag be a finite multiset of tracked prefixed defi-
nitionsand let I be a finite multiset of tracked prefixed goals (in the samelanguage as D). Denote
by Ag+ D + Mg aderivation exactly like D, except that where any nodein D carriesA — I, the
corresponding nodein Ag+ D + g carriesA,Ag — I, . (When Ag or Mg isempty, we drop the
corresponding + from the notation.) Then Ag+ D + Mg isalso an SCL proof.

IN MODAL LOGIC PROGRAMMING 23

Lemma 2 (Contraction) Let D be an SCL proof whose root carries A — I, E, E. Then we can
construct an SCL proof D’ whose root carries A — I, E, whose height is at most the height of
D and where there is a one-to-one correspondence (also preserving order of inferences) that takes
any inference of D’ to an inference with the same principal and side expressionsin D. We can
likewise transform an SCL proof D whose root carries A, E,E — I" into an SCL proof D’ whose
root carriesAE —T.

These lemmas follow from straightforward induction on the structure of derivations. These conse-
guences continueto hold, suitably adapted, for theintermediate proof systemsthat wewill construct
from SCL in later sections (including SCLU and SCLV).

Now consider two adjacent inferences in a derivation, a base inference R and an inference S
(whose baseisaspur of R). If Sisnot based in R, we may replace the derivation rooted at the base
of Rby anew derivation of the same end-sequent in which Sapplies at the root, R applies adjacent,
and the remaining subderivations are copied from the original derivation (but possibly weakened to
reflect the availability of additional logical premises). Performing such a replacement constitutes
an interchange of rules R and Sand demonstratesthe permutability of Rover S, see[Kleene, 1951].
SCL isformulated so that any such pair of inferences may be exchanged in thisway.

We aso observe that we can correctly introduce an abbreviation for goal occurrences of
0;(A D B) by asingleformula (A >; B) and the consolidation of corresponding inferences (— 0;)
and (—D) into asinglefigure (—>;). Again when theinference appliesto principal AL, thefigure
isformulated using n for N (K, X) as:

rAL, — B A>i By, A
r—A>B}.A

— >

We will refer to the calculususing (—>j) in place of (— 0O;) and (— D) as SCLI.
To transform an SCLI deductioninto an SCL deduction, we can eliminate (—>;) figuresinduc-
tively asfollows. Take aderivation of thisform:

D
M A —= By A > BY LA
r— A>B},A

— >

Transform D inductively into an SCL derivation D’; then construct:

D’ +A> B!
Hn un A Buﬁm O0.(ASBM A
I Axun _>B><,ur1’mD X 0’ '(HD)X s
r—AD Bx’un,Di(A:) B)y, A o

r— 0i(ADB).A

For the converse construction, we assume an SCL derivation whose end-sequent—I —> A—
takes a specia form. A is the multiset union of A and A* where A* consists of all and only the

occurrences of expressions of theform A > B, in A; moreover, for ecch AD B, € A* thereis

aA > B§l< € A" with n as determined for the (— 0;) or (—>) figure. (Thisassumption is met by
DIALUP search problems, asthey arein fact specified without any bare D-formulasin goals.) Under

24 INDEFINITE INFORMATION

this assumption, we construct an SCLI proof of ' —= AT inductively. The problematic caseisan

SCL derivation that ends: b
un un un
A% un — Bxun A2 B

r—ASB{ A

Since by assumption we have A >; BY € A", we derive an SCLI proof D’ for D inductively then
construct:

A

—D

D/
un un BH At
r,AX’ur] — Bx’ur]7A>| BX7A

[—A>BY,AT

—D

Here (as always) the status of Bi”m asalA" expression is guaranteed by the bIALUP fragment and

the fact that At isamultiset of tracked elements of G(CU Ay)" (ky), =

4.2 Uniform proofs and eager proofs
[Miller, 1994] uses Definition 6 to characterize abstract logic programming languages.

Definition 6 A cut-free sequent proof D isuniformif for for every subproof D’ of D and for every
non-atomic formula occurrence B in the right-hand side of the end-sequent of D’ there is a proof
D’ that isequal to D’ up to a permutation of inferences and is such that the base inference in D”
introduces the top-level logical connective of B.

Definition 7 A logic with a sequent calculus proof system is an abstract logic programming lan-
guageif restricting to uniform proofs does not |ose compl eteness.

It iseasy to show that the sequent calculi SCL and SCLI are abstract logic programming languages
inthissense. In fact, by this definition every SCL or SCLI derivation is uniform.

To anticipate our analysis of permutability in later sections, let us introduce the notion of an
eager derivationin SCL or SCLI.

Definition 8 Consider a derivation D containing a right inference R that applies to principal E.
Ris delayed exactly when there is a subderivation D’ of D where: D’ contains R; D’ has a left
inference L at the root; and the principal E of Risbased in an occurrence of E in the end-sequent
of D’.

Consider this schematic diagram of such a subderivation D’:

l
E.. -

On an intuitive conception of a sequent proof as a record of proof search constructed from root
upwards, Risdelayed in that we have waited in D to apply R until after consulting the program by
applying L, when we might have applied R earlier. Thus, we will aso say in the circumstances of
Definition 8 that R is delayed with respect to L.

IN MODAL LOGIC PROGRAMMING 25

Definition 9 D is eager exactly when it contains no delayed applications of right rules.

By transforming any derivation D into an eager derivation D’ by permutations of inferences, we
witness that D is uniform and provide a starting point for further analysis.

Theorem 1 Any SCL(I) derivation D isequal to an eager derivation D’ up to permutations of in-
ferences.

The proof follows[Kleene, 1951, Theorem 2]. A double induction transforms each derivation into
an eager one; the inner induction rectifies the final rule of a derivation whose subderivations are
eager by an interchange of inferences (and induction) [Kleene, 1951, Lemma 10]; the outer one
rectifies a derivation by rectifying the furthest violation from the root (and induction).

The proof depends on a generalization of delayed inferences, which we can term misplaced in-
ferences since we intend to eliminate them. We assume an overdl derivation D, and consider a
right inference R that applies to principa E within some subderivation D’ of D.

Definition 10 We say a right inference R is right-based on an inference R in D if R= R or Ris
based on R and every inference on which R is based above and including R is a right inference.
Then Ris misplaced in D’ exactly when there are inferences M and R in D’ such that, inD, M is
based on an inference L, Risright-based on R, and R is delayed with respect to L.

In this case we will also say Ris misplaced with respect to M. We can abstract a key case of mis-
placed inferences by the following schematic derivation:

Right inferences and infer- { : M
ences R not based in '
R delayed wrt L { ...E... R
(M based in L) l

E.. ©

This schematic derivation shows informally how misplaced inferences help provide an inductive
characterization of theinferencesthat stand in the way of obtaining an eager derivation. In an eager
derivation, it will be impossible for R to appear above L. For R cannot be delayed with respect
to L, but once R and L are interchanged, we will obtain a new delayed inference that R is based
in, until finally we must interchange L and R. Of course, to do this, we must first interchange R
with the misplaced inferences, such as M, which stand between R and L and cannot themselves be
interchanged with L because they are based in L.

Observethat therelation R is misplaced with respect to M isasymmetrical. To seethis, suppose
Rismisplaced with respect to M. By definition, Risright-based on R which isdelayed with respect
to aleft inference L on which M isbased. Meanwhile, for M to be misplaced with respect to R, by
definition, we must have M right-based on M” and R based in someleft rule Lr. Any such M’ would
have to be based in L since no left inferences intervene between M and M’; M’ must thus appear
inside a schematic like that above. At the same time, since no left inferences intervene between R
and R, R would haveto be based in any such Lg, which must thus appear outside such aschematic,

26 INDEFINITE INFORMATION

closer to the root of the overall derivation. Accordingly, any such Lg must occur closer to the root
of D than L; meanwhile the principal of M’ isintroduced further from the root than L. So we will
not have M’ delayed with respect to Lg.

Call Rbadly misplaced in D’ if Ris misplaced with respect to M and M occurs closer to theroot
than R. A subderivation D’ with no badly misplaced inferenceswill becalled good. Anoverall good
derivation is also eager, since any delayed inferenceis badly misplaced.

We can now present the proof in full using alemma.

Lemma 3 Consider a subderivation D’ of an overall derivation D, with the property that D’ has
good immediate subderivations and that D’ ends in inference M. From D’ we can construct a
derivation with the same end-sequent that is good.

Proof. The assumption that the immediate subderivations of D’ are good is a very powerful one.
For suppose that some inference is badly misplaced with respect to some other in D’. Then we
can only have some rule R badly misplaced with respect to M—anything el se would contradict that
assumption.

In fact, we can show that some such R must be adjacent to M. Consider an inference S that
intervenes between R and M: we will show that Smust be badly misplaced with respect to M too.
By the definition of misplaced, M isbased on someleftruleL in D, Risright-basedon R, andR is
delayed with respect to L. Now consider theinferencesthat Sisbased on abovelL. If any of theseis
aleftinferencel’, or Sisitsdlf aleft inference, then Ris also misplaced with respect to S—indeed,
badly misplaced. This contradicts the assumption that the subderivations of D’ are good. So none
of these inferences can be aleft inference, which means Sisaright inferencethat is right-based on
some inference S above L. S must be delayed with respect to L. Hence Sis badly misplaced with
respect to M.

Now we can proceed after [Kleene, 1951, Lemma 10]. Definethe grade of D’ asthe number of
badly misplaced inferencesin D’. We show by induction on the grade that D’ can be transformed
to agood one.

Thebase case isaderivation of grade 0. Thiscase has D’ itself good. Thus, suppose thelemma
holds for derivations of grade g, and consider D’ of grade g+ 1. By the argument just given, one
immedi ate subderivation—call it D”—must end with an inference Rwhich isbadly misplaced with
respect to M. Such an R of course cannot be based in M, so we interchange inferences R and M.
In the result, the subderivation(s) ending in M satisfy the condition of the lemmawith grade g or
less. By applying the induction hypothesis, we can replace these subderivations with good ones.
By asymmetry, M isnot now badly misplaced with respect to R, nor can any of the other inferences
be badly misplaced with respect to R, since they were not so in the original derivation. It follows
that the result isa good derivation. ®

Now, continuing the proof of Theorem 1, define the reluctance of D to be the number of rule
applications R such that the subderivation Dg of D rootedin Risnot good. We proceed by induction
on reluctance. If reluctanceis zero, D isitself good.

Now suppose the theorem holdsfor derivationsof reluctanced, and consider D of reluctanced+
1. SinceD isfinite, there must be ahighest inference R such that someinferenceisbadly misplaced
with respect to Rin the subderivation D rooted at R. This Dy, satisfies the condition of Lemma 3.
Thereforethis Dg can be replaced with a corresponding eager derivation, giving anew derivation of

IN MODAL LOGIC PROGRAMMING 27

smaller reluctance. The induction hypothesi s then shows that the resulting derivation can be made
eager. ®

4.3 Segment structure

Eager derivations do not make a satisfactory specification for alogic programming interpreter be-
cause they do not embody a particularly directed search strategy, in a number of respects. For one
thing, eager derivations are free to work in parallel on different diguncts of agoal using different
program clauses; in logic programming we want segments in which a single program clause and a
single goal isin force. Moreover, eager derivations can reuse work across separate case analyses,

in logic programming we want blocks where particular cases are investigated separately. Finally,
because of their classical formulation, eager derivations do not enforce or exploit any modularity
in their underlying logic.

We will now remedy these faults of eager derivations. We begin with a trick that for now is
purely formal—introducing an articulated SCLI. We represent assumptions asa pair ;" with I
encoding the global program and I' encoding local clauses; eventualy local clauses will be pro-
cessed only in the current segment and then discarded. (Compare the similar notation and treat-
ment from [Girard, 1993].) Similarly, we represent goalsasapair A; ©, with © encoding the restart
goals and A encoding the local goals; ultimately, we will also describe inference rules which will
discard A between segments. With this representation, principa formulasof logical rules are local
formulas, in T or A; so are the side formulas—with these exceptions: the (— O) and (—>) rules
augment I instead of I (when they add anew program clause) and © instead of A (when they add
new restart goals).

New (decide) and (restart) rules keep this change general; they allow a global formula—apro-
gram clause or restart goal—to be selected and added to the local state.

NALGT, AL — A0
MAGT — A0

M;r — A GY;0,Gy
m;r —A4;0,G;

(decide)

(restart)

Lemma 4 (articulation) Every SCLI deduction can be converted into an articulated SCLI deduc-
tion with an end-sequent of the form I'; —; © in such a way that if the initial derivation is eager
then so isthe resulting derivation (and vice versa).

The proof forward argues by straightforward structural induction that the derivation can be trans-
formed assuming each formulain the end-sequent is allocated somehow either to I or I'. We pre-
serve and extend this allocation in immediate subderivations, introducing instances of (decide) and
(restart) as necessary when the principal expression is assigned occurrencesin 1 only; then argue
by induction. Backward, another straightforward structural induction shows we return to SCLI by
forgetting the distinction between I and I', forgetting the (decide) and (restart) rules, and contract-
ing copied formulas. ®
The next step is to introduce an inference figure (O —5) that imposes a segment structure on
derivations, thus:
n,— AL,A0 n,r,A>By.,BY — 4,0
Mr,ADBY, — A0

(5—9)

The distinctive feature of the (O—5) figureis that the local results inferred from the program are
discarded in the subderivation where the new goal is introduced. In an eager derivation, this will

28 INDEFINITE INFORMATION

begin a new segment where first the new goal will be considered and then a new program clause
will be selected to establish that goal.

We will define two calculi using (O—%). The firgt, SCLS, eliminates the (O—) inference of
the articulated SCLI and instead has (> —5). The second, SCLV, is a calculus like the articulated
SCLI but also alows (5—3); (5—) and (D—°) can appear anywherein an SCLV derivation. We
introduce SCLV to facilitate the incremental transformation of articulated SCLI proofsinto SCLS
proofs. We show in this section that an SCLI proof with end-sequent T — © corresponds to an
SCL S proof with end-sequent '; —; ©, and vice versa. In fact, to transform SCL S to articul ated
SCLI we have asimple structural inductionwhich replaces (>—S) with (D—) using theweakening
lemma; the soundness of SCLS over SCLI then follows by Lemma 4. Thus, here we are primarily
concerned with completeness of a new sequent inference figure.

Definition 11 (segment) A segment of an SCLV derivation D isa maximal tree of contiguousin-
ferences in which the |eft subtree of any (O—°) inference is omitted.

The use of (D—S) in eager derivations ensures that the processing of each new goal refers di-
rectly to global program clauses. Toformalizethisidea, weintroducethenotion of afresh inference.

Definition 12 (fresh) Let D bean SCLV derivation. Aninference Rin D isfresh exactly when Ris
aright inference and the path from R to the root never followstheleft spur of any (>—) inference.

Lemmab5 Let D bean eager SCLV derivation with an end-sequent of the form
Mn—A0®

and consider a subderivation D’ of D rooted in a fresh inference R. Then the end-sequent of D’
also hastheform
I—I/; s A/, e/

Proof. Suppose otherwise, and consider a maximal D’ whose end-sequent contains a non-empty
multiset of local clauses™. We candescribe D’ equivalently asthe subderivation of D that isrooted
in alowest fresh inference R when the end-sequent of D contains some local clauses. R cannot be
thefirstinferenceof D, sothere must bean inference Sin D immediately below R. If Sisaleftrule,
then thefact that D iseager leadsto acontradiction. Rmust bebased in S, or else Rwill be delayed.
Thismeans Sis an implication inference; but given that Risfresh, R must appear along the branch
of (>—S) without local clauses. Meanwhile, if Sisaright rule, it follows from the formulation of
therulesthat if the end-sequent of Dr has nonempty local clauses then the end-sequent of D, must
also. This contradicts the assumption that Risfirst. ®

Lemma 6 An eager articulated SCLI derivation whose end-sequent is of the form
Mn—AO®
can be transformed to an eager SCLSderivation of the same end-sequent.

Proof. We assume an eager SCLV derivation D with such an end-sequent; we show that we can
transformit into an eager SCL Sderivation D’ with the same end-sequent. The proof isby induction
on the number of occurrences of (O—) inferencesin D.

IN MODAL LOGIC PROGRAMMING 29

In the base case, thereareno (O—) inferencesand D’ isjust D.

Suppose the claim holdsfor derivationswhere (O—) isused fewer than n times, and suppose D
isaderivationinwhich (O—) isused ntimes. Choose an inferencelL of (OD—) with no other (OD—)
inference closer to the root of D; we must rewrite the left subderivation at L to match the (>—S)
inference figure. We distinguish a subderivation D’ of D as afunction of L and draw on theinfer-
encesin D’ to replace this subderivation—in particular, we identify D’ as the largest subderivation
of D containing L but no right inferences or segment boundaries below L.

Using Lemma 5, we develop aschemaof D’ thus:

DA DB
n,r,A>BY — AL A n;r,A>BY,BY = A0

L
Mn;r,A>BY — A0

Dt :
N, — A0
(Segment boundary or right rule)

We suppose L appliesto an expression A D B§‘<; the left subderivation of L, D adds the goal A, the
right, DB, uses the assumption B. The subderivation of D’ from the end-sequent of L abstracts the
left inferences performed el sewherein this segment (and any subgoal sthat these inferencestrigger).
We notatethistreeof inferencesD'. By LemmaJ5, D’ endswith asequent of theform M; — A; ©.
Because of the form of the intervening rules, we have the same succedent A; © at L, aswell asthe
same global clauses 1.

We use D' to construct an eager SCLS derivation A corresponding to D#; we will substitute
the result for the left subtree at L to revise L to fit the (O —S) figure. In outline, the derivation we
aim for isan eager SCL S version of: A

D
Dt +AY

The problem isthat if D” isrooted in aright inference to A, we will not obtain an eager derivation
when we reassemble L. The SCLS derivation A we useis actually constructed by recursion on the
structure of DA, applying this kind of transformation at appropriate junctures. At each stage, we
call the subderivation of D* we are considering DA

For the base case, this subderivationisan axiom, and we construct this subderivation asaresult.
If DA endsin aright rule, the construction proceedsinductively by constructing corresponding sub-
derivations and recombining them by the sameright rule. With aright inference here, the resulting
derivation must be eager since the subderivations are eager.

If D'A ends in a left inference, the construction is not inductive. We observe that D’ has an
end-sequent of the form

n,n;—AN;0,0

(The inventory of expressions can only be expanded, and that only in certain places, aswe follow
right inferences to reach D’A.) So we first weaken D" by the needed additional expressions—I1’
ontheleft and A’ (locally) and @' (globally) on theright; then we identify the open leaf in D with

30 INDEFINITE INFORMATION

D’A, obtaining alarger derivation D, defined as:

D/A
N +D"+ A +4;0

Any delayed inference in D; would in fact be delayed in D’A, so thisis an eager derivation. The
result has, moreover, fewer than n (O—) inferences, since it omits at least L from D’. Then the
induction hypothesis applies to give the needed SCLS derivation A.

Given the derivation A so constructed, we substitute A for DA in D. The result D* is an eager
derivation; D* contains an (>—5) inference corresponding to L and therefore contains fewer than

nusesof (O—). Theinduction hypothesisappliesto transform D* to the needed overall derivation.
|

4.4 Block structure

We now revise how we perform case analysis from assumptions. We introduce new ruleswherelo-
cal work isdiscarded in the subderivation written on the right. Some global work may be discarded
thereaso! (Thishelpsclarify the structure of derivations.) The right subderivation may addressei-
ther the (textually) first digunct or the second digunct, leading to the two inference figures below.

N,N;r AVBL AL — A,0,0 npe,—o0
M7, T, AVBF — 4,0,0 Y
n,n’;r,AvB" BN — 40,0 nAL—o

M., AVB" — 4,0,0 G

We call these inferences blocking (v —) inferences, or (v —B) inferences. We will appeal to two
calculi inwhich theseinferences appear. Thefirst, SCLU, permitsboth ordinary (v —) and (v —8)
inferences, without restriction. SCLU isconvenient for describing transformati ons between proofs.
The second, SCLB, permits (v —B) inferences but not ordinary (v —) inferences. Obviously, we
can use weakening to transform an SCLB or SCLU derivationinto a SCL S derivation, so the bl ock-
ing inference figures are sound. The completeness of SCLB is a consequence of Lemma 9, pre-
sented below in Section 4.4.3.

Blocksaremorethan just boundariesin theproof; they providealocusfor enforcing modularity.
Wewill ensurethat adigunct contributesinferencesto the new block whereitisintroduced. Thanks
to this contribution, we can narrow down the choice of goalsto restart in amodular way.

This result ismade possible only by maintaining the right structure as we introduce (v —8) in-
ferences. Section 4.4.1 describes a tool that we can use to render explicit, with path prefixes, the
connection between program clauses and any goals that they help establish. Section 4.4.2 trans-
forms individua blocks using this tool to achieve a streamlined form, which already implicitly
reflects the logic programming search strategy of focused search on particular goals and program
clauses. Section 4.4.3 applies both resultsin stages to create proofswith an overall modular block
structure.

44.1 Replacing Herbrand terms
To begin, it is convenient to observe that the use of indexed Herbrand terms allows us to rename
Herbrand termsin aproof under certain conditions. These conditionsareanalyzed intermsof char-

IN MODAL LOGIC PROGRAMMING 31

acterizations of the form of sequents in proofs; the key notions are spanning and ssimplicity.

Definition 13 (carrier) The carrier of a nonempty Herbrand prefix pn is Bi'jm ifnis r]x>iB(u,X)

and otherwise, when n isng A (K, X), isAi’Ln.

Definition 14 (spanned) Say one multiset of tracked prefixed formulas, I, is spanned by another,
O, if for every expression occurrence A§‘< and every nonempty prefix v of 4 there isan occurrence of
the carrier of v in ©. It iseasy to see thereisa minimal set © that spans Il and that such © spans
itself. A sequent ;T — A; © is spanned if I is spanned by ©, I is spanned by ©, A is spanned
by © and © is spanned by ©. A derivation or block is spanned if every sequent in it is spanned.

Definition 15 (smple) A multiset W is simple if no expression occurs multiple timesin W; a se-
quent of theform M; I — A;© issmpleif I and © are smple. A derivation or block is ssmple
iff every sequent initissimple.

Lemma 7 (Substitution) Let D bean SCLU derivation with end-sequent
M, —;0

inwhich noHerbrand termsor Herbrand prefixes appear; consider a spanned simple subderivation
D’ inwhich a modal Herbrand function ns occurs in some sequent, but does not occur in the end-
sequent. Let n'y bea Herbrand function that does not occur in D. Thenwe can construct a proof D*
containing corresponding inferences in a corresponding order to D but in which Herbrand terms
and Herbrand prefixes are adjusted so that n, is used in place of N, precisely in the subderivation
corresponding to D’.

The proof followsthe proofsof Lemma 24, Lemma?25 and Lemma26in [Stone, 1999a]. Theresult
is an induction on the structure of derivations, in which certain technical details must be satisfied
because the Herbrand calculus may require not only the replacement of nj itself but also the re-
placement of Herbrand terms that depend indirectly on nj. It is convenient to begin by replacing
any first-order Herbrand term not introduced by a (3 —) or (— V) inference by a distinguished
constant co—starting with leaves of the derivation and working downward. This replacement isto
ensure that each first-order and modal Herbrand termin D is determined from an expression in the
end-sequent of D by afinite number of steps of inference. We continue with the systematic replace-
ment of N, and its dependents. In both cases, the form of D ensures that a finite substitution can
systematically renameall these Herbrand termsasrequired. We usethefact that each sequent issim-
ple and spanned to extend this substitution inductively upward. Because each sequent is spanned
the substitution does not need to be extended at (O —) inferences; because each sequent is sm-
ple the substitution can be extended freshly at (— O) and (—>) inferences. Finally, the form of
first-order Herbrand terms ensures that a finite extension of the substitution suffices for (— 3) and
(V —) inferences. .

4.4.2 Rectifying blocks

Inany calculus which involves blocking (v —B) inferences, we appeal to the following definitions
in understanding how these inferences constrain the goal-directed search of alogic-programming
interpreter. First, we have the constituents which the (v —B) inferences allow usto find in derivar
tions.

32 INDEFINITE INFORMATION

Definition 16 (block) A block of a derivation is a maximal tree of contiguous inferences in which
the right subtree of any (v —B) inference in the block is omitted.

Second, wewill sometimesinsist that global work be discarded symmetrically, using the notion
of balanced sequents and derivations.

Definition 17 (balanced) A pair of multisets of tracked, prefixed formulas I, © is balanced if

e for anyn =nj. (K, X), n occursin © exactly when the expression B} - occursin M and

XN
exactly when the expression C}, - occursin ©; and

e for anyn =nY (K, X), n occursin © exactly when the expression Al | occursin ©.

X,un

Asequent ;T — A; © isbalanced if the pair 1, © isbalanced. A block or derivation isbalanced
if every sequent in the block is balanced.

Third, we refine the form of proofswhich we arewilling to count as goal -directed. Now it will
often happen that, while each block of aderivation may be eager, the derivation asawholewill not
be eager. Asobserved in [Nadathur and Loveland, 1995], derivationswith blocks can nevertheless
be seen as eager throughout by reconstructing the (restart) rule as backchaining against the negation
of asubgoal. But we will smply consider blockwise eager derivationsfrom now on.

Definition 18 (blockwise delayed) Risblockwise delayed exactly when there isa tree of contigu-
ous inferences D’ within a single block of D where: D’ containsR; D’ has a left inference L at the
root; and the principal E of Ris based in an occurrence of E in the end-sequent of D’.

Definition 19 (blockwise eager) D is blockwise eager exactly when it contains no blockwise de-
layed applications of right rules.

We use the notion of an isolated block to obtain an even stronger characterization of a derivation
in which work is discarded. In an isolated block, the only expressions preserved across a blocking
inference are those that are in some sense intrinsic to the restart problem created by that inference.

Definition 20 (isolated block) Let D bean SCLU derivation, and let B beablock of D. Wite the
end-sequent of B asM; ™ — A; © and consider the right subproof of some (v —8) inference L at
the boundary of B has an end-sequent of the form ', E; —; ©'. The exported expressionsin ’,
My, consist of the occurrences of expressions F in M’ such that either is F based in an occurrence
of FinT1 or isbased in an occurrence of F asthe side expression of aninferenceinwhich E isalso
based.

B isisolated if the right subproof of each (v —B) inference L at the boundary of B has an end-
sequent of the form M’ E; —; © meeting the following conditions: E isthe side-expression of L;
@' isthe minimal multiset of expressions which spans Ty, E; and N’ isthe smallest multiset includ-
ing Mg, E for which N’,©' isbalanced. D isisolated iff every block of D isisolated.

Isolation allows us to keep close tabs on the uses of formulas within blocks, which is important
for establishing modularity later. In particular, isolation provides a key notion in formalizing the
obviousfact that an inference that makes no contribution to an SCLU derivation can be omitted.

IN MODAL LOGIC PROGRAMMING 33

Definition 21 (linked) An expression E ina sequentinan SCLU derivation D islinked if the prin-
cipal formula of an axiomin the same block of D as that sequent isbased in E. An inference Ris
linked in D if some side expression of Rislinked in each spur of R. A block is cancelled if it con-
tainsthe root of D, or if the side expression E of the (v —B) inference whose spur isthe root of the
blockislinked. A derivation or block is linked iff all of the inferencesin it are linked.

Definition 22 (required) Given aderivation D with end-sequent
mnr—Ano

we say that an expression occurrence E in © or I isrequired iff either it islinked or some blockin
D isadjacent to the root block and has an end-sequent

n';—;o
inwhich N’ or @ contains an expression occurrence based in E.

Lemma 8 (Rectification) We are given a blockwise eager SCLU derivation D such that: every
block in D is cancelled and isolated; every block in D other than the root is spanned, linked, bal-
anced and simple; and the end-sequent of D is balanced. We transform D to an SCLU derivation
D’ in which every block is cancelled, linked, isolated, balanced and simple and every block other
than the root is spanned. Every block in D’ other than the root block isidentical to a block of D;
and the inferences in the root block of D correspond to inferences in the same order in D (and so
D’ is blockwise eager). If the end-sequent of D is spanned then D’ is spanned and isolated.

Proof. We describe a transformation that establishes the following inductive property given D.
There are smple multisets My, C M and Oy C ©, together with multisets " C I and A’ C A such
that: any @ that spans My, includes ©y; and for any ssimple N’ with My, € M’ C M and any ssimple
@ with @ C © such that M’ and @ are spanned by ©’ and the pair IM’, @' isbalanced, thereisaD’
in which every block is cancelled, linked, balanced, balanced and simple, with end-sequent:

n;r'— n;e

InthisD’, each expressionin I’ islinked; each expression in A’ islinked; each My, expression that
occursin M’ isrequired and each ©y expression that occursin @ islinked. Every block in D’ other
than the root block isidentical to ablock of D; and theinferencesin theroot block of D correspond
to inferencesin the same order in D. Finaly, if " and A" are spanned by ©' then D’ is spanned; if
D islinked then D’ contains all the axioms of D.
At axioms, for D of
n;,r,A — AY A0

My and Oy are empty, while " = Al and &' = Al Assume we are given simple M’ from M and
simple @ from © with IM” and @ spanned by ©'. We construct D’ of

n; A, — A0

If Ai is spanned by @', this axiom is spanned too; the remaining conditions are immediate.

34 INDEFINITE INFORMATION

At inferences, consider as a representative case (V —). D ends:

D, D,
M;r,AvBY, A — A0 n;r,AvBY, By — A;0
M,F,AVBY, — A;0

The blocks of D, and D, either contain the root or are blocks from D; the Herbrand prefixesin the
end-sequents of D, and D, occur with the same distribution asin D. Therefore we can apply the
induction hypothesis to get My, ©u1, ' and A for D1; we can apply it to get M2, ©Om2, ', and
A, for D,. To transform D itself, we perform case analysison '} and 5.

If '} does not contain an occurrence of A§‘<, then My =My1, O =By, =T and A = AY;
D/ sufficesto carry through the induction hypothesis.

Similarly, if ', does not contain an occurrence of B§l<, then My = My2, O = O\, ' =T, and
A = N,; D) sufficesto carry through the induction hypothesis.

Otherwise, we will set up My = My UM ye and Oy = Oy U Oz (8s sets); by the inductive
characterization of My, My2, ©m1 and Oyp, any @' that spans both My, and My, includes both
Oum1 and BOp,. We also set up I as the multiset containing at least one occurrence of AV B§‘< and
as many expression occurrences of any expression as either are found in F’l\Ai or are found in
F’Z\BLl ; we set up A’ as the multiset containing as many expression occurrences of any expression
asarefound in either A] or A,

To continue, we now consider simple M’ from M and simple @ from © such that My, C I,
My2 € N’, M’ and @ are spanned by @', and the pair M’, @’ isbalanced. We know that @ includes
©®Om. We can apply theinductive property to transform D, and D, into derivationswith theinductive
property:

D1 D5
n;rj,— A e n;r, — AL e

We wesaken the lowest block of D] on the left by the expressionsin 't and not already in " and
on the right by the expressionsin A™ and not already in &', giving D;". We similarly weaken the
lowest block of D/, on the left by the expressionsin ' and not already in I}, and on the right by
the expressionsin A* and not already in A, giving D". Only the lowest blocks are affected by the
weakening transformations, so other blocksremain cancelled, linked, spanned, isolated and ssimple;
the lowest block in each case remains cancelled. The lowest blocks also remain linked since no
inferences are added; and they remain smple (and balanced) because no weakening occursin the
global areas. Construct D’ as

D Dy
n;r, Al — A, @ n;r+ By —A";0
M, rv— A7,

The end-sequent is ssimple and balanced so the root block is simple and balanced; the inferenceis
linked since A}, and By arelinked in the subderivations, so the root block islinked. The root block
remains cancelled as aways.

Any MMy expression is required here because it is required either in D" in virtue of its mem-
bershipinTlyq orin D2+ invirtue of its membership in My,; likewise any Oy expressionislinked

IN MODAL LOGIC PROGRAMMING 35

here because it is linked either in D in virtue of its membership in ©y or in D] in virtue of its
membershipin ®y,. Thus, except for the spanning conditional, we have shown everything we need
of thisD’.

Finally, then, if " and A is spanned by @', A} and &), are spanned by © and '} and '}, are
spanned by @ intheresulting (spanned) subderivationsD} and D5. Thisshowsthat theend-sequent
of D’ isalso spanned, so D’ itself is spanned.

This reasoning is representative of the construction required also for (A —), (3 —), (V —),
(— A), (= V), (— 3), (= V), (decide) and (restart). It applies also for (> —5), with the obvious
caveat that we do not weaken the left subderivation to match local |eft expressions, since the form
of the (D—°5) inference requires there to be none.

Next we have (v —B); we consider the representative case of (v —£). D ends:

D, D,
Mo, M; T, AV B, Al —= A;0,,0 Mo, BY; — O
Mo, M;T,AVB} — A; Q0,0

Wetreat this specially to respect the block boundary before D,. Inparticular, we apply theinduction
hypothesisto D, (aswe may since its end-sequent has the same distribution of Herbrand prefixes
as does that of D), to get My, ©Omg, M} and A). If A§‘< does not occur in I}, we let My = My,
Om =0, ' =T and A = Al; any derivation D} constructed from appropriate N’ and @’ suffices
to carry through the induction hypothesis.

Otherwise, we get My = My U Mg (as a set), Oy = Opmq; any @ that spans My, also spans
My and so includes ©y. A = A} and I’ contains '} with the occurrence of Ai removed, together
with an occurrence of AV B§‘< if I} does not already contain such an expression.

Assume simple M’ with My, € M’ € M and simple @ with ® C © with M’ and @' spanned by
© and the pair ", @ balanced. As before, we must have Oy included in ©'. We therefore obtain
D} by theinductive property; we then weaken D} locally within the lowest block by Av BY onthe
left if necessary, to obtain a good derivation D

The needed D’ is now constructed as:

D; D,
nr A —u e Mo, BY; — &g
I_I/; r/ > A/;@/

Wefirst argue that the construction instantiatesthe (v —2) inferencerule. Every Herbrand prefixin
Moe and BY occursin M’ or I, so Mg and By are spanned by ©'. But becausetheroot block in D is
isolated, Mge and B, are spanned minimally by ©g. Thus @y C ©'. Mge C My by construction; by
isolation Mg isthe smallest set such that the pair of Mg, ©g isbalanced. But sincel’, @ isbalanced,
Mo C .

Now we show that D’ so constructed has the needed properties. The end-sequent is simple and
balanced so the root block is smple and balanced. The inference is linked: Af(islinked in D] by
the induction hypothesis; B§‘< islinked in D, because D, begins anew block which by assumption
is cancelled. The root block remains cancelled as always. Any Iy expression is required here
because either a corresponding expression Mge in the new block at the left subderivation is based
onit, or becauseit isrequiredin Dj. Every Oy islinked becauseit islinked in Dj.

36 INDEFINITE INFORMATION

Finally,if I’ and A’ arespanned by @', then A} and I} are spanned by ©;. Thenew subderivation
D/ isthereforespanned by theinductive property; thisensuresthat the overall derivationisspanned.
Next consider (O —). D ends:

Dy
M;r,oAGA L, — 4,0

I'I;F,DiA; — A:O

As aways, we apply the induction hypothesisto D, (aswe may since the Herbrand prefixes on I
and © formulasremain the same) to obtain M1, Oy, [} and A If Akl("’w does not occur in ™, we
let My = My1, Om = Opy, M =T} and A = A}; any subderivation D) obtained by the inductive
property suffices to witness the inductive property for D.

Otherwisewe obtain I by extending I} by the principal expression 0; AL if necessary and elim-
inating the side expression Ai‘,’w; My = M1, O = Opmy and & = A}, (Since these are common
to the subderivation, any M’ that spans My, includes ©y;.) Now we consider M’ with My € M’ C 1M
and © with @ C ©, N’ and @ spanned by ©' and the pair M’,®’ balanced. As aways, we have
©m C ©. Weobtain D] using M’ and @', and weaken the lowest block by local formulas; calling
the result D;", we can produce D’ by the following construction:

DY
I'I'; rl’A;l(VuV —_— A/;@/
I_I/; r/ . A/;@/

Everything islargely as before. The key new reasoning comes when we assume that " and A’ are
spanned by @'. We must argue that F’,Ai‘,’w isin fact spanned by @', SinceAf(‘juV islinkedin D7,
there must be an axiom in this block which is based in Ai" ,» Indeed, since the expression occurs
as alocal antecedent, this axiom must occur within the segment. This axiom must pair expressions
prefixed by a path ' where pv is a prefix of Y. But because D’ remains blockwise eager, no in-
ferences apply to A’ or @ formulas within the segment (nor can they in this fragment augment the
A" or @ formulas within the segment); therefore some A’ expression is associated with Herbrand
prefix W'. But since A’ is spanned by @, we have that every prefix of |’ is associated with some @
expression; so every prefix of pv is associated with some ©' expression. Thus D is spanned and
inturn D’ is spanned.

We have one |ast representative class of inferencesin D: (— O) and (—>). Weillustrate with
the case where D endsin (—>):

D,
Hn . . RH- KN
nAL T —= A A> By 0B
M;F — A,A>B};0

We begin by applying the induction hypothesisto D, (aswe can, given the symmetric extension of
M and © by labeled expressions). We obtain ©y1, My, '} and A7; we consider alternative cases
in response to © and Oy1. First we suppose BY1 & ©. It follows by our assumption about D

X,Hn
that Ay(”m ¢ N ether, nor does n occur in ©. For this case, we start by defining an overall My,

IN MODAL LOGIC PROGRAMMING 37

and ©y: Oy is Oy with any occurrence of Bi”m eliminated; My is My with any occurrence of
Aun

N eliminated. My, contains no occurrences of un, since N does not; thus given the inductive
property of Oy, and My, any @' that spans My spans ©y. We define I and A’ so that ' =T
and &' contains A together with an occurrence of A >; BY, provided A does not already contain
oneand Bi']m € Oy or Akl('jm € Mp1. So, assume we are given smple N’ with My € M’ C M and
smple @ with® C © (and so © C ©') such that N" and ©’ are spanned by @ and the pair ", @
is balanced.

We consider whether Bi”m € Ouor AL, € M. If neither, weapply theinduction hypothesis
to D, for the case that ©) is© and N’ isM’. The resulting derivation D] servesasD’.

Otherwise, Bi”m € G)M 1 or Ai”m € My1; we apply the inductive property of D for the case
that @) is® Bf(”m and MY isT’ Ai”m (clearly M’ and ©] are spanned by ©) assuming N’ and ©
arespanned by ©'; thepair '}, ©] isalso balanced given its symmetric extension). If Bi”m € Om1,
by the inductive property it |sI|nked If A“”Ll € M, it isrequired, but we shall show that itisin
fact linked. By the definition of being requi red the other possibility isthat thereisablock adjacent
to the root block of D/ with end-sequent

I—I//’ E, —_— e//

in which the (v —B) inference R that bounds the block is based in E and N”E or ©” contains an
expression occurrence based in ALY . But since the original block isisolated in the origina D, it

X.un°
isE that must be based in ALY . But then Risbasedin ALY and Rislinked: in particular its side

X,un* X,un

expression in the eft spur) must be linked; so A is linked too.

Thus we can weaken D in its lowest block if necessary by A > B§l< as alocal right formula
(inT), producing D;"; D} remains good by the same argument as the earlier cases. Thus we can
construct D’ as:

D+
AL T — N, ,A>i Bl OB
n,r— 4,

The end-sequent here is simple and balanced, so the whole root block is simple and balanced. The
new inferenceislinked (in virtue of the linked occurrence of one side expression—AL" —or B!)
so the whole root block is linked. The root block is of course cancelled. Each element of I'IM |s
required becauseit isan element of My, and required in the immedi ate subderivation; each element
of ®p islinked, becauseitisan e ement of ©y,, andthereforelinkedintheimmediatesubderivation.
To conclude the case, suppose the end-sequent of D is spanned and that I’ and A’ are spanned
by @'; it follows that same property applies to D, so the subderivation is spanned. Then the end-
sequent must also be spanned.
The aternative case has B“” , € ©. By assumption, it also has A“” o € M. We therefore define
an overal My and Oy dlrectly as Myy and Oy, respectively; smllarly MM=rjandA’ =A]. To
construct the needed D’ for appropriate N’ and @', we simply apply the mductlon hypoth&eisto D,
for the case that ©7 is© and N’ isM’. The resulting derivation D} suffices.
Having completed the induction, we argue that we can obtain an overall D’ that isisolated, as-
suming the original D isnot only isolated but spanned. Apply theinductiveresult to D for the case

38 INDEFINITE INFORMATION

MN'=MNand® =06;sincel" CT and A’ C A we obtain a spanned derivation D’ ending
mr'—4n;0

Consider the end-sequent of any block other than therootin D’; itis
Mo, E; —; 09

where acorresponding block occursinD. | argue by contradiction that for any F € Mg either F € N
or F isbased in an occurrence of F as the side expression of an inferencein D’ in which E isalso
based. (Thiswill show that D’ isisolated.) So consider an exceptional F. Since D isisolated, if
F ¢ N, F is based in an occurrence of F as the side expression of an inference in D in which E
is also based; thisinference introduces some path symbol n which occursin the label of F and E.
In D’, E can not be based in such an inference; otherwise F would also be based in that inference,
since D’ issimple. (We have assumed that F isnot based in such an inference.) But in this case the
expression in the end-sequent of D’ on which E is based must contain n. Because the end-sequent
of D’ is spanned the form of INM and © isconstrained in D, F must occur in M. Thisis absurd. ®

We conclude Section 4.4.2 by observing some facts about this construction. First, let D’ be a
derivation obtained by the construction of Lemma 8, and suppose D’ is weakened (in a spanned
and balanced way) to D by adding occurrences of global expressions that either already occur in
the end-sequent of D’ or never occur as global expressionsin D’. Then a straightforward induction
shows that D’ is obtained again from D” by the construction of Lemma 8.

Second, observe that if D’ is a derivation obtained by the construction of Lemma 8, and D”
is obtained from D” by the renaming of Herbrand prefixes (asin Lemma 7), then straightforward
induction shows that D” is obtained again from D” by the construction of Lemma 8.

Third, let D’ be a derivation for which the construction of Lemma 8 yieldsitself. Let v be a
prefix and let the N; © be the smallest balanced pair where © containsall the carriersof prefixes of
vintroducedin D’. Supposeeach expressionin M and © has the property that at most oneinference
of D’ has an occurrence of that expression as aside expression. Consider aderivation D” obtained
from D’ by weakening globally by M (on the left) and by © (on theright). Let D* be the result of
applying the construction of Lemma 8 to D”. Then D* contains any subderivation of D’ whose
end-sequent contains ' and © as global formulas. Again thisis a straightforward induction; the
base case considers a subderivation of D’ whose end-sequent contains M and © as global formu-
las; in this case we apply thefirst observation. Unary inferences extend the claim immediately. At
binary inferences, one subderivation must be unchanged, by the first observation: since Il and ©
are introduced on a unique path, each ' and © formula never occurs or already occurs in the end-
sequent in that subderivation. Thus the other subderivation necessarily appears in the derivation
obtained by the construction of Lemma 8.

4.4.3 Block conversion
We now have the background required to perform the conversion to block structure.

Lemma 9 We are given a blockwise eager SCLSderivation D whose end-sequent is spanned and
balanced and takes the form:
M, —;0

IN MODAL LOGIC PROGRAMMING 39

We transform D into a blockwise eager SCLB derivation in which every block is cancelled, linked,
isolated, smple, balanced and spanned.

Proof. Our induction hypothesis is stronger than the lemma. We assume a blockwise eager
SCLU derivation D with end-sequent of the form

M, —;0

inwhich every block iscancelled, linked, isolated, simple, balanced and spanned, such that that the
subproof rooted at any (\V —) inferencein D isan SCL Sderivation. Andweidentify adistinguished
expression occurrence E in the end-sequent of D which is linked. By Lemma 8, it is straightfor-
ward to obtain such aderivation from the SCLS derivation (containing only asingle block) that we
have assumed. We transform D into a blockwise eager SCLB derivation in which every block is
cancelled, linked, isolated, ssmple, balanced and spanned and in which E isalso linked; we perform
induction on the number of (V —) inferencesin D.

In the base case thereareno (V —) inferences, so D itself isan SCLB derivation.

In the inductive case, we assume D with n (V —) inferences, and assume the hypothesis true
for derivationswith fewer. We find an application L of (\V —) with no other closer to theroot of D.
We will transform D to eliminate L.

Let D’ denote the smallest subderivation of D containing the full block of D in which L oc-
curs. Explicitly, D’ may be D itself; otherwise, D’ isrooted at the right subderivation of the highest
(v —B) inference below L—an inference we will refer to asH. In either case, our assumptions al-
low usto identify adistinguished linked expression F in the end-sequent of D': either the assumed
E from D, or the side expression of the inference H (assumed cancelled). Suppose AV BY is the
principal of L. We can apply Lemma 7 to rename AV By to AV Bf(in such away that each sym-
bol in p that isintroduced in D’ isintroduced by a unique inference there. Now we can infer the
following schemafor D’:

DA DB
Mo, F,1; T, AV B, Al —= A;0,,0 Mo, F,M; T, AV B, BY — A;00,0 .
Mo,F,M;T,AVBY — A; 0,0
DL
Mg, F;,—; O

That is, the subderivation of D’ below L isD'; the right subderivation above L (in which B is as-
sumed) is DB; theleft is DA,

We will use the inferences from D' to construct alternative smaller derivationsin place of DA
and DB. By @, indicate the minimal set of formulas required in addition to O to span A%; by M’
indicatetheminimal set of formulasrequiredinadditiontolg, F and A§‘< toensurethat thepair given
by Mo, ', F, Al and ©p, @ isbalanced. (Thisiswell-defined because the sequent Mg, F —= Oy is
aready spanned and balanced.) Now we can construct two new subderivations D" and D’B given

40 INDEFINITE INFORMATION

respectively as follows:

n'+A + DA+
Mo, F, M, 17, AL T AV BY, AL —= A, 00,0,0
Mo, F, M, T, A%,T,AVB} — A;00,0,0
n'+A +D-+&
Mo, F, 1", A —: 00,0

decide

N’ +BY +DB+0]
Mo, F,N, 1, BY; M, BVBY, By — A;00,0,0
Mo, F,N, M7, BY; T, BVB}Y — A;0,,0,0
N’ +BY +D-+ &
Mo, F, M, BY; —; 0, &

decide

That is, we weaken D# and DB by global versions of the side expression of inference L throughout
their lowest blocks; we apply a (decide) inference to obtain a new subderivation to substitute for
the subderivation rooted at L in D'. We weaken by sufficient additional formulas globally in the
lowest blocks to ensure that the end-sequents of these derivations are balanced and spanned.

Since we have changed only the lowest block here, we can now apply Lemma 8 to obtain cor-
responding derivations D{* and DE in which every block is cancelled, linked, isolated, smple, bal-
anced and spanned. In light of our first observation about the construction of Lemma 8, we can
see that the inferences of D” are preserved up to the new (decide) inference. And in light of our
third observation about the construction of Lemma 8, given the unique inferences introducing ©q
and Mo, this (decide) inference must be preserved in DA. Thus AL islinked in D{* and for analo-
gous reasons BY, islinked in DE. These derivations satisfy the induction hypothesis as deductions
with fewer than n (v —) inferences; we can apply the induction hypothesis with Al and BY as
the distinguished linked formulasto preserve. Thisresultsin SCLB derivations A and B with the
same end-sequents as D’A and DB, in which every block is cancelled, linked, isolated, smple and
spanned, and in which respectively A and BY are linked.

We need only one of A and B to reconstruct D’ using blocking inferences. For example, we
obtain a proof using (v — &) by using B in place of DB as schematized below:

DA B
Mo, F,1; T, AV By, Al —= A;0,,0 Mo, F,M’,BY — 0, & B
Mo, F,M;T,AVB} — A; 00,0 L
DL

Mo, F;—; OG0

IN MODAL LOGIC PROGRAMMING 41

In acomplementary way, we obtain aproof using (V —>FB{) by using A in place of DA as schematized
below:

DB A
Mo, F,M; T, AV B, BY — ;0,0 Mo, F. M, AY — G0, @
Mo, F,M;T,AVB} — A; 00,0 L
DL
Mo, F; —: 60

Note that the root block is isolated in both cases, because we have added only as many formulas
to N’ and ©' as are necessary to obtain a balanced, spanned sequent; the remaining expressions
originateintheend-sequent of the previousblock, whichweknow wasisolated. Thus, inboth cases,
we have blockwise eager derivationsin which every block is cancelled, isolated, smple, balanced
and spanned, in which fewer than n (v —) inferences are used, and in which only the root block
may fail to be linked. We thus need to apply the construction of Lemma 8 again to ensure that
the root block is linked. It is possible for the distinguished occurrence of F not to be linked in
one of the resulting derivations, but not both. To see this, consider applying the construction of
Lemma8to D’ itself, asatest: theresult will be D’ since D’ islinked. Startingfrom D” and DB and
axioms elsewhere, each inferencein D’ corresponds to an inference in the alternative derivations
schematized above. We can argue by straightforward induction that no formulais linked in the
reconstructed D’ unlessit is also linked in the one of the corresponding reconstructed alternative
derivations. And F islinkedin D’.

Call the derivation in which F is linked D”; we substitute D” for D’ in D. Since F remains
linked in D”, when we do so, we obtain a blockwise eager SCLU derivation with an appropriate
end-sequent, with fewer original (v —) inferences, and in which every block remains cancelled,
linked, isolated, simple, balanced and spanned, and in which (Vv —) inferences lie at the root of
SCLSderivations. Applyingtheinduction hypothesisto theresult givestherequired SCLB deriva-
tion. ®

45 Modularity

Thefina stepinthejustification of the cal culusisto enforcemodularity. Thisagainisaccomplished
by adapting the rules of the sequent calculus. We rewrite inference figures so that every sequent in
the proof has at most one formulain the left and right local areas, and further if aright rule applies
theleft local areaisempty. The new inferencesare presented in Definition 23 and 24 as the sequent
calculus SCLP. Definition 23 shows the rules for decomposing program statements; Definition 24
shows the rules for decomposing goals.

Definition 23 (L ogic programming calculus—programs) The following inference figures de-
scribe the logic programming sequent calculus SCLP as it appliesto program clauses.

1. axiom—A atomic:
MA — AV A

42

INDEFINITE INFORMATION

. decision (program consultation)—again A atomic:

Py Py —= AV A

Pp, —>A¥,A decide

. conjunctive:

[Py —= AV A
LPAQE —AVA L

Mo — AVA
LPAQE —A;A" TR

. digunctive:

[Py — AA r,Q:—:A
MPVQY — AV A Vo

Mok — AyA MR —=A
M PVQy — AV A

—R

. implication:

M —= QA M Py —= AV A
[QOP, — AY;A

—

. necessity—subject to the side condition that there is a typing derivation S, =, >l /pv : i

(Y -
M P — AV A
rOPy — AV;A

O, —

. existential—subject to the side condition that h is hg,p(H, X):

[PIh(X) /X)) — AV; A
M axPy, — AV A

o

. universal—subject to the side condition that there isa typing derivation S, =; >t @ i

[Plt/X5 e — AVA
O VP — AV A

—

Definition 24 (L ogic programming calculus—goals) The following inference figures describe
the logic programming sequent calculus SCLP as it appliesto goals.

1. restart:

rl_’- X! \))(7A
r,—;Gy, A

restart

IN MODAL LOGIC PROGRAMMING 43

. conjunctive goals:
M —=FA r,—Gk;
M — FAGLA

. digunctive goals:

. necessary goals—where n is na(u, X) for Ai the principal of the rule and for some u for
which n} does not occur inAor I':

pn . Hn . ~HN
TPt ™ Cxuni Sxan 2

M —F > G};A

. un . ~Hn
M — Gxn Cxun: &
M — 0:Gy;A

— O

. universal goals—subject to the side condition that h ishyyg(H, X):

M —= Glh/xy ;A
M — Vx.Gy; A

—

. existential goals—subject to the side condition that thereisa typing derivation S, =¢ >t : p:

M — G[t/x]% ;A
M — 3x.Gy; A

—

SCLP proofs can be rewritten to SCLB rules by a weakening transformation. Conversely,

rewriting SCLB proofs to SCLP proofs is accomplished by induction on the structure of proofs.
The transformation is possible because multiple formulas in sequents are needed only for passing
ambiguities and work done across branches in the search; thisis ruled out by the use of (V —),
(\/ —>R) and (:)—>|_).

Lemma 10 Given a blockwise eager SCLB derivation D, with end-sequent

M, —;0

inwhich every block islinked, s mple and spanned, we can construct a corresponding SCLP deriva-
tion of the same end-sequent.

Proof. We construct by induction on the structure of the linked, simple, spanned, blockwise eager
SCLB derivation D with end-sequent

nr—Ao0o

44 INDEFINITE INFORMATION

an SCLP derivation D’ of which four additional properties hold:
the end-sequent of D’ takesthe form

n;r N0

with/ C T and A C A;

D’ containsin each segment or block all and only the axioms of the corresponding segment
or block of D;

whenever D’ contains a sequent of the form
n*r*—Fr,oe*

F isthe only right formulaon which an axiom in that block is based; and

whenever D’ contains a sequent of the form
N F — A O

then F isthe only left formulaon which an axiom in that segment is based.

Inthebase case, D is
n;r Ak —B).A0
and D’ is
M, Ay —BY;0
Supposing the claim true for proofs of height h, consider a proof D with height h+1. We consider
cases for the different rules with which D could end.
Thetreatment of (— A) isrepresentative of the case analysisfor theright rulesother than (—>).
D ends
N, — AL AABY, A0 N, — BY,AABY, A ©
M;— AABY,A© - A

(It is a consequence of Lemma 5 that in the initial derivation there is an empty local area.) We
smply apply theinduction hypothesesto theimmediate subderivations. If theresulting derivations
end with (restart), consider theimmediate subderivation of theresults, otherwise consider theresults
themselves. These derivations end

Mn—C.0
NN —D:;©

We must have C = A; we know from the structure of D that A islinked, and A could not be linked
in D unless C = A since D’ showstthat al of the axiomsin D derive from C. For the same reason
D = B. So we can combine the resulting proofsby an (— A) inference to give the needed D’.

The case of (—>) proceeds similarly, but relies on an additional observation. D ends

D,
Hn oo - pM.pHN
H’Ax,un’ — A A > BX’BX,ume
M, — A A > B;l(;@

—>

IN MODAL LOGIC PROGRAMMING 45

We apply the induction hypothesis to D, and eliminate any fina (restart) inference. This gives us
aderivation D7 of

W ., E.pHN
M A — BB - ©

If we know that the B-side expression of thisinferenceislinked inthisblock, then we can conclude,
asbefore, that E is an occurrence of the expression B} . We show thisasfollows. We know from
the structure of D only that one of the A-expression and the B-expression must belinked. However,
it is straightforward to show that no left expression Air,]un is linked in an SCLP derivation with a
local goal Cy unless pn is a prefix of v. (The argument is a straightforward variant for example
of [Stone, 1999b, Lemma 2].) Since D is simple and spanned, N must be new; Bi'jm isthe only
expression whose associated path term has un as a prefix.
Thus, we construct D’ using an SCLP inference as

D;
Hn ., pHN . gHN
M A = B B ©
M, — A>; B;l(;@

Now suppose D endsin aleft rule other than (5—5) or (v —B). Wetake (A —) asarepresen-
tative case; then D is:
D,
;1 AABY AL BY — A0
M;T,AANBy — A;0
Apply theinduction hypothesisto D;. If theresult ends in a (decide) inference, let D1 be theim-

mediate subderivation of the result; otherwise let D] betheresultitself. D} isan SCLP derivation
with an end-sequent of the form:

N —

MmE—F,0

E must be aside expression of the inference in question, here (A —); otherwise the corresponding
inference could not have been linked in D. One of the inferencefigures (A —|) and (A —g) must
apply depending on which side expression E is. For concreteillustration, we suppose E isA§‘<; then

we construct D’ as:
D/
1
m;A, —F;0
MAABY —F0/ 7t

Next, we suppose D endsin (5—9), asfollows:

D]_ D2
N, — A, A0 n;r,A>BYy,BY —A;0
mr,ADBY — A0

oS

We begin by applying the induction hypothesis to the subderivation D,. After stripping off any
(restart), we obtain an SCLP derivation D, with end-sequent

Mn,—C.0o

46 INDEFINITE INFORMATION

By the usual linking argument, the expression C must be identical to A§l<. We then apply the induc-
tion hypothesis also to the right subderivation. Again, after stripping off any (decide), we get an
SCLP derivation D, with end-sequent

MN;,D—E;©

By the usual linking argument, D must in fact be identical to B§‘<. Thus we obtain the needed D’ by
combining the two derivations by the SCLP (D—) rule:

Di D>
N, — AL;© n;sy —E;©
MmA>BY —E;0

—

Finally, for (v —B), we consider the representative case of D as schematized below:
D, D,
n;r,A, — A0 n',BY; —; @ 5
VvV —
M;F,AVBy — A0 L

We begin by applying theinduction hypothesisto D1, the subderivation in the current block; if nec-
essary, we strip off any initial (decide) inference, obtaining D7 with an end-sequent that by linking
takes the form:

mA, — E;0
Next, we apply theinduction hypothesisto the other subderivation. Sincebothlocal areasareempty
in the input subderivation, they remain empty in the result subderivation: this gives D, with end-
sequent:

n’,BY; —;0
The two subderivations can be recombined by the SCLP (v —) inferenceto obtain theneeded D':

D1 D,
n,A, — E; 0 n’,BY;, —; 0
M;AVB;— E;©

V —L

The discussion of the previous subsections represents an outline of the proof of the following
theorem.

Theorem 2 Let ' and A be multisets of tracked prefixed expression in which each formula is
tracked by the empty set and prefixed by the empty prefix. There is a proof of I —= A in SCL
exactly when there isa proof of I'; —; A in SCLP in which every block is cancelled.

Proof. Asobserved already in Section 4.1, thereis an SCL proof of I — A exactly when there
isan SCLI proof of I — A. By Theorem 1 of Section 4.2, thereisan SCLI proof of [—= A
exactly when thereisan eager SCLI proof of T —= A. By Lemmad4, thereis an eager SCLI proof
of ' — A exactly when thereis an eager articulated SCLI proof of I'; —~; A. And by Lemma6,

IN MODAL LOGIC PROGRAMMING 47

thereis an eager articulated SCLI proof of I'; —; A exactly when thereis an eager SCL'S proof of
M —:A.

Continuing through the argument, we know from its simple form that the sequent I'; —; A is
gpanned and balanced. By Lemma 9 of Section 4.4.3, then, thereis an eager SCLS proof of I'; —>
; A exactly when there is a blockwise eager SCLB derivation of I'; —; A in which every block is
cancelled, linked, isolated, smple, balanced and spanned. And by Lemma 10 which we have just
proved, thereisaablockwiseeager SCLB derivationof I'; —; Ainwhich every block iscancelled,
linked, isolated, simple, balanced and spanned exactly when thereisan SCLP derivation of I'; —>
;A inwhich every inferenceislinked. And if every inferenceislinked, every block is cancelled. ®

5 Sequent Calculusand Operational Behavior
The action the interpreter specified by SCLP can be summarized as follows. A distinguished for-
mulaon theright in sequents represents the current goal at any state in proof search; if possible, the
interpreter first breaks this goal down into its components. In particular, as outlined in Sections 2
and 3, modular goals like [COFFEE]get-coffee and [TICK ET]get-ticket are processed by considering
transitions to fresh possible worlds where only the information from that module is available.

Onceanatomicgoal isderived, theprogramisconsulted by applying (decide); the chosen clause
is decomposed and matched against the current goal by applicable logical rules. In particular, at
(v —), the second case analysis allows the current goal to be chosen flexibly by the (restart) rule.
The (restart) ruleismodular inthat it limitsthe work that i sreanalyzed to the scope of the ambiguity
just introduced; this conforms to the description in Sections 2 and 3.

The operational rules presented in Section 3.4 go beyond the skeleton implicit in the sequent
calculus SCLP by describing certain concrete data structures for managing search. We justify these
data structures briefly here.

5.1 Cancellationsand modularity
First, the operational rules of Section 3.4 are specialized to deliver only cancelled blocks.

The specialization takes effect by the clause of rule (15), where we requirethat the bookkeeping
information K obtained as aresult from this block should have the value true for ¢?. Observethat
thisvariable ¢? istrue exactly when thereisa cancellationin the block. For theinitial valuefor ¢’ is
false, asset by rule(13e). Each ruleexcept rule (12) simply passes thevaluesfor ¢? along unchanged
through its subproofs. And rule (12) sets ¢? exactly when thekey premisefor the block is accessed:;
we have seen from the proof of Lemma 10 that this ensures a cancellation for this premise within
the segment. Of course, Lemma 10 ensuresthat an SCLP proof system that delivers only cancelled
blocks is sound and complete.

Given that the operational rulesdeliver only cancelled blocks, we can enforce modularity, using
the following observation. Using these rules, whenever an SCLP derivation D’ contains a sequent
of theform M; — GY; © then G will be the only right formulaon which an axiom in that block is
based. The observation we also appeal to in treating the (—>) case of Lemma 10—the variant of
[Stone, 1999b, Lemma 2]—shows that if a left formula P* from M is the ancestor of a principal
formula of an axiom in such a block, p must equal a prefix of v. Now we have ensured that each
timea (v —) rule applies, the key digunct P* has such a cancellation. Thus, in search, we can
restrict the subsequent (restart) rule to goals GY with p a prefix of v. This accounts for the added
congtraint of thisform inrule (15). ®

438 INDEFINITE INFORMATION

5.2 Pruning (V —R) search paths

The second feature reflected in the operational rules of Section 3.4 but not in SCLP is the pruning
of search pathsfor (VV —R) inferences motivated by informal argument in Section 3.3. We can now
formalizethe argument and show that the operational rules of Section 3.4 implement thisargument.

Definition 25 (freerestart goals) Let D be a cancelled SCLP derivation, and let B beablock in
D other than the root. By cancellation, B includes some axioms based in the side expression K of
the (Vv —) inference at the root boundary of B. An expression F isfreein B if every sequent in B
at which an inference applies to an occurrence of K also contains a global goal occurrence of F.

Now suppose D isacancelled SCLP derivationin which thereisa (V —Rg) inference thus:

D,
D, nA;—H;0
I'I;B§l<—>G;@ I'I,A;;—>;G) restart
MAVEL G0 VR

We will recreate the construction of (10) under certain conditions. To describe the construction, let
B be the block of D inwhich this (V —g) inference occurs; let D’ be smallest subderivation of D
containing B. We situate this (V —g) inference, L, within D’ asin:

[Dal
Dy
D, n,A;—H;0
M;BY — G;0 mAL 0 &t
MAVEY - G,0

Dy

Dg

Do

Namely, we define D, as the maximal subderivation of D’ from the end-sequent of L that contains
norightinferencesbelow L. We define D asthe maximal subderivation of D’ fromthe end-sequent
of Dy, al of whose sequents have an occurrence of H on which therestart occurrence of H is based.
We let D be the subderivation of D’ fromthe end-sequent of Dg. Finally, we usethe notation [Da]
to abstract each of the subderivations of D, which begin with a (decide) inference whose principal
expression is an occurrence of Al based in inference L. We use Dy to name the remaining subtree
of D2.

Since we have identified Dy so that no inference applies to an occurrences of A§‘< basedinL in
Dy, we can construct a subtree like Dy except omitting all occurrences of A§‘< based in L. Cal this
Dy. Of course, this changes the form of all open leavesin Dy. Consider any such open leaf

I—I/; - H/;e/

We construct a derivation of this sequent inductively from D,,. With the exception of vV — in-
ferences and the open leaf of D\, (where L occursin D), this derivation is constructed by taking
subderivations inductively and recombining inductively obtained derivations by a corresponding

IN MODAL LOGIC PROGRAMMING 49

inference. At (V —) inferences, we may have to adapt the (restart) subderivation, if therestart isto
agoal notin ©. We do that by restarting to H, copying the necessary reasoning from Dg, and then
supplying the original subderivation (minusitsrestart). At the site of L, we use a derivation of the
form schematized bel ow—supplying the original reasoning for B, and, for A, copying the necessary
reasoning from D¢, and—after an appropriate (decide) inference—supplying the reasoning for A
fromD:

Da
n; A, — G
Ds De
n';By — H,© N, A, — H;0

M;AVB— H’

Now, if we replace all the open leaves in Dy, by derivations so constructed, and in turn substitute
the result at the open leaf of Dg, we obtain a derivation of the same end-sequent as Dg, in which
the occurrence L of (V —R) has been turned into an occurrence of (V —).

Call the transformed proof D*. Under what conditionsis D* cancelled? Clearly, if L occursin
theroot block of D, D* remains cancelled. Otherwise, thereis some key premise K which must be
cancelled in the block where L occurs. Suppose K islinked in Dg: then H is not free and moreover
D* remains cancelled because these D inferences are not moved into a different block in the con-
struction of D*. Suppose K islinked in D,: then these inferences are moved in the construction
of D*, into the block where K must be cancelled. So D* remains cancelled. Finaly, supposeK is
linked in Dy, (outside D,). These inferences also remain in the same block in the construction of
D*: D* remains cancelled.

Thus, it is complete to use (V —g) only in a block other than the root with a key premise
K, where the restart goal of the new block is free, where K is suppressible in the new block—
corresponding to inferences D,—and where K is suppressible throughout the proofs of subgoals
introduced in reaching the dig unction—corresponding to inferences D,. We can now immediately
account for the manipulation of d” to identify any D, subgoals and to enforce the necessary sup-
pression therein rule (13c); we can immediately account for the testing of suppression at rule (12).
Moreover, assuming E correctly accumulates the free restart goals in a block, we can use the con-
dition on Ko setting F in rule (15), the propagation of F throughout the block, and the constraint
GH € F for delayed restarts, to show that the use of (v —g) is limited to new blocks with free
restarts.

There are two cases for the incremental propagation of values of E throughout the proof. In
the case that ¢’ isfalse, E isassigned al the possible restart goals that have been introduced. This
is because with ¢’ false, E isinitialized to the initial restart goals G in the block and augmented
whenever anew restart goal isintroduced by rules(11d), (11e) or (11f). Thus, inthe case of thefirst
cancellation, inrule (12), E isset to those goalsthat are present at every sequent where aninference
appliesto K. Thereafter, E is updated only by the rule (12), so that E continues to hold all those
goalsthat are present at every sequent where an inference appliesto K. It followsstraightforwardly
that at the end of ablock, which must contain some cancellation, E contains exactly the free restart
goals of the block. ®

50 INDEFINITE INFORMATION

5.3 Congtraints and unification

Theonly featureof the operational rulesthat remainsto be accounted for isthe use of logic variables
and congtraints in place of ordinary instantiation of terms. The regime adopted in Section 3.4 rep-
resents one standard formalization of the inevitable need to lift logical calculi allow instantiations
to be solved for rather than searched over.

We can justify our particular constraints and constraint propagation technique as follows. We
start by following [Voronkov, 1996] in describing a range of parameterized atomic constraints on
substitutions. For each inference, an appropriate constraint can be selected and appropriate param-
etersprovidedtoit, so asto ensure that when a substitution that satisfies the constraint is applied to
aproof, to replace logic variables with ordinary terms, the side condition on that inferenceis met.
These provide the vocabulary of constraints used in rules (11)—«15). Proofs themselves are now
conceived in two steps. In the first step, we build a lifted tree of inferences paired with an appro-
priate composite constraint. The constraints are accumul ated from separate subtrees and composed
together to provide the constraints for alarger tree. In the second step, we find a substitution that
solves the constraints; we can obtain an ordinary proof from the lifted proof using this substitution.
For our modal system, in particular, we can naturally adapt the construction of [Stone, 1999a, Sec-
tion 4], which discusses the modal language and moreover shows how to formul ate the constraints
as a conjunction of atomic constraints in the natural case where each inference in the proof intro-
duces distinct logic variables.

The accumulation of these constraints incrementaly follows [Lincoln and Shankar, 1994].
Having argued that the constraints associated with a lifted deduction amount to a conjunction—
in effect, a multiset—of atomic constraints, it amounts to the same thing whether the constraints
are accumulated statically, by union, as in Voronkov’s presentation, or dynamically, by accumulat-
ing them throughout a proof, as in the Lincoln and Shankar presentation. The latter system offers
the advantage of representing the constraintsin placein a partial proof more directly, allowing the
more natural statement of the unifiability constraint of rule (14). ®

6 A Worked Example

We illustrated some potential applicationsfor DIALUP in section 2. Now that we have justified the
DIALUP interpreter in detail, we return to the first application, discourse planning, to consider the
action of that interpreter more precisely. We will consider the same discourse as before:

(16) | have account 42. What is my balance?

However, we will adopt an account of conversational action that ismore sophisticated than the ear-
lier onein three important respects.

First, we now explicitly consider contributions to dialogue that span multiple utterances, we
will be interested in how both sentences of (16) combine together to achieve the patron P’s com-
municative goals.

Second, we will represent the communicative goals themselves more finely and with less in-
direction. Earlier we saw how the patron could conclude that, assuming certain information was
to be provided, the teller would be in possession of a specific piece of information that the patron
needed. In fact, what the patron wants is something more: the patron wants the teller to give that
information. Otherwise, we cannot explain why the patron actually goes on to ask the question.

IN MODAL LOGIC PROGRAMMING 51

Third, we will represent the communicative actions more faithfully. We represent utterances
explicitly. Moreover, in describing how making an utterance adds to the conversational record, we
take into account both the knowledge that a speaker must have to contribute the utterance to the
discourse honestly, and the information the conversational record must already provide to satisfy
any presuppositions that the utterance carries.

Degpite thisricher representation, the outline—and the moral—of this example followsthe ear-
lier example of Section 2.1. We represent and refer to the states of knowledge of the participants
in the conversation using modal operators. We construct a program that describes both the initial
state of the conversation and the avail able communicative actions; existential assertions figurewill
prominently in both descriptions. Then, we give DIALUP a query that assesses the ability of the
speaker to achieve acommunicative goal with some sequence of utterances. This query uses nested
implications to describe successive updates to the conversational record.

It is best to begin with the formalization of ability; it figures not only in the assessment of the
effect of multiple utterances but also in the formulation of the communicative goals themselves.
Consider how an agent A makes a decision of a single best communicative action to take next. A
must choose a single specific utterance u on the basis of the known effects that u will have in this
context. To assess what effects are known to A, we can consider A's information only, assume that
A has uttered u normally and sincerely—uttered(A,u)—and query whether this adds some desired
fact G to the conversational record. This means we pose the query in (17).

(17) Ju.[A](uttered(A,u) D [CR|G)

Thisquery is, not surprisingly, avariant of the query (4) used to assess the effects of communicative
actionin Section2.1. (A simplification: wehave used ahypothesisuttered(A, u) to sidestep thetem-
poral reasoning requiredin general for planning. Asacontingent assertion, any use of uttered(A, u)
must be made in the state of information available to A's deliberation at this step.)

Our first use of thisquery will beto characterize the communicativegoal that the patron P means
(16) to accomplish. P wants the teller to be able to provide an answer. Let us use the formula
has-answer (P) to represent the condition that P has needed information. We can now use (17) to
characterize situations where the teller Scan get this condition on the conversational record:

(18) Ju.[T](uttered(T, u) D [CR]has-answer (P))

Be aware of two assumptions that (18) encodes. First, (18) implicitly appeals to our expectations
about cooperative conversation. In a cooperative conversation, P can expect that T will giveare-
sponse to the question smply because T recognizes T can give aresponse to the question. Second,
(18) exploitsthe formulahas-answer in order to avoid more structured reasoning about information
needs. P and T’s exchange depends on P signaling that P wants to know the balance; otherwise T
cannot know to provideit. Hence in (18), the formula [CR]has-answer (P) indicates that the con-
versational record contains not only P’sinformation, but also P’sinformation need itself.

We now return to the problem P faces of sequencing together some number of utteranceswhich
together will establish theresult expressed in (18). Weimaginethat P adopts an iterative deepening
planning strategy, considering first one-sentence contributions to conversation, then two-sentence
contributions, and so forth. In each case, P attemptsto construct the plan by posing acorresponding
guery. Following analyses of ability such as [Davis, 1994, Stone, 19984], at each step in carrying
out aplan, the agent must only select asingle concrete next action for its known effects. The effect

52 INDEFINITE INFORMATION

the agent must verify at that step isthat the agent can continue making appropriate choices as needed
in carrying out the plan until agoal is reached.

In this context, a two-sentence contribution will suffice. For such a plan, the agent makes a
single choice now, considers the consequences, and anticipates a single further choice. The corre-
sponding formulais (19).

(19) Ju.[A](uttered(A, u) D Ju'.[A](uttered(A, U') D [CR]G))

(Overadl, then, at each step in the plan, an additional level of nested knowledge is introduced that
includes the additional information that is available after that action is taken; the new information
may then be used to select what the subsequent action should be.)

We can combine (19) with communicative goal represented in (18) to describe what the patron
P must establish to justify the contributionin (16):

(20) Ju.[P](uttered(P,u) D
Ju’.[P](uttered(P,U') D
[CR]3b3u”.[T](uttered(T,u”) O [CR]has-answer (P))))

That is: P selects utterances u and U’ in sequence because once they are added to the conversa-
tional record, the conversational record will also guarantee that the teller can—and, by reasoning
cooperatively from P's wants, will—provide areply by which P learns the balance value. What
we would then like to do is prove this query in DIALUP. Thiswould not only check that P’'s con-
tribution to discourse is sensible, it could use unification to arrive at that contribution. By assum-
ing the occurrences of events rather than unifying, we could get an abductive discourse planner
(cf. [Thomason and Hobbs, 1997]).

What do we need to complete this proof? Obviously we need to represent the update to the
conversation made by utterances. We now propose such a representation; it adopts some idealiza-
tions of cooperative conversation, in order to describe utterances as strongly and precisely as pos-
sible. First, we suppose that speakers only consider formulating utterances that they know to be
true. Second, we suppose that utterances carry presuppositions: for an utterance to be interpreted
appropriately, the common ground must provide ajustification for these presuppositions. Provided
that an utteranceis uttered normally, truly, and with its presuppositions met in this way—and pro-
vided only this—the content of the utterance becomes part of the conversational record. Of course,
this knowledge of how to use and interpret utterances must itself be common knowledge among a
speech community.

(21) formalizesthis picture; it assumes an utterance u with assertion a and presupposition p, to
be uttered by agent A.

(22) [CR]([A]an [CR]p A uttered(A,u) D [CR]a)

Note that we can easily accommodate the linguistically important anaphoric approach to
presupposition by treating the formulas p and a as open formulas [vander Sandt, 1992,
Stone and Webber, 1998]. The free variables of p must be instantiated by finding suitable
values (or discourse referents) from the context; that assertion a is then made about those val ues.
The contribution of the presupposition to interpretation on this account is in specifying how to
retrieve from the context the referents we want to talk about; we will see examples of this below.

IN MODAL LOGIC PROGRAMMING 53

BANK —= CR

IT T

TELLER ——=

Figure 4: Modalities and inclusion relationships for the example.

From the point of view of logic programming search, this rule is somewhat problematic: if
[CR]aprovidesaway to establish [A]a, thisrulemay be applied recursively and so lead to an infinite
regress in proof search. Intuitively, it is clear that no agent should search for ways of convincing
itself of something by telling it to itself. We can use this insight for this example to reformulate
(21) to refer to some distinguished subset of the agent’s informati on—information that they bring
to the conversationinitially and would consider communicating. (An aternative, which would take
ustoo far afield here, isto incorporate a more sophisticated account of time.) Notationally, we dis-
tinguish [A] (the agent’s increasing knowledge) from [1A] (the agent’s initial stock of information
to contribute). With this new expressive power, we will refine the template of (21) as (22):

(22) [CR]([IA]aA [CR]p A uttered(A,u) D [CR]a)

Our example now illustrates the specification of modular problem-solving described in Section 2.2
aswel| asthe specification of agents motivated in Section 2.1! Figure4 diagramsall the modalities
that we will use in this example.

Let us apply this formalization to our discourse starting with the initial utterance. It has the
presupposition that account 42 ismutually identifiable: that thereisan a satisfying ¢ (a) asdefined
below:

(23) do(a) = (account(a) A number (a, 42) A identifiable(a))

It carries the assertion that a belongs to the patron P. Thus, we can describe the preconditions and
effects of the first utterance using the definition:

(29 [CR]Vadu[CR]([IP|belongs(a, P) A [CR]$g(a) A uttered(P,u) D [CR]belongs(a, P))

(In Prolog, we would use an explicit structured term rather than an existential quantifier to specify
the utterance u. In our case Herbrand terms are the only compound terms the logical development
has described; the double nesting of modalitiesis therefore required to account for increasing do-
mains.)

Once the first utterance succeeds, the second requires that the balance b in P’s account a be
mutually identifiable, formalized as ¢, (a, b):

(25) $1(a,b) = (account(a) A belongs(a, P) A balance(a, b) A identifiable(b))

We treat this utterance as contributing the information that P’s information needs are to know what
the value of b is; accordingly, we can describe the preconditions and effects of the second utterance
in the following rules:

54 INDEFINITE INFORMATION

(26) [cr]Vavb3u'[cr]([1P](3v][P|value(b, v) D has-answer (P))A
[CR]$1(a, b) A uttered(P,U) D
[CR](3v]P|value(b, v) D has-answer (P)))

Finally, we need a specification of the hypothetical third utterance—the teller’s reply, which
might go along thelines: your balance is$600. We can assign thisthe same presupposition as (25),
and regard it as informing what the balance of the account is. That |eads to therule:

(27) [cr]Vavbvv3au”[cr]([IT]value(b, V) A [CR]d1(a, b) A uttered(T,u”) D
[cR]value(b,v))

As it happens, we cannot simply prove (20) from (24), (26) and (27). To establish this query,
we need first of al some genera facts about banking. In fact, the whole point of formulating the
query isto alow usto draw on avariety of shared knowledge about banks and banking in stream-
lining the discourse. An important part of what makes these facts general is that they characterize
the information available to different participants abstractly, by making essential use of existential
assertions.

To facilitate reuse of these facts about banking, we can specify them using a special modality
[BANK] with [BANK]p D [CR]p; we can add another modality [TELLER] for what any teller knows.
Since T is theteller now, thisis subject to [TELLER]p D [IT|p. People familiar with banks know
that accounts are named by codes like 42:

(28) [BANK] Vc.(code(c) D
Ja [BANK] (account(a) A number(a, c) Aidentifiable(a)))
[BANK] code(42)

They also know that thereis a balance for any account, that it is identifiable if the account is, that
theteller knowsitsvalue:

(29) [BANK] Va b [BANK] (account(a) D balance(a, b))
[BANK] Vab (balance(a, b) A identifiable(a) O identifiable(b))
[BANK] Vab(balance(a, b) D 3v. [TELLER]value(b, V))

We need not only general factsabout banking, but we need the patron P to bring to the discourse
context the information that the two utterances in the discourse carry.

(30) [IP]Va(account(a) A number (a,42) D belongs(a, P))
[IP|VaVvb(account(a) A number (a,42) A balance(a, b)A
dc[p|value(b, c) D has-answer (P))

By adding all these facts, it becomes possible to prove the query. In fact, DIALUP reports for
this exampl e that there is a single proof—the expected one where the three utterances described in
(24), (26) and (27) are used as witnesses for the three corresponding existential quantifiersin (20).

Exhausting the search space for this example involves what may seem a surprising amount of
work. DIALUP attempts about one hundred possible applications of the (decide) rulefor backward
chaining in the course of tabulating all ways to prove the query from the specification. In part this
reflects the size of the proof; in alogic programming derivation, for each communicative goal that

IN MODAL LOGIC PROGRAMMING 55

the utterance hel ps establish, the interpreter must prove separately that the speaker knowsthe asser-
tion of the utterance and that the conversational record supportsthe presupposition of the utterance.
But the number a so includes a quota of applications of program clauses that are discarded imme-
diately because of unification mismatches between thefirst-order terms or modal prefix associated
with the program clause and the current goal. It isclear thereforethat it will be impossible to spell
out each step DIALUP takes in exploring the proof search space for this query.

We can, however, summarize the notable features of this exploration. DIALUP begins by un-
wrapping the query, introducing assumptions for the three communicative actions that we are
solving for and considering the goa has-answer (P). Although two clauses are headed by the
has-answer predicate corresponding to the resulting goal, the modal prefix of that goal (requiring
shared information at a certain stage) isonly compatiblewith the communication clause (26). Thus,
DIALUP immediately turnsto cons dering how P’swant could be communicated. The condition that
P know that want to start is established straightforwardly. (But observe again that only one of the
has-answer clauses applies, as we now requireinitial knowledge on the part of P, the communica-
tiveclauseisdiscarded.) Next weturn to establishing the presupposition as shared. Notably, for the
belongs presupposition, we must match a communication clause (again P's knowledge is not rele-
vant to the shared goal); DIALUP thus recognizesthe dependence of P’s question on the declarative
sentence that precedesit. DIALUP establishes that P knowsthe assertion of that first utterance, that
account 42 belongsto P, by the appropriate clause; the presupposition of thefirst utterance likewise
follows. Now thereis an ambiguity: should we treat utterance one uttered by the first or the sec-
ond assumption we have made? DIALUP works through both alternatives—this redundancy isthe
attraction of an abductive approach to discourse planning, in which a single unambiguous assump-
tion of utterance can be carried through. Having established the effects of utterance one and then
the presupposition of utterance two, we go to unify utterancetwo with auttered assumption. At this
stage, because of the dependence of utterance two on utterance one and the modal prefixesin which
that dependence is encoded, the only possibility is that where utterance one is linked with the first
assumption and utterance two islinked with the second. DIALUP backtracks until thispossibility is
recognized.

The communication clause associated with P’'s question requires a further subgoal to be estab-
lished before we can establish has-answer: we must show that P knows the balance. The value
fact in question can be proved only assuming some communication. DIALUP use the teller’sinitial
knowledgeto establish the possibility of making the assertion; it uses the patron’sfirst, background
utterance to establish the presupposition; the utterance is identified with the teller’s assumed utter-
ance. With this the proof, and indeed the proof search, is concluded. ®

7 Conclusion

To execute moda specifications requires leveraging both the flexibility of efficient classica
theorem-proving and the distinctive modularity of modal logic. Thisis a significant problem be-
cause the two are at odds. On the one hand, flexible search strategies impose no constraints on the
relationships among inference and, by thus ignoring modularity, leave open hopelessly wild pos-
shilities for search. On the other hand, brute-force modular systems may place such strong con-
straints on the order in which search must proceed that it becomes impossible to guide that search
in apredictable, goal-directed way. In this paper, we have explored one strategy for balancing the
flexibility of classical goal-directed search with the modularity of modal logic. This strategy cul-

56 INDEFINITE INFORMATION

minates in the development of a modular logic programming sequent cal culus SCLP and and asso-
ciated interpreter, DIALUP.

It may be delicate to construct these systems, but the SCLP presentation, and the associated
DIALUP operational rulesthat we justified here, work according to asimple intuition. A modular
goal can be thought of as an assignment of a problem to a new independent agent that has access
to precisaly the information in the corresponding modular statements. This intuition provides a
powerful handle on the close connection between modularity and ambiguity, proof size and search
control in deductions. It supports applications that can be mocked up smply, asin Section 2, but
that can also be fleshed out substantially and usefully, as suggested in Section 6.

References
[Andreoli, 1992] Andreoli, J.-M. (1992). Logic programming with focusing proofsin linear logic.
Journal of Logic and Computation, 2(3):297-347.

[Auffray and Enjalbert, 1992] Auffray, Y. and Enjalbert, P. (1992). Modal theorem proving: an
equational viewpoint. Journal of Logic and Computation, 2(3):247-295.

[Baldoni et al., 1993] Baldoni, M., Giordano, L., and Martelli, A. (1993). A multimodal logic to
define modulesin logic programming. In ILPS, pages 473-487.

[Baldoni et al., 1996] Baldoni, M., Giordano, L., and Martelli, A. (1996). A framework for modal
logic programming. In Maher, M., editor, JICSLP 96, pages 52—-66. MIT Press.

[Basin et a., 1998] Basin, D., Matthews, S., and Vigano, L. (1998). Labelled modal logics: Quan-
tifiers. Journal of Logic, Language and Information, 7(3):237-263.

[Cassdll et al., 1994] Cassell, J., Stone, M., Douville, B., Prevost, S., Achorn, B., Steedman, M.,
Badler, N., and Pelachaud, C. (1994). Modeling the interaction between speech and gesture. In
Proceedings of the Cognitive Science Society.

[Clark and Marshall, 1981] Clark, H. H. and Marshall, C. R. (1981). Definite reference and mutual
knowledge. In Joshi, A. K., Webber, B. L., and Sag, |., editors, Elements of Discourse Under-
standing, pages 10-63. Cambridge University Press, Cambridge.

[Davis, 1994] Davis, E. (1994). Knowledge preconditionsfor plans. Journal of Logic and Com-
putation, 4(5):721-766.

[Debart et al., 1992] Debart, F., Enjalbert, P, and Lescot, M. (1992). Multimodal logic program-
ming using equational and order-sorted logic. Theoretical Computer Science, 105:141-166.

[Farifas del Cerro, 1986] Farifasdel Cerro, L. (1986). MOLOG: A system that extends PROLOG
with modal logic. New Generation Computing, 4:35-50.

[Fitting, 1972] Fitting, M. (1972). Tableau methods of proof for modal logics. Notre Dame Journal
of Formal Logic, 13(2).

[Fitting, 1983] Fitting, M. (1983). Proof Methods for Modal and I ntuitionistic Logics, volume 169
of Synthese Library. D. Reidel, Dordrecht.

IN MODAL LOGIC PROGRAMMING 57

[Frisch and Scherl, 1991] Frisch, A. M. and Scherl, R. B. (1991). A genera framework for modal
deduction. In Proceedings of KR, pages 196-207. Morgan Kaufmann.

[Giordano and Martelli, 1994] Giordano, L. and Martelli, A. (1994). Structuring logic programs:
A modal approach. Journal of Logic Programming, 21:59-94.

[Girard, 1993] Girard, J.-Y. (1993). On the unity of logic. Annals of Pure and Applied Logic,
59:201-217.

[Green and Carberry, 1994] Green, N. and Carberry, S. (1994). A hybrid reasoning model for in-
direct answers. In Proceedings of ACL, pages 58-65.

[Hintikka, 1971] Hintikka, J. (1971). Semantics for propositional attitudes. In Linsky, editor, Ref-
erence and Modality, pages 145-167. Oxford.

[Hodas and Miller, 1994] Hodas, J. S. and Miller, D. (1994). Logic programming in afragment of
intuitionistic linear logic. Information and Computation, 110(2):327-365.

[Houghton, 1986] Houghton, G. (1986). The Production of Language in Dialogue: A Computa-
tional Model. PhD thesis, University of Sussex.

[Kanger, 1957] Kanger, S. (1957). Provability in Logic, volume 1 of Sockholm Studiesin Philos-
ophy. Almgvist and Wiksell, Stockholm.

[Kleene, 1951] Kleene, S. C. (1951). Permutation of inferencesin Gentzen'scalculi LK and LJ. In
Two papers on the predicate cal culus, pages 1-26. American Mathematical Society, Providence,
RI.

[Kripke, 1963] Kripke, S. A. (1963). Semantical analysis of modal logic. I. Normal modal propo-
stiona calculi. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 9:67-96.

[Lincoln and Shankar, 1994] Lincoln, P. D. and Shankar, N. (1994). Proof search in first-order
linear logic and other cut-free sequent calculi. In LICS, pages 282—291.

[Loveland, 1991] Loveland, D. W. (1991). Near-horn Prolog and beyond. Journal of Automated
Reasoning, 7:1-26.

[Miller, 1989] Miller, D. (1989). A logical analysis of modulesin logic programming. Journal of
Logic Programming, 6(1-2):79-108.

[Miller, 1994] Miller, D. (1994). A multiple-conclusion meta-logic. In Abramsky, S., editor, Pro-
ceedings of the International Symposium on Logicsin Computer Science, pages 272—281.

[Miller et d., 1991] Miller, D., Nadathur, G., Pfenning, F., and Scedrov, A. (1991). Uniform proofs
as afoundation for logic programming. Annals of Pure and Applied Logic, 51:125-157.

[Moore and Paris, 1993] Moore, J. D. and Paris, C. L. (1993). Planning text for advisory dialogues:
capturing intentional and rhetorical information. Computational Linguistics, 19(4):651-695.

58 INDEFINITE INFORMATION

[Nadathur, 1998] Nadathur, G. (1998). Uniform provability in classical logic. Journal of Logic
and Computation, 8(2):209-229.

[Nadathur and Loveland, 1995] Nadathur, G. and Loveland, D. W. (1995). Uniform proofs and
digunctive logic programming. In LICS, pages 148-155.

[Nonnengart, 1993] Nonnengart, A. (1993). First-order modal logic theorem proving and func-
tional simulation. In Proceedings of 1JCAI, pages 80-87.

[Ohlbach, 1991] Ohlbach, H. J. (1991). Semantics-based trandation methods for modal logics.
Journal of Logic and Computation, 1(5):691-746.

[Onishi and Matsumoto, 1957] Onishi, M. and Matsumoto, K. (1957). Gentzen method in modal
calculi . Osaka Mathematical Journal, 9:113-130.

[Power, 1977] Power, R. (1977). The organisation of purposeful dialogues. Linguistics, 17:107—
152.

[Prior, 1967] Prior, A. N. (1967). Pagt, Present and Future. Clarendon Press, Oxford.

[Schild, 1991] Schild, K. (1991). A correspondence theory for terminological logics: preliminary
report. In 1JCAI, pages 466—471.

[Stone, 1998a] Stone, M. (1998a). Abductive planning with sensing. In AAAI, pages 631-636,
Madison, WI.

[Stone, 1998b] Stone, M. (1998b). Modality in Dialogue: Planning, Pragmatics and Computa-
tion. PhD thesis, University of Pennsylvania.

[Stone, 1999a] Stone, M. (1999a). First-order multi-modal deduction. Technical Report RUCCS
Report 55, Rutgers University.

[Stone, 1999b] Stone, M. (1999b). Representing scope in intuitionistic deductions. Theoretical
Computer Science, 211(1-2):129-188.

[Stone, 2000] Stone, M. (2000). Towards a computational account of knowledge, action and in-
ferencein instructions. Journal of Language and Computation, 1:231-246.

[Stone and Webber, 1998] Stone, M. and Webber, B. (1998). Textua economy through close cou-
pling of syntax and semantics. In Proceedings of INLG, pages 178-187.

[Thomason, 1990] Thomason, R. H. (1990). Accommodation, meaning and implicature. In Cohen,
P.R., Morgan, J., and Pollack, M. E., editors, Intentionsin Communication, pages 325-363. MIT
Press, Cambridge, MA.

[Thomason and Hobbs, 1997] Thomason, R. H. and Hobbs, J. R. (1997). Interrelating interpreta-
tion and generation in an abductive framework. In AAAI Fall Symposium on Communicative
Action.

IN MODAL LOGIC PROGRAMMING 59

[van der Sandt, 1992] van der Sandt, R. (1992). Presupposition projection as anaphoraresol ution.
Journal of Semantics, 9(2):333-377.

[Voronkov, 1996] Voronkov, A. (1996). Proof-searchinintuitionistic logic based on constraint sat-
isfaction. In TABLEAUX 96, volume 1071 of LNAI, pages 312-329, Berlin. Springer.

[Wallen, 1990] Wallen, L. A. (1990). Automated Proof Search in Non-Classical Logics. Efficient
Matrix Proof Methods for Modal and Intuitionistic Logics. MIT Press, Cambridge.

