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Boolean concepts are concepts whose membership is determined by a Boolean function, such
as that expressed by a formula of propositional logic. Certain Boolean concepts have been
much studied in the psychological literature, in particular with regard to their ease of learning.
But research attention has been somewhat uneven, with a great deal of attention paid to certain
concepts and little to others, in part because of the unavailability of a comprehensive catalog.
This paper gives a complete classification of Boolean concepts up to congruence (isomorphism
of logical form). Tables give complete details of all concepts determined by up to four Boolean
variables. For each concept type, the tables give a canonic logical expression, an approximately
minimal logical expression, the Boolean complexity (length of the minimal expression), the
number of distinct Boolean concepts of that type, and a pictorial depiction of the concept as
a set of vertices in Boolean D-space. Some psychological properties of Boolean concepts are
also discussed.

Boolean concepts

A Boolean variable is a variable that can take one of two
distinct values, e.g. 0 or 1, often thought of as “truth val-
ues” with 1 meaning “true” and 0 meaning “false” (Boole,
1854/1958). Boolean D-space is the space created by cross-
ing D Boolean variables. Such a space can be conveniently
thought of as a D-dimensional cube or hypercube, with each
vertex corresponding to one possible combination of truth
values for each of the D variables, that is, a D-dimensional
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Boolean object.
A Boolean function is a function mapping Boolean D-

space to {0,1}, that is, assigning a particular subset of the
vertices of D-space to “true” and the rest to “false.” Such
a function can be conveniently depicted as a set of vertices
in D-space, namely those designated “true;” these are some-
times called the positive examples or vertices, and the rest
the negative. Boolean functions are specified completely by
the set of vertices they assign as positive (and thus negative);
two functions with the same positive (or negative) vertices
are the same function. An excellent mathematical survey of
Boolean functions can be found in Wegener (1987) (see also
Paterson, 1992).

A Boolean concept is simply a Boolean function thought
of this way as a set of vertices in Boolean D-space. The ter-
minology reflects the fact that that such a concept picks out a
specific set of objects from the space of possible objects (i.e.,
picks out a particular subset of Boolean D-space), in much
the same way that the concept “dog” picks out a particular
subset from the space of possible entities, namely, those that
are dogs.

The space of possible Boolean concepts comprises a great
variety of structures and patterns that have yet to be investi-
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gated in detail. The purpose of this paper is to catalog and
classify the Boolean concepts of up to four variables, as a
reference for the benefit of other researchers.

Boolean concepts in Psychology

Interest in the psychology of Boolean concepts began in
the 1950s with the realization that distinct Boolean func-
tions differed in various psychologically important ways,
such as the ease with which they were learned from exam-
ples (Bruner, Goodnow, & Austin, 1956). An enormous
flow of research ensued during the following two decades,
some of which is summarized below. During this period
psychological properties of various Boolean concepts were
studied from a variety of perspectives, including compar-
isons across cultures (Ciborowski & Cole, 1972) and across
species (Wells & Deffenbacher, 1967). However interest in
Boolean concepts began to diminish in the 1970s as evidence
accumulated that membership in psychological categories
exhibits gradations—variations in the degree of category
membership—not exhibited by Boolean concepts (Posner &
Keele, 1968; Rosch, 1973; Armstrong, Gleitman, & Gleit-
man, 1983). Modern categorization theories, mostly either
“prototype” or “exemplar” models, emphasize the graded na-
ture of membership in psychological categories.

However, the evidence in favor of a graded view of con-
cepts relates only to the way concepts are represented men-
tally. Thus while there is much evidence that concepts are
not represented qua Boolean functions, there is no evidence
that the mental representation does not in some way depend
on the logical form of the target concept. Indeed, it obvi-
ously does depend on it; for any reasonable theory of cat-
egorization, including prototype and exemplar models, the
ease with which a concept will be represented or stored will
depend in part on the internal structure of the concept, which
for Boolean features means the logical form of the Boolean
function that specifies the positive examples (or some other
specially designated set). That is, it is to be expected that that
the way a set of objects will be mentally apprehended as a
unitary concept will depend substantially on the internal log-
ical structure of the set, and this sort of dependency is still a
standard part of every modern theory of concepts. Hence the
enumeration and understanding of the range of possible such
structures—the topic of the current article—is still a critical
part of the study of the mental representation of concepts.
It is the range of possible objects of concept representation,
though probably not the range of possible concept represen-
tations. In fact, despite the loss of interest in Boolean func-
tions as models of concept representation, Boolean concepts
are still what subjects are actually asked to learn in most
modern studies of categorization (the major exception to this
generalization are studies of e.g. decision-bound categoriza-
tion, in which the variables are usually continuous).

A complete survey of the space of Boolean concepts is es-
pecially important because of the somewhat uneven way in
which this space has historically been canvassed in studies of
psychological mechanisms. The great quantity of research in

the 1960s focused on concepts defined by only two features,
which due to their relative simplicity are in many ways atyp-
ical. In retrospect, this seems to have led to some erroneous
generalizations about psychological mechanisms (Feldman,
2000). More recently, many studies have repeatedly used the
same few concept types, in part to ease comparisons among
models. However Smith and Minda (2000) have argued that
this has led to an overestimate of the evidence in favor of par-
ticular models, due to certain aspects in the structure of those
particular concepts. Hence the need for a more complete and
level “playing field” is urgent.

Aside from category learning, Boolean functions also re-
late to several other topics of potentially great interest to
psychologists and cognitive scientists. Reasoning, in partic-
ular deductive (logically certain) reasoning (Johnson-Laird,
1983), intrinsically relates to Boolean functions, in that each
such function can be thought of as a different way that the
truth or falsity of a conclusion can depend functionally on
the truth or falsity of a set of premises. The study of ab-
stract neural networks also relates to Boolean concepts, in
that each Boolean function corresponds to a possible input-
output mapping for an abstract neural net of the McCulloch-
Pitts type (McCulloch & Pitts, 1943). Finally, philosophical
interest in the compositionality of human concepts—that is,
the idea that the meaning of a concept must be functionally
dependent on the meaning of its constituent elements (Fodor,
1994)—also intrinsically relates to Boolean concepts, each
of which specifies the details of one such compositional func-
tion.

Propositional formulae

A propositional formula or Boolean formula is a string
of symbols constructed from Boolean variables (written a,b,
etc.) using logical connectives (e.g., ∧,∨,¬) in the familiar
manner. Various choices of connectives are possible, includ-
ing the usual choice {∧,∨,¬} which I will use below; the
set chosen is called the basis. I will adopt the notation usu-
ally favored by mathematicians (and Boole himself; Boole,
1854/1958) in which a∧b is written ab, a∨b is written a+b,
and ¬a is written a′. Hence a′, a+b′, a(b+c)′ are all propo-
sitional formulae. Each positive or negative variable is called
a literal.

The set of truth values that satisfy a given propositional
formula defines a set of vertices in Boolean D-space, and
thus in effect a specific Boolean concept. Any Boolean con-
cept can in fact be expressed exactly by an infinite number
of distinct propositional formulae. Formulae that express the
same Boolean function or concept are called equivalent.

A disjunctive normal formula or DNF is a formula that is
a disjunction of conjunctions of literals, such as ab+cd. Ev-
ery propositional formula is equivalent to at least one DNF,
a fact that becomes obvious when one considers that there
exists a DNF in which each conjunctive clause picks out as
positive one vertex in the Boolean D-space representation of
the corresponding Boolean concept. For example the DNF
abc′ + a′b′c explicitly picks out two vertices from Boolean
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3-space, namely abc′ and a′b′c. For each concept, this type
of DNF is unique (up to the order of clauses and the order
of variables within each clause, which are arbitrary). Hence-
forth this DNF will be referred to as “the” DNF for the con-
cept.

It is very convenient to refer to Boolean concepts by using
a corresponding formula, in particular its DNF, as I will do
below. However it is very important to keep in mind that a
propositional formula and the Boolean concept it picks out
are not the same thing. For example the specification of a
Boolean concept does not involve any particular choice of
basis. Rather the concept is defined completely by its pattern
of vertices in D-space, which does not in any way depend on
how it might be expressed as a formula. This fact is crucial
in understanding the classification given below.

Congruence

Some Boolean concepts, while not equivalent to each
other, seem intuitively to refer to the same “type” of concept.
For example, the concepts a+b ′ and a′+b are not equivalent,
but seem to be of essentially the same kind, in the sense that
they would be equivalent if we simply switched the labels
a and b, which are after all arbitrary. In some contexts, the
polarity of each variable might also be arbitrary, such as if a
means “square” and a′ “triangle,” in which case neither value
seems to have any special claim to the label “true.” Hence
the concepts a and a′ might be regarded as of the same type,
although, again, they are certainly not equivalent.

I will call this kind of similarity among concepts congru-
ence; two concepts are called congruent if the two may be
made equivalent by a consistent reassignment of the labels
and polarities of the variables.1 Intuitively, congruence be-
tween two concepts means that their images in D-space (that
is, the set of positive vertices) are rigid rotations or mirror
reflections of each other. This notion of congruence seems
to have been first introduced by Aiken and his colleagues
(Aiken & the Staff of the Computation Laboratory at Har-
vard University, 1951), and subsequently became common
in the literature on the theory of switching circuits. It was in-
troduced into psychology by Shepard, Hovland, and Jenkins
(1961), and used more recently in Feldman (2000).

Of course, not all concepts for a given number of features
D are congruent, and so the next question to ask is: what are
the possible distinct types or equivalence classes? Clearly,
for two concepts to be congruent, they must have the same
number P of positive vertices. Hence the enumeration of
equivalence classes necessarily depends on D and P. Shepard
et al. (1961) pointed out that for D = 3 and P = 4, there are
six basic classes, which they denoted using Roman numerals
I through VI. This kind of typology is crucial for the study
of psychological properties that depend on the logical form
of concepts, because all concepts within the type have essen-
tially the same logical form—they are the same when we dis-
regard superficial details about how properties are labeled—
while concepts of different types have qualitatively different
logical forms.

In psychological studies of concepts, concepts have usu-
ally been studied modulo congruence; that is, psychologi-
cal properties are associated with an entire class of congru-
ent concepts rather than one specific concept. A promi-
nent example is Shepard et al.’s set of six types (Shepard
et al., 1961). The many subsequent studies of these types
(e.g., Kruschke, 1992; Nosofsky, Gluck, Palmeri, McKinley,
& Glauthier, 1994; Nosofsky, Palmeri, & McKinley, 1994)
have consistently respected the typology up to congruence.
There have been occasional exceptions, however, especially
in the 1960s. Implicational concepts (e.g., a → b) have occa-
sionally been distinguished from disjunctive concepts (e.g.,
a + b), to which they are congruent (because a → b means
a′ + b). Similarly affirmation (e.g., a) has sometimes been
distinguished from negation (a ′), which again are obviously
congruent. Such distinctions necessarily entail that positive
values of features are somehow distinguishable from nega-
tive values, i.e. that features have intrinsic polarity. The
classification into congruence classes below presumes this
is never the situation.

A complete classification of
Boolean concepts

As mentioned above, Shepard et al. (1961) used an ex-
plicit typology for D = 3,P = 4. A complete typology for
all D ≤ 4 and all P was given in Aiken et al.’s remarkable
1951 monograph, but in somewhat antiquated and difficult
notation (directed at early designers of vacuum-tube switch-
ing circuits). The main purpose of this paper is to present the
typology in more modern notation, organized by values of
of D and P, and giving certain additional information about
each concept, most importantly (i) simplified expressions in
standard logical notation, and (ii) visual representations as
sets of vertices in Boolean D-space.

Notation. As discussed above, the possible types neces-
sarily depend on both D and P, because two concepts with
different values of either D or P cannot be congruent to each
other. I will denote the family of types for D and P as D[P],
and the distinct types or cases in it by numerals subscripted
by the family name, i.e. CD[P], with C a number running from
1 to |D[P]|. Because Roman numerals become unwieldy with
the large families enumerated below, in this catalog I will
use bold Arabic numerals for case labels. Under this sys-
tem Shepard et al.’s family is 3[4], with |3[4]| = 6, and the
six cases are 13[4] through 63[4]. The numbering of the cases
within each family is arbitrary2; one of the goals of this paper
is to establish conventional labels.

1 Terminology for this relationship in the literature is inconsis-
tent. In some sources such concepts are called isomorphic, but
this term is somewhat non-specific, but this term is somewhat non-
specific. Harrison (1965) refers to such concepts as equivalent, but
this conflicts with the logicians’ stricter use of this term, also used
in the current paper, to refer to formulae that pick out exactly the
same Boolean function.

2 More strictly, the concepts are labeled in lexicographic order
by their first member (assuming a < b < .. . and a′ < a), with the
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Feldman (2000) used explicit typologies for the families
3[2], 3[3], 3[4], 4[2], 4[3], and 4[4], although due to space
limitations details of the typologies were given in that paper
only for type 3[3] and 3[4] (Shepard et al.’s family). The
tables below give explicit typologies for D = 2,3 and 4, and
for all nontrivial values of P.

Complementary concepts

Every concept φhas a complementary concept φ′ in which
the assignment of vertices is reversed (positive becoming
negative, negative positive). Such a concept is necessarily
non-congruent to φ (unless P = 2D−1, in which case the two
are mirror images of each other and necessarily congruent).
Nevertheless φ and φ′ have in a sense the same structure, ex-
cept inverted, and enumerating them separately is superflu-
ous. Hence for economy the catalog below includes only
cases where P ≤ 2D−1, bearing in mind the existence of
“twin” cases with P > 2D−1.

The identification of concepts with their complements,
coupled with the definition of congruence, means that the
classification collapses together some concepts often thought
of as distinct. As mentioned, the concepts a and a ′, respec-
tively affirmation and negation, are congruent, and thus rep-
resent the same case in the tables below (12[2]). Similarly, the
concepts ab and a+ b, respectively conjunction and disjunc-
tion, are complementary (that is, the complement of one is
congruent to the other), and so again represent the same case
(12[1]).

Organization of the catalog

The catalog given below is a complete classification of
Boolean concepts (with D ≤ 4) up to congruence (omitting
only those concepts with P = 0, of which there is exactly one
for each D). For each case the table gives D,P, the DNF3, and
an illustration of the concept as a set of vertices in Boolean
D-space. The tables also give several other kinds of informa-
tion that will be explained below, including the population
(N) of each case, a minimal equivalent propositional formula,
and the Boolean complexity of the concept.

Table 1 gives the number of cases in all the families with
D ≤ 4 (as well as 5[1], 5[2], and 5[3], which are not detailed
in the tables). The way that family population varies as D and
P are varied is, in some ways, surprisingly idiosyncratic and
seemingly unpredictable. Harrison (1965) gives a detailed
discussion of and expressions for these numbers. Certain pat-
terns are immediately obvious. For all D, |D[1]| ≡ 1, because
all single vertices of D-space are equivalent after rotation.
Similarly, |D[2]| ≡ D, because pairs of vertices differ only
in how many edges separate them. Above P = 2, obvious
patterns diminish; see Harrison (1965) for a more detailed
discussion.

It is worth reiterating that the intrinsic structure of a
Boolean concept does not depend in any way on the propo-
sitional formula that may be used to represent it. Hence the
catalog given here (and its infinite extension), because it lists

P

D

1

2

3

4

1 2 3 4 5

5

1

1

1

1

1

2

5

27

3

4

3

6 19

6

|D[P]|

50 56 74

10

6 7 8

Table 1
Populations of families in the Boolean D[P] hierarchy. Each
cell gives the number of concepts |D[P]| in the family D[P].

all qualitatively distinct basic structures, is universal; it is un-
related to any particular propositional representation or basis.
Hence it constitutes the natural space in which any investiga-
tion of Boolean concepts naturally resides.4

Minimal formulae and Boolean complexity

As mentioned above, each Boolean concept can be de-
scribed by an infinite number of distinct propositional formu-
lae. The shortest such formula is called the minimal equiv-
alent formula. In many cases the properties of a particular
concept can be appreciated most easily by inspecting its min-
imal formula, as will be seen below.

The length of the minimal formula (usually given in lit-
erals), called the Boolean complexity, is a measure of the in-
herent logical complexity or incompressibility of the concept
(Givone, 1970). Boolean complexity has properties paral-
leling those of Kolmogorov complexity (Kolmogorov, 1965;
Solomonoff, 1964; Chaitin, 1966; Li & Vitányi, 1997) In par-
ticular (a) Boolean complexity takes on the maximal value
of DP for concepts that cannot be compressed at all; that is,
for which no representation is more efficient than a verbatim
DNF rendition, and (b) Boolean complexity is universal, up
to a multiplicative constant, with respect to choice of basis
(Wegener, 1987).

Unfortunately, the computation of minimal equivalent for-
mulae is intractable (Garey & Johnson, 1979), but approxi-

sole exception of 3[4], whose members have been given Shepard et
al.’s numbers in deference to convention.

3 More precisely, the table gives one example of each concept in
DNF form, namely the lexicographically earliest one.

4 That is, unless the conditions assumed in the definition of con-
gruence are not met. For example if the assignment of true and
false is not arbitrary, then a and a′ should no longer be regarded as
congruent forms, and the resulting classification would change.
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mately minimal expressions can be found rapidly via factor-
ing and other heuristic techniques. The minimal formulae
given in the tables below are derived from such heuristics
and are thus not necessarily globally minimal; the complex-
ity values should be regarded as approximations, or, more
strictly, upper bounds.

Populations of cases

Every Boolean concept is congruent to one of the cases
CD[P] in the tables. For a given family D[P], however, the dis-
tribution of concepts among the various cases is not uniform;
some types occur more often than others. The tables below
give the “population” (N) for each case. These numbers de-
pend in a subtle way on the degree of structural symmetry
within each concept.

The populations obey certain obvious equalities. The
numbers of distinct concepts NCD[P] in each concept type
CD[P] must add up to the total number of concepts in the fam-
ily D[P]. This latter quantity is simply the number of ways
the 2D objects may be taken P at a time. Hence we have the
following relation:

2D!
(2D −P)!P!

= ∑
C∈D[P]

NCD[P] , (1)

Summing over all families, the total number of concepts of
dimension D must be the total in all constituent families
D[P]. Note however that because families with P < 2D−1

have complementary “twin” families that do not appear in
the tables, the summation doubles their counts, hence:

22D
= 2 ∑

P<2D−1

NCD[P] + ∑
P=2D−1

NCD[P] . (2)

Note that this summation includes the trivial cases with P = 0
and P = 2D (of which there are each one for every D), which
are not included in the tables.

Remarks

As D and P grow, the number of distinct cases grows
rapidly. Hence although the aim of the current paper is to
give details of these cases, for the later families a coarser
and more informative classification seems desirable. I do not
make a systematic attempt at one here. However in certain in-
stances, cases in distinct families have affinities that deserve
notice.

Several of the concepts in the tables, or their comple-
ments, have conventional names. As mentioned above, 1 2[2]
is usually called affirmation (or negation); the reason is clear
when one looks at its minimal formula, a ′, which simply af-
firms (or negates) a single variable (i.e., all members of such
a concept share a common feature). Hence by extension, any
concept of dimension D and Boolean complexity 1 consti-
tutes a version of affirmation, i.e. D-dimensional affirma-
tion.5 Because affirmation divides D-space exactly in half,

all and only families with P = 2D−1, such as 2[2], 3[4], 4[8],
etc., contain a version of D-affirmation.

Similarly, the name conjunction (disjunction) has in the
psychological literature usually been associated with 12[1].
But by extension the term D-conjunction would fit any con-
cept whose minimal formula was the conjunction of D lit-
erals, thus bearing complexity D. In fact for every D, D-
conjunction is the sole member of the family D[1].

22[2] is usually called exclusive-or or biconditional (the
latter because it is equivalent to (a → b)(b → a)). This func-
tion has the property that any change in the value of ex-
actly one variable (i.e., a change of “parity”) always leads
to a change in the function’s value. Hence it and its higher-
dimensional analogs (e.g., 63[4], 744[8]) are sometimes re-
ferred to as versions of the parity function. As with affir-
mation, a version of the parity function exists only in fami-
lies with P = 2D−1. Parity is extremely incompressible (see
Schöning & Pruim, 1998), and thus for a given value of D
usually has the highest Boolean complexity (only slightly be-
low the absolute complexity limit DP).

Psychological properties

The remainder of my comments focus on what is known
about psychological properties of various concept types.

Several studies have employed one or another type in stud-
ies of generalization. Such studies have typically trained sub-
jects on examples from a single fixed concept; interest then
focuses on the degree to which novel objects are judged as
members of the target concept, as well as the confidence with
which the trained objects are correctly classified. Thus such
studies have usually not involved comparisons with any other
concept types. In this vein, Medin and Schaffer (1978) stud-
ied type 124[5] and (separately) 244[6]. Medin, Altom, Edel-
son, and Freko (1982) and several later studies (see Nosofsky
et al., 1994) used 114[4].

For D = 2, many studies have found that affirmation (1 2[2])
is easier to learn than conjunction or disjunction (12[1]),
which is in turn easier than exclusive-or or biconditional
(22[2]); see Bourne (1970), Bourne, Ekstrand, and Mont-
gomery (1969), and Haygood and Bourne (1965) for sur-
veys and discussion of this extensive literature. Neisser
and Weene (1962) and Haygood (1963) suggested that these
rank orderings might reflect differences in inherent logical
complexity, but this proposal was not pursued in the subse-
quent literature. Shepard et al. (1961), in their study of the
3[4] family, found that the concepts had subjective difficul-
ties in the order 13[4] < 23[4] < [33[4],43[4],53[4]] < 63[4], with
33[4],43[4] and 53[4] of approximately equal difficulty. This
result has been replicated several times (e.g. Nosofsky et al.,
1994).

5 In fact, it would be fair to regard such concepts as in a sense
congruent, in that their minimal formulae are congruent; but it is
clearer to regard them as distinct concepts in that they reside in dif-
ferent families.
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Feldman (2000) studied the subjective difficulty of the 41
types in families 3[2], 3[3], 3[4], 4[2], 4[3], and 4[4], and
found that it is generally correlates with Boolean complex-
ity. This idea, when it had been proposed in slightly dif-
ferent forms by both Neisser and Weene (1962) and Hay-
good (1963), had not met with acceptance in the psycholog-
ical literature. In retrospect this was probably due to the fact
that studies at the time were limited almost exclusively to the
families 2[1] and 2[2], where this pattern is not yet apparent.
It is hoped that such misapprehensions might in the future be
avoided due to the availability of a catalog such as that given
here.
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