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1. Introduction

Evaluation in OT adjudicates competitions between linguistic structures, but it calculates only with
the array of violations that the structures incur under each constraint: their violation profiles.
Structures with the same profile are indistinguishable, and differences in structure only register to
the extent that they correlate with differences in violation. General properties that govern relations
between profiles in the space of all possible profiles  will thus be inherited by any specific candidate
set, even though actual structures may be distributed sparsely or asymmetrically in violation space.

Shifting the focus of inquiry from candidates in the space of linguistic forms to violation
profiles in violation spaces will provide tools useful in analysis, computation, and learning. Of
particular significance are the principles determining which profiles can never be optimal under any
ranking, given that certain other profiles are known to be realized in the candidate set. (These never-
optimal profiles we will call losers; by winners we mean the complement set of profiles optimal
under some ranking.) The value of knowing the loser-vs.-winner status of a structure is manifest in
many applications, especially (at the risk of paradox!) prior to conducting a specific competition.
Consider the procedures involved in constructing candidates to test for optimality: given the mere
existence of a candidate with a certain profile, knowledge of what it excludes under any ranking will
render unnecessary the labor of constructing and evaluating candidates that are always defeated by
it. Identifying loser profiles will eliminate improper learning targets and help determine what abstract
structure ought be assigned to the observables; for example, we can avoid formally possible but
perpetually suboptimal foot-parses for observed sequences of stressed and unstressed syllables,
pruning subversive hypotheses (cf. Tesar 2000). Excluding losers is also essential to the analyst, who
must know whether the set of competitors under consideration — inevitably finite — mistakenly
omits some potentially optimal structures. A precise characterization of the regions of profile space
defeated by the identified competitors will address this danger. 

In Samek-Lodovici & Prince (1999) we show  that every loser is harmonically bounded by
some non-empty set of candidates. Here we shift perspective and investigate how to characterize the
set L(A) of profiles turned into losers by a given profile set A. A priori, this set contains any profile
bounded by any non-empty subset of A, included the potentially infinite set of losers collectively
bounded by profiles ganging together so as to each beat the loser on some of the possible constraint
rankings while leaving none uncovered. We will show that any set of losers collectively bounded by
a profile set A is equivalent to the set of losers bounded by a single designated minimal profile
directly identifiable from our knowledge of A, and which will call the ‘bounding minimum’ of A.
Consequently, L(A) itself becomes determinable on the basis of simple harmonic bounding via
bounding minima alone, simplifying aspects of its computation. The result is fully general, and
applies to any set of profiles A, independently of whether the members of A are all winners, or some
of them are themselves turned into losers by some other fellow profiles.
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also grateful to the Faculty of Arts and Sciences of Rutgers University for additional support that greatly
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We will start by laying out the basic properties of profile spaces and explaining how
collective bounding reduces to simple bounding through such bounding minima. We then generalize
this basic observation to any set of profiles A, showing how the corresponding set of losers L(A) can
be systematically characterized in terms of simple bounding. We conclude with observations on
computational complexity issues, and provide in the Appendix the formal proof of a couple of results
presented informally in the text.

2. Violation Spaces

We are used to thinking of optimization as selecting the structures that best satisfy a ranked
set of constraints among an infinite set of competing structures. As noted, however, optimization
examines only the violation profiles of the competing structures, and not the structures themselves.
For example, the ‘perfect’ profile, with zero violations on all constraints, if realized, is always
optimal, independent of the structure it may correspond to in any particular analysis.

The proper domain for studying optimization is thus the space of all possible violation
profiles rather than that of the corresponding structures. We will therefore represent a violation
profile, or ‘profile’ for short, as a vector ", where the ith coordinate value ‘"(i)’ represents the
number of violations for " on the ith constraint of some constraint set G. For example, if G consists
of two constraints C1 and C2, the profile +0,2, satisfies C1 and violates C2 twice; the profile +1,1,
violates C1 and C2 once each; the profile +100,0, violates C1 one hundred times while satisfying C2.

(1) Def. Profile. For any G=+C1,C2,..,Cn,, a profile " over G is defined as the vector
"=+"(1) ,..., "(n),, where "(i) records the number of violations for constraint Ci.

We may conceive profiles as points in the n-dimensional violation space Vn —or V for
short— determined by the Cartesian product of the n constraints in G. Each constraint constitutes
an axis of V, allowing from zero to any number of violations for that constraint; we will use the
terms ‘constraint’, ‘dimension’, and ‘coordinate’ interchangeably. The vector representing a profile
spells out the coordinates of the point representing the profile in the violation space. For example,
the figure below shows the position for the two profiles +0,2, and +1,1, examined above, as well as
that for a generic profile +i,j, violating C1 exactly i times and C2 exactly j times.

(2) Violation space V2 for G={C1, C2}.



1 The scenario where every profile corresponds to a competing structure, requires constraints
with an infinite number of ordered strata, where each stratum is itself non-finite. For example, in V2 this
requires the two constraints shown below, with strata ordered by descending order as violations increase.
Each stratum is infinite, yet each candidate has a distinct violation profile, shown in the subscripts. For
example, structure c01 occurs in the first stratum of C1 and the second of C2, and corresponds to the
profile +01,. Despite its complexity, the whole space has a unique winner which bounds all other
structures: the perfect profile c00 which satisfies both constraints.

(1) Exhaustive scenario for V2.               C1 C2
   c00, c01,  c02, ....     c00, c10,  c20, ....
 | |
   c10, c11,  c12, ....     c01, c11,  c21, ....
 | |
   c20, c21,  c22, ....     c02, c12,  c22, ....
         .....            .....
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Optimization follows the lexicographic order that matches a chosen specific constraint
ranking. Profiles with lower coordinate values on high-ranked constraints thus beat any other profile
with higher values on those same constraints, including those performing better on lower-ranked
ones. For example, when C1 outranks C2, profile +0,2, precedes in the lexicographic order —and
hence ‘beats’—  profile +1,1,, because it outperforms it on the highest constraint C1. Profile +0,1000,
would beat +1,1, too, again due to its lower C1-coordinate, and for the same reason that ‘az’ precedes
‘ba’ in the lexicographic order used in dictionaries. Unlike dictionaries, however, OT allows ranking
permutation, and on the ranking C2>>C1, the profile +1,1, precedes both +0,2, and +0,1000,, as well
as any profile +0, j, with j>1. 

Before turning to our main goal, it is worth examining the relation between profiles and
actual competing structures generated by GEN in linguistic analyses. Every generated structure
necessarily corresponds to a profile in V, namely the one recording its violations on each constraint.
Distinct structures may also share the same profile when they violate the same constraints the same
number of times (see for example Grimshaw’s analysis of optional complementizers, 1997).
Structures related in this way will share the same optimization fate under all rankings, since this is
determined by the profile alone. Some profiles, on the other hand, may lack a corresponding structure
generable by GEN. For example, in most analyses, the perfect profile O=+0,0,...,0,, that satisfies all
constraints and hence forms the origin of the violation space V, has no structural correspondent
because constraints conflict with each other, and the satisfaction of one constraint entails the
violation of another.1

It follows that the set of competing structures from actual OT analyses almost always
corresponds to a subset of the possible profiles represented within a violation space. This provides
a strong reason for studying optimization and harmonic bounding within violation spaces rather than
the candidate sets provided by GEN, because any fundamental property of profile optimization in
V also holds of optimization within specific candidate sets, whereas the converse need not be true.

In the following, we will use properties and theorems from Samek-Lodovici and Prince
(1999). Although they do not mention violation spaces, they were established with respect to fully
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abstract candidates allowing for any conceivable violation profile, and therefore concerning any
conceivable point in V. Unlike arguments concerning specific candidate sets, they thus
straightforwardly carry over to violation spaces, preserving their validity in full.

3. Harmonic Bounding in Violation Spaces

In this section, we define harmonic bounding, simplifying the definition of Samek-Lodovici
and Prince (1999). We then show that the set of losers collectively bounded by a set of profiles can
be characterized in terms of simple bounding alone. This is a useful result, because unlike collective
bounding, simple bounding is particularly easy to test, as it only requires checking that the bounded
profile be not better than its bounder on any coordinate. With this, we take the first step toward a
complete characterization through simple harmonic bounding alone of the infinite loser set L(A)
determined by any set of profiles A. 

3.1 Defeating Sets

Central to the characterization of bounding is identifying a set of profiles that collectively
prevents a  bounded profile from being optimal under any ranking. Several ways of delimiting such
sets are available; here we put forth one that proves particularly useful. A profile set will be said to
constitute a defeating set for a profile 8 if and only if it satisfies the property of ‘reciprocity’, which
holds whenever it is not possible for 8 to have less violations than a member of A on a constraint
without some other member of A coming to the rescue by posting less violations than 8 on that same
constraint. The name ‘reciprocity’ reminds us that the members of A may reciprocate the rescuing
action, with profiles acting as rescuers on one constraint while endangered by 8 on another. The
definition applies even when reciprocity is satisfied vacuously, and therefore a loser simply bounded
by each member of A counts as defeated by A. Note that reciprocity is also vacuously satisfied for
a singleton set A={"} relative to its unique member. The condition that 8 be excluded from A
ensures in this case that a defeater " is never grouped with the profiles it defeats. 

(3) Def. Defeating Set. Let A be a non-empty profile set, and 8 a profile in V but not in A. Then A
is a defeating set for 8 if and only if A satisfies the reciprocity condition below:

Reciprocity: œi, i#n, œ"0A, [ 8(i)<"(i) Y ›"N0A, "N(i)<8(i) ].  

We also define the set D(A) of profiles defeated by a set A. These are all and only the profiles
for which A acts as defeating set. We use the term ‘defeated’ rather than ‘bounded’ because as we
will see shortly a profile might be harmonically bounded by a proper subset of A, and therefore be
defeated by A,  and yet not be bounded by A itself. We will also write ‘A¤8’ to indicate that 8 is
defeated by A, and ‘"¤8’ to indicate that the singleton set A={"} defeats 8, in which case, as we
will see,  8 is simply bounded by ".

(4) Def. D(A). Let A be a profile set in V, then D(A) contains any profile 8 in V that has A as
defeating set.

D(A) = {8 : 80V and A a defeating set for 8}.   
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Defeating sets constitute a superset of bounding sets, which according to the definition in (Samek-
Lodovici & Prince 1999:46) must satisfy reciprocity and strictness, with strictness requiring
bounders to beat a bounded profile 8 on at least one constraint. The definition of bounding set
adapted to violation spaces is provided below.

(5) Def. Bounding Set (Violation Spaces). A profile set B in V is a bounding set for a profile z in
V if and only if B has the following properties:

Strictness:    œ$0B, ›i, i#n, $(i)<z(i).
Reciprocity: œi, i#n, œ$0B, [ z(i)<$(i) Y ›$N0B, $N(i)<z(i) ].

For example, the set A={+2,3,} is a bounding set for 8=+3,3,, with its only member bounding
8 via strictness on constraint C1 and reciprocity vacuously. It is also a defeating set for 8, because
reciprocity is satisfied. However, the set AN={+2,3,, +4,3,} is not a bounding set for 8 because its
second member does not satisfy strictness, even though AN satisfies reciprocity and therefore
constitutes a defeating set for 8.

The most important property of bounding sets follows from the Bounding Theorem (Samek-
Lodovici & Prince, 1999:11,47), which tells us that any profile with a non-empty bounding set is
necessarily a loser, and any loser is necessarily bounded by some non-empty bounding set. A version
of the theorem adapted to violation spaces is given below. The term ‘W(K, E)’ represents winners,
i.e. all the profiles within a profile set K that are optimal under some ranking of the constraints in
G, and the term ‘B(x)’ stands for ‘bounding set for x’.

(6) Bounding Theorem (Violation Spaces). Let E be a set of constraint coordinates for V. For any
profile set K and profile 8 in V, 8 is suboptimal in K under any ranking of the constraint-coordinates
E iff there is in K a non-empty bounding set B(8) for 8.

8óW(K, E) ] B(8)…Ø.

Crucially, in spite of the weaker condition defining them, defeating sets inherit from
bounding sets the crucial property of turning any profile that they defeat into a loser whenever they
are not empty.

That any loser is defeated by some non-empty defeating set follows by the bounding theorem,
because the loser must be bounded by some non-empty bounding set, and every non-empty bounding
set is a defeating set because it satisfies reciprocity. Conversely, a non-empty defeating set A for
some profile 8 always includes a non-empty bounding set B for 8, thus turning it into a loser due to
the bounding theorem. In this case, the relevant bounding set B for 8 can be built by collecting all
members of A that post less violations than 8 on some constraint, thus satisfying strictness. Note that
B is necessarily non-empty, since by definition 8 does not belong to A, and therefore must differ
from each member of A on some constraint C. If 8 beats one or more of them on some constraint
C, reciprocity on A ensures that some other member $ beats 8 on C, and is collected in B. On some
constraint CN, the subset B might satisfy reciprocity vacuously, with 8 neither beating nor beaten by
them. Overall, B satisfies the definition for bounding set and thus ensures the loser status of 8
through the bounding theorem, which is therefore inherited by A.
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The properties of defeating sets just illustrated are formally stated in the lemma and theorem
below, whose formal proof we postpone to appendix A in order to more speedily proceed toward our
main goal. The Defeating-Bounding Lemma expresses the fact that every non-empty defeating set
includes a non-empty bounding set and vice versa, and the Defeating Theorem formally records the
fact that a profile with a non-empty defeating set is necessarily a loser. (The symbol ‘¤’ stands for
the defeating relation introduced above.)

(7) Lemma.  Defeating-Bounding. Let A be a profile set and 8 a profile in V. Then A is a non-
empty defeating set for 8 if and only if there exists a non-empty set B in A that constitutes a
bounding set for 8.

œA…Ø, A¤8 ] ›BfA, B…Ø, B=B(8).  

(8) Defeating Theorem. Let E be a set of constraint coordinates for V, and let K be a profile set in
V and 8 a profile in K. Then 8 is suboptimal in K under any ranking of E iff there is in K a non-
empty defeating set A for 8.

8óW(K, E)]  ›A…Ø, AfK, A¤8.

By the defeating theorem, any profile defeated by a non-empty set A is a loser, because it is
bounded by some non-empty subset of A. The set D(A) thus collects the profiles that are losers
because defeated by A. 

3.2 Defeating via Simple Harmonic Bounding

We may now turn our attention to the set L(A) collecting all losers for a specific set of
profiles A, i.e. including all those profiles that are beaten across all available rankings by one or
more the members of A. We will show that L(A) coincides with the union of all profiles defeated
by some non-empty subset of A. We will then study the relation between L(A), D(A), and simple
harmonic bounding in the case where A contains only one profile, which will later enable us to
reduce the computation of D(A), and therefore of L(A), to checking a collection of simple harmonic
bounding relations.

Consider the set L(A), defined below, collecting any profile turned into a loser when
competing against A, including those defeated by a subset of A but not by A itself.

(9) Def. L(A). Let A be a profile set and 8 a profile in V. Then 8 belongs to the set L(A) of losers
for A if and only if 8 does not belong to W(Ac{8}, V).

L(A) = {8 : 80V and 8óW(Ac{8}, V)}.   

The profiles defeated by some proper subset of A but not by A itself are not in D(A).
Consider for example the two profiles "=+2,0, and $=+0,2,. The profile 8=+0,4, is defeated by
B={$}, with reciprocity applying vacuously because 8 is never better than $. Yet, 8 is not defeated
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by A=(", $) because reciprocity does not hold:  on C1, 8 is better than " but not strictly worse than
$ as reciprocity requires. Thus 8 is not in D(A) even if it is in L(A) because it is defeated by the
subset B. 

The appropriate relation between L(A) and D(A) thus requires L(A) to collect any profile
defeated by some non-empty subset of A. This relation is formalized in the lemma below, and an
example will follow in the following section.

(10) Lemma. Loser Set. For any set A in V, its loser set L(A) consists of the union of all 8 defeated
by some non-empty subset AN of A.

L(A) = cANfA, AN…Ø   D(AN).

Pf.   - Let us prove L(A)fcANfA, AN…Ø   D(AN).
Let 80L(A). Since 8 is a loser against A, by the bounding theorem A includes a non-empty

bounding set AN for 8. Then by the defeating bounding lemma, B is a defeating set for 8 and
80D(AN).

- Let us now prove cANfA, AN…Ø   D(AN) f L(A). 
By hypothesis ›AN fA, AN…Ø, 80D(AN). Therefore, by the defeating-bounding lemma, there is a
non-empty bounding set BfANfA bounding 8. It follows that there is a non-empty bounding set B
for 8 in A, and therefore 8óW(Ac{8}, V). Therefore 80L(A).      ~ 

The only case in which L(A) and D(A) necessarily coincide occurs when A is a singleton.
In this case, the only available subsets of A are the empty set Ø and A itself. But losers require non-
empty defeating sets, and hence only A qualifies. All members of L(A) will then be collected in
D(A).

When a defeating set consists of just one element ", reciprocity may only be satisfied
vacuously, as non-vacuous satisfaction always requires at least two members in a set. However, it
prevents any defeated profile 8 from incurring less violations than " on any coordinate, because this
would violate reciprocity, since no other profile is available to rescue ". In order to be distinct from
", any defeated profile 8 will also have to differ from " on at least one coordinate. As a result, " will
present less violations than 8 on at least one coordinate, and never have more violations than 8 on
any other. In other words, " simply harmonic bounds 8 in the manner first discussed in Prince &
Smolensky (1993), and the defeating relation coincides with that of simple harmonic bounding. The
defeating singleton lemma below formalizes this result.

(11) Lemma. Defeating Singleton. Let " be a profile in V. Then the set D(") of profiles defeated
by the singleton set A={"} coincides with the set of profiles simply bounded by A.

D(")={8: 80V, œi "(i)#8(i) and ›j "(j)<8(j)}.

 Pf.     Let B be the set of profiles simply bounded by ", i.e. B={8: 80V, œi "(i)#8(i), ›j "(j)<8(j)}.
BfD(") is trivial, as any bounding set satisfies reciprocity and hence qualifies as defeating set as
well.
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As for D(")fB, assume D(")…Ø, then by the defeating bounding lemma, for any 80D(")
there is a non-empty B qualifying as a bounding set for 8, and since A is a singleton, B=A.         ~

Simple bounding has a straightforward geometrical characterization in V2. The set D(") of
profiles defeated — and hence simply bounded — by a singleton set A={"} covers the infinite
region delimited by two half-lines starting at " and parallel to the coordinate axes, as shown in the
figure below. The shaded region, with the exclusion of ", contains all the profiles in D("), and in
this case it also characterizes the loser set L("), since with singletons the two sets coincide. Figure
(13) shows the region of defeated profiles in a three-dimensional system.

(12) D(") in V2 for "=+i,j,.

(13) D(") in V3 for "=+2,1,1,.
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Simple bounding shows a series of important properties that will later permit us to
characterize defeating sets in terms of simple bounding. To begin with, simple bounding is transitive,
as recorded in the lemma below. This property will later enable us to show that the defeating relation
is itself transitive and idempotent.

(14) Lemma. Bounding Transitivity. Let ", $, and ( be profiles in V. Then, if ( is in D($) and $
is in D("), then ( is in D(") as well.

œ", $, (0V [ "¤$ & $¤(Y "¤( ]

Pf.  By the lemma on defeating singletons, œi "(i)#$(i) and œi $(i)#((i), therefore œi "(i)#$(i)#((i).
Further, by defeating singleton ›j $(j)<((j), therefore ›j "(i)#$(i)<((i). It follows that "¤(.     ~

Another important property of simple bounding is that the sum of the coordinates of each
defeated profile is always greater than that of their defeater. This follows from the property —forced
by reciprocity in the way described above— that any defeated profile may at most equal the
coordinates of the defeater on all axes but one, eventually yielding a greater coordinate sum. The
converse does not hold; for example, the profile +0,100, is not bounded by the profile +1,0,, even if
the latter has a lower coordinate sum. The correct entailment is formalized below. 

(15) Lemma. Coordinate Sum. For any " and $ in V, if "¤$, then the sum of the coordinates for
$ exceeds that for ": 

œ", $0V, "¤$ Y Gi $(i) > Gi "(i).  

A third interesting property is that when n profiles lie on the n distinct axes of V, the union
of the sets D(") projected by each profile covers the entire space V except for a finite part of it. For
the two dimensional case, the result is illustrated by the figure below: the only profiles not defeated
by either "=+i,0, or $=+0,j, are those in the white region of the plane V2. In actual analyses, however,
it is unlikely that each axis hosts the profile of candidates generated by GEN, because lying on an
axis requires a zero coordinate on all other axes, i.e. satisfaction of all other involved constraints.

(16) Union of D(") by axis profiles
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The profiles in the shaded regions belong to either D(") or D($) or both, and thus are also
included in L(A), where A={", $}. However, they do not exhaust L(A), because the profiles
collectively bounded by " and $ via non-vacuous reciprocity are still missing. These are examined
in the next section.

3.3 Collective Defeating through Reciprocity

When a defeating set A contains two or more profiles, the set of defeated profiles D(A) need
not match the union of the profiles defeated by each of its members. 

First of all, losers in L(A) sharing a coordinate value with some defeater " but not others
might be in D(") while not being in D(A). Consider for example the two-dimensional case from the
previous section with A={", $} where "=+i,0,, and $=+0,j,}. As we saw there, a loser 81=+0,k, is
simply bounded by  $=+0,j, whenever k is greater than j. Yet, A={", $} does not qualify as a
defeating set for 81 even if it includes $. The reason is that 81 beats "=+i,0, on C1, and hence
reciprocity kicks in, requiring A to host a profile that beats 81 on that same coordinate. But A
includes none, because $ shares the same value as 81 on C1, namely zero. Any profile like 81 will
thus be in D($) but not in D(A), even though $ is a member of A. The same of course holds true for
the same reasons for any symmetric loser 82 sharing the minimal C2 coordinate value of ". As we
will show later, this is a fully general property: losers in L(A) sharing a coordinate value v with some
members of a profile set A but not others are not in D(A) whenever v is minimal across the members
of A.

(17) Profiles in D(A), with A={", $}.

A second mismatch  concerns the additional profiles defeated by A through non-vacuous
reciprocity, which are not necessarily defeated by any individual member. In the figure above, the
shaded region represents D(A) and includes all the profiles defeated by A={",$}. The profiles in
the lower ‘interior’ box are not simply bounded by either " or $, but only collectively by the two
profiles together through reciprocity. This region includes profiles such as +1,1,, which beats " on
C1, and $ on C2, and hence could not be simply bounded by either " or $ alone. The interior thus
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constitutes the profile contribution made by D(A) to the loser set L(A) that is not already available
through the profiles simply bounded by the distinct members of A.

Some interesting properties of interiors already emerge from the above figure. First of all,
the coordinate values i and j of " and $ could be arbitrarily large and they would still defeat any
profile in the interior, including +1,1,. This because optimization selects the profiles with the least
violations according to the lexicographic order imposed by each constraint ranking. Even with i and
j set to 1000, optimization on the ranking C1>>C2 selects profile $ over any profile in the interior
because $ is minimal on constraint C1, where it has zero violations. Symmetrically, optimization
over C2>>C1 selects " because it posts zero violations on C2. 

Furthermore, ganging together permits " and $ to defeat profiles whose coordinate sum is
lower than theirs, making inroads toward the origin O=+0,0,. This occurs because for every
coordinate C the only value that matters is the minimal one available within A={", $}. Any profile
with higher values will lose to the member of A with the minimal C-coordinate on any ranking
placing C highest. The profiles in the interior can have low coordinates across the board, yielding
an overall lower coordinate sum than their defeaters, but will crucially be always worse than some
defeater on any coordinate, as dictated by Reciprocity. 

Note that although the interior is finite in this specific example, it need not be in the general
case. To see this, we have to move to V3 or higher spaces. Consider for example the bounding set
A={", $}, where "=+0,2,5,, and $=+2,0,5,. Any profile 8=+1,1,5+i, with i$0 beats " on C2 and $
on C1, and therefore it is simply bounded by neither " nor $. Yet, it is defeated by A when " and
$ cooperate via reciprocity, with 8 beaten by " on any ranking with C1 highest, and by $ on those
with C2 highest . Profile 8 thus belongs to the interior, and this remains true whatever the value of
i. Therefore the interior in this case contains infinitely many profiles.

The most important property concerns the entire set of defeated profiles D(A). This set
always allows for a minimal element with the least coordinate sum that turns out to simply bound
any other profile in D(A), and is henceforth called the ‘bounding minimum’. In the two-dimensional
case shown in figure (17) above, the bounding minimum is :A=+1,1,, and can be seen to simply
bound the whole of D(A). 

We may now exploit bounding minima to reduce the set of defeated profiles D(A) to that
simply bounded by the bounding minimum of A, which in turn is collectively defeated by A. As we
will see shortly, the coordinates of the bounding minimum follows straightforwardly from those of
the members of A. This result will in turn ease the computation of the overall loser set L(A), which
will match the union of all D(B) built from some subset B of A, with each D(B) easily computable
in terms of simple bounding via its corresponding :B. This will free us from the need to ever
compute the collective defeating relations based on reciprocity. For example, in the two-
dimensional case examined so far, the set L(A) coincides with the union of the profile set simply
bounded by :A, plus the sets simply bounded by the minima of the proper subsets of A, which in
this case coincide with the sets of profiles simply bounded by " and $. The loser set L(A) thus
coincides with the union of the three infinite regions originating at ", $, and :A shown below,
matching the entire shaded region in the figure below with the exclusion of " and $.
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(18) L(A) for A={", $}

3.4 Bounding Minima

Let us now examine the properties illustrated above from a more formal point of view, providing
the associated theorems and demonstrations.

We start considering an important partition induced on the set of coordinates by any profile
set A. For every coordinate, the members of A may or may not share the same number of violations.
Therefore A induces a partition into a subset MA of ‘minimal’ coordinates containing those whose
value is shared across all members of A and is therefore minimal in A, and the set RA of
‘reciprocity’ coordinates formed by all other coordinates, i.e. those for which at least two members
of A disagree in their value. Incidentally, note that if A is a singleton, all coordinates are in MA, and
RA is necessarily empty. The definition of MA and RA  is provided below.

(19) Def. Minimal and Reciprocity Coordinates. Let V be determined by a set of constraints G,
and let A be a set of profiles in V. Then the corresponding sets MA and RA of minimal and
reciprocity coordinates are respectively defined as (i) the set of coordinates in V where all members
of A are order-equivalent, and (ii) its complement.

(i) Minimal coordinates: MA = {i : i0G, œ",$0A, "(i)=$(i)},
(ii) Reciprocity coordinates: RA = G!MA = {i : i0G, ióMA}. 

We may now build the bounding minimum :A for a set A on the basis of MA and RA. The
minimum is the profile with minimal coordinate sum collectively defeated by the members of A via



2 The bounding minimum of a set A is collectively defeated but not always collectively bounded
by A. The set A is in fact guaranteed to meet reciprocity relative to :A but not strictness. See appendix A
for an example. 

3  From an order-theoretic perspective, profiles form a lattice under the coordinate-wise order,
where "<$ if and only if œi, "(i)#$(i) and for some j, "(j)<$(j). The bounding minimum :A can then be
defined in terms of the greatest lower bound of A, or meet of A, expressed as ‘vA’. In particular,
:A(i)=vA(i) on M-coordinates, and :A(i)=1+vA(i) on all others. 
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reciprocity,2 and simply bounds any other profile defeated by A. As we will see shortly, this latter
property requires that :A shares any minimal coordinate value shared by all members of A on
M-coordinates, and any other minimal value available across the members of A incremented by one
for R-coordinates. For example, if A consists of "=+0,7,5, and $=+4,2,5,, then :A will share with
the members of A the five violations on C3, and post one more violation than the minimal value
available in A for C1 and C2, yielding :A =+1,3,5,.  The coordinate values for the bounding
minimum are recorded in the definition below.3 

(20) Def. Bounding Minimum. Let A be a set of profiles in V, and MA and RA the corresponding
coordinate partition. The corresponding bounding minimum :A is then defined as follows:

œi0MA :A(i)="(i) for any "0A,
œi0RA :A(i)="min(i)+1, where "min0A and œ"N0A "min(i)#"N(i).  

As mentioned, the virtue of :A is that any profile 8 defeated by A other than :A itself is
guaranteed to be simply bounded by :A. This is proven in the following theorem, which also
clarifies why :A has the coordinates defined above. Intuitively, if a defeated profile 8 beats some
" in A on some R-coordinate i, then by reciprocity some other "N in A must beat 8 on i. In
particular, if "min is the member of A with the minimal value for i, then 8(i) must be higher than
"min(i), else reciprocity would be violated. The minimum :A, set to "min(i)+1, thus presents the
minimal possible value on any R-coordinate i compatible with reciprocity, and therefore no defeated
profile 8 can beat :A on the ith coordinate . If on the other hand i is a shared M-coordinate, then any
defeated profile in D(A) cannot be lower than the shared "(i) value. This would in fact once again
violate reciprocity because no other member of A could better 8 on i. Since :A shares the same
minimal value, no defeated 8 can beat :A on M-coordinates either, and therefore 8 is simply
bounded by :A.

The theorem also shows the reverse property: that any profile 8 bounded by :A is defeated
by A as well. This follows because A always satisfies reciprocity relative to :A, because the
minimum can beat a member of A only on R-coordinates, but on these coordinates some "min is
always guaranteed to beat it. The same holds for any other 8 in D(:A), since by hypothesis they are
simply bounded by  :A. Therefore 8 is defeated by A and thus belongs to D(A).

The theorem must however distinguish the cases where A is a singleton containing a unique
profile " from the others, because in the singleton case :A is identical to " itself, and thus should
not be part of D(A), whereas in all other cases :A is collectively defeated by the members of A and
hence belongs to D(A).
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(21) Thm. Bounding Minimum. Let A be any set of profiles in V, and let :A be its corresponding
bounding minimum, and 8 a profile in V. Then 8 is defeated by A iff it is simply bounded by {:A}
or, when |A|>1, coincides with it.

|A|=1 D(A)=D(:A)
|A|>1 D(A)=D(:A)c{:A}. 

Pf. Let A be a defeating set for 8 and :A its bounding minimum. 
If A={"}, then all coordinates are M-coordinates, therefore by definition of minimum :A=". It
follows D(:A)=D(")=D(A).
Let us now assume |A|>1.
- Let us first prove D(A)fD(:A)c{:A}. 
    1.Let i be an M-coordinate shared across A. Then œ"0A, 8(i)$"(i)=:A(i), else reciprocity would
require the existence of some "N0A, such that "N(i)<8(i), against the hypothesis that i0MA.
    2. Let i be a non-shared R-coordinate, and let "min be the member of A with the minimal value
for i.

2.1. Then  8(i)>"min(i), else since i is not shared there would necessarily exist some "0A
such that 8(i)#"min(i)<"(i), and then by reciprocity some "N0A, such that "N(i)<8(i)<"(i),
contradicting the hypothesis that "min(i) is minimal across A.  

2.2. It follows that 8(i)$:A(i), because :A(i)="min(i)+1 is the lowest available value above
"min(i).
    3. Since MA and RA partition the set of coordinates, it follows that œi, 8(i)$:A(i).
    4. Either 8=:A, or ›j, 8(j)>:A(j) and therefore 80D(:A), proving D(A)fD(:A)c{:A}.
- Let us now show D(:A)c{:A}fD(A).
    1. Let 80D(:A)c{:A}, then by the defeating singleton lemma, œi 8(i)$:A(i).
    2. Let i be an M-coordinate shared across A. Then, by the definitions of :A and of M-coordinate
and by point 1, œ"0A "(i)#8(i), and therefore reciprocity is vacuously satisfied on i.
    3. Let i be a non-shared R-coordinate, and let "min be the member of A with the minimal value
for i.

3.1. Then, by 1 and by definition of :A, "min(i)<:A(i)#8(i) and therefore reciprocity is
satisfied on i because "min will rescue any profile " where 8(i)<"(i).
    4. Since no other coordinates are given, and A satisfies reciprocity on 8, it follows 80D(A), and
hence D(:A)c{:A}fD(A).       ~  

As a concrete example, consider a three-dimensional case where a profile 8=+1,4,5, sharing
with " and $ the C3-value is nevertheless collectively bounded by "=+0,7,5, and $=+4,2,5, via
reciprocity on C1 and C2, with " beating 8 on C1 and $ on C2. The minimum :A=+1,3,5, simply
bounds 8, because it beats it on C2 and equals it on C1 and C3. Furthermore no arbitrary defeated
profile 8 can beat the minimum on any coordinate. For example, 8 cannot be lower than 5 on C3,
because then reciprocity would require some member of A to have a value lower than 5 on C3, but
A contains no such profile. For the same reason, 8 cannot be lower than 1 on C1, since reciprocity
would again require some member of A to beat 8 on this coordinate, and none is available. The
arbitrary bounded profile 8 thus has as lower bounds on each coordinate precisely the coordinate
values assigned to :A, which therefore simply bounds it.
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4. Reducing Defeating to Simple Bounding

We now proceed to our first main goal, i.e. characterizing L(A) in terms of simple bounding
alone. This result is straightforward as an abstract property of profile sets, while it gives rise to some
interesting issues and solutions when we try to use it to provide an algorithm determining L(A).

4.1 Subset Driven Reduction

The loser set L(A) can be completely computed in terms of simple bounding by the relevant
bounding minima. By the bounding theorem, every loser in L(A) must be bounded by some subset
B of A, and since every bounding set is also a defeating set, it must be simply bounded by the
corresponding minimum :B, or possibly coincide with it when B is not a singleton. In either case,
the loser is in D(B), and the union of all D(B) associated with all possible subsets of A will match
L(A). The theorem and its proof are provided below.

(22) Thm. L-Decomposition. Let A be a profile set in the space V determined by the constraint
coordinate set E and 8 a profile in L(A), then 8 is either defeated by or identical to some bounding
minimum :B for some B in A.

L(A) =  cBfA, B…Ø D(B) = [cBfA D(:B)] c [cBfA, |B|>1 {:B}].

Pf.   Let A be any set in V, and 8 a profile in L(A). By the loser set lemma L(A) =  cBfA, B…Ø D(B).
The reduction to the expression ‘[cBfA D(:B)] c [cBfA, |B|>1 {:B}]’ then follows by replacing each
D(B) with its equivalent decomposition spelled out in the bounding minimum theorem.       ~ 

The above theorem presents two important properties and one drawback. 
The most important property is this: whether a profile is turned into a loser by a set A

reduces to testing whether it is simply bounded by some bounding minimum, the coordinates of
which we can derive as soon as we know A. The related drawback is that each bounding minimum
is associated to a subset of A, and thus L(A) in principle requires computing 2|A| minima. As we will
see in the next section, this inherent complexity can be brought down considerably once other
properties of minima are exploited.

The second positive property of the above reduction is its independence from the
winner/loser status of the members of A, which was always left undetermined and unconstrained.
In particular, the set could contain profiles which are themselves losers in A, i.e. defeated by some
proper subset of A, and yet the above theorem would still include them in L(A), while properly
excluding all those profiles that are winners in A, i.e. cannot be defeated by any of its subsets. 

Consider for example the set A={", $, 81, 82} with "=+2,6,, $=+6,2,,  81=:A+3,3,, and
82=+2,7,. Note that the profiles 81 and 82 are defeated by the subset B={", $). Let us now compute
L(A) through the formula in the theorem on L-decomposition. Profile 81 would be included because
it coincides with :A, which is part of D(A), and therefore L(A), whenever A is not a singleton.
Likewise, 82 would enter L(A) because it is simply bounded by ", and thus it is included in D(:B)
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when B={"}, in which case :B coincides with " itself. The profiles " and $, on the other hand,
would never enter L(A). They in fact are not bounded by any :B, and they coincide with a minimum
only when they form their own singleton, but minima are not part of L(A) when B is a singleton,
see the bounding minimum theorem. The formula thus properly discriminates between losers and
winners within the original set A. This result is recorded in the corollary below.

(23) Corollary. Losers in A. Let A be a profile set in the space V, and 8 a profile in A, then 8
belongs to L(A) iff 8 is defeated by some non-empty subset of A.

œ80A, [ 80L(A) ] ›ANfA, AN…Ø, AN¤ 8 ]. 

Pf.  (Y) Let S=A!{8}, then by the bounding theorem  ›AN fSfA, AN…Ø, and AN a bounding set
for {8}.  Then by the defeating bounding lemma AN is a defeating set for 8 , hence AN¤ 8.
       (Z) Let 80A and ›AN fA, AN…Ø, AN¤ 8. Then by the defeating bounding lemma AN includes
some non-empty set B constituting a bounding set for 8, and since BfANfA it follows 80L(A).  ~

4.2 Complexity of Bounding Reduction

How many bounding minima are needed to completely characterize the loser set L(A) in
terms of simple bounding alone? Excluding the null set, a set A contains 2|A|!1 subsets, each
determining its corresponding minimum. While this is a finite figure, and hence better than
attempting to list the infinite set of losers one by one, it grows exponentially with the size of A,
yielding, for example, 1,048,575 minima for a simple set of 20 profiles. 

Most of these minima, however, are copies or simply bound each other, and hence are not
really necessary. Consider for example the set A={+1,1,2,", +3,6,1,$, +6,3,1,(}. Although these are
all winner profiles, the minimum for B={", $} is identical to that for BN={", (}, namely :=+2,2,2,,
which is also the bounding minimum for the superset A. The reason is that in both cases, "
determines the first and second coordinates of the three minima, because it is minimal in A for these
two coordinates, while $ and ( only determine the value for the third one. on which they coincide.

Obviously, we are only interested in the minima which are necessary to compute L(A). We
may begin to exclude unnecessary minima by noticing that for any set A, the only subsets worth
considering are those whose minimum is not already bounded by the minimum of A, i.e. those
whose minimum beats the minimum for the entire A on at least one coordinate. The following
theorem shows that this may occur if and only if on some R-coordinate of A all members of the
subset coincide with the minimal value in A for that coordinate, giving us a tool to identify the
relevant subsets. 
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(24) Thm. Relevant Minima. Let A be a profile set in the space V, and B a subset of A. Then :B

is not harmonically bounded by :A iff there is a coordinate i in RA (hence not shared by the members
of A) which is also in MB (hence shared by all members of B) such that for any member $ of B, $(i)
is minimal in A, (and hence :B(i)=$(i)="min(i)).

 œA,B0V, BfA  [:BóD(:A)c{:A} ] ›i, i0RA, i0MB, œ$0B, $(i)= "min(i) ]

Pf.  (Y) By hypothesis: œA,B0V, BfA  :BóD(:A)c{:A}. By the defeating singleton lemma:
›i, :B(i)<:A(i).
    1. Then i0RA. Assume this were not the case and i0MA. Then by definition of minimum and MA

it follows that 
œ"0A, ›$0B, $(i)#:B(i)<:A(i)="(i), 

hence œ"0A, ›$0B, $(i)<"(i), which is contradictory because by definition of MA $(i)="(i).
    2. Moreover, i0MB. Assume this were not the case and i0RB.  Then by definition of minimum:

›"min0A, ›$min0B, $min(i)+1=:B(i)<:A(i)="min(i)+1. 
It follows that

›"min0A, ›$min0B, $min(i)<"min(i), 
which is contradictory because BfA, and hence "min is minimal on i in B as well.
    3. Since i0MB, and i0RA, by definition of minimum and of M- and R-coordinates, it follows for
i that

›"min0A, œ$0B, $(i)=:B(i)<:A(i)="min(i)+1, 
which holds if and only if  œ$0B, $(i)="min(i) because "min is minimal on i in B as well.
        (Z) By hypothesis,  

œA,B0V, BfA, ›i, i0RA, i0MB, œ$0B, $(i)= "min(i). 
By definition of minimum and of M- and R- coordinate it follows that

›i, ›"min0A, œ$0B, :B(i)= $(i)<"min(i)+1=:A(i) 
and therefore that ›i, :B(i)<:A(i) and hence :BóD(:A)c{:A}.       ~ 

A useful corollary follows by replacing the minima with the corresponding subsets, showing
that the only relevant subsets for defeating those losers not yet defeated by A are those that share
among their members some coordinate value minimal across A. Intuitively, if a subset B defeats
some more additional losers than A, then its minimum cannot be defeated by the minimum of A,
else by transitivity of bounding anything bounded by it would also be bounded by the minimum for
A. This condition meets the condition for the relevant minima theorem above, forcing B to share
some minimal coordinate value from A.

The reverse entailment holds too, but only in multidimensional violation spaces, telling us
that any subset sharing some minimal value of its superset will defeat some additional profiles not
defeated by the superset. The demonstration is trivial, as any subset B with minimal value min in
A for some dimension i will defeat any profile equally minimal on i and non-minimal on any other
coordinate. This profile is not defeated by A, whose bounding minimum is necessarily equal to
min+1 on coordinate i. 

One-dimensional spaces, on the other hand, allow for degenerate cases where one member
" of the superset bounds the other members. The subset B then collects " as its unique element. As
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a consequence, the minimum :A is identical to :B except on i, where it holds that  :A(i)=:B(i)+1.
The minimum :B thus remains undefeated by :A, as required by the theorem on relevant minima,
but D(B) becomes identical to D(A) because of the different definitions of D(S) for singleton and
non-singleton sets. For example, let A={+1,, +3,} and B={+1,}. By the bounding minimum theorem
the set D(A) is equivalent to D(:A)c{:A}, and since :A=2 it  includes any 8$2. Since B is a
singleton, D(B) is equal to D(:B} alone, and since :B=1, it includes all profiles 8>1. The two sets
thus coincide, and hence B adds no new defeated profiles. The relevant minima theorem however
remains valid, because :B is not in D(:A). 

(25) Corollary. Relevant Subsets. Let A be a profile set in the space V, and B a subset of A. Then
the set of profiles defeated by B is not a subset of those defeated by A only if there is a coordinate
i in RA and MB such that for any member $ of B, $(i) is minimal in A. When G has two or more
coordinates, the reverse entailment holds as well.

(Y) œA,B0V, BfA  [ D(B)éD(A) Y  ›i, i0RA, i0MB, œ$0B, $(i)= "min(i) ]

(Z) œG, |G|=1, œA,B0V, BfA  [ D(B)éD(A) Z  ›i, i0RA, i0MB, œ$0B, $(i)= "min(i) ]

Pf.      (Y) By hypothesis, › 80D(B) and 8óD(A). Hence B…A, and since AfB, also |A|>1.
   1. By the bounding minimum theorem applied to sets A and B, 80D(:B) and 8óD(:A)c{:A}.
     2. It follows that :BóD(:A)c{:A}, because otherwise by bounding transitivity D(:B)fD(:A), and
therefore 80D(:A) contrary to 1.
   3. From :BóD(:A)c{:A, by relevant minima, it follows that ›i, i0RA, i0MB, œ$0B, $(i)= "min(i).
            (Z) By hypothesis, ›i, i0RA, i0MB, œ$0B, $(i)= "min(i). Let B={"min}. 
   1. By definition of bounding minimum it holds that :A(i)="min(i)+1 and :B(i)="min(i). 
   2. Consider any profile 8 such that 8(i)="min(i) and œj…i 8(j)>"min(j). Obviously 80D(B).
Note that j exists, because by hypothesis |G|>1, and therefore 8 exists too.
  3. Since "min(i)= 8(i)<:A(i)="min(i)+1, it follows that 8óD(:A)c{:A}=D(A), and therefore
8óD(A).       ~ 

The theorem and its corollary provide a powerful tool to examine how many minima are
necessary to compute L(A). Since only subsets sharing some minimal coordinate matter, we may
construct them in a systematic fashion, finding for every coordinate i the minimal value "min(i) in
A and then checking the subsets sharing this minimal value across its members. Consider again the
case where A={+1,1,3,", +3,6,1,$, +6,3,1,(} with :A=+2,2,2,. According to the corollary, the sets
B1={+1,1,3,", +3,6,1,$} and B2={" +1,1,3,", +6,3,1,(} are irrelevant, because their members do not
share any minimal value for A. These are indeed two sets whose bounding minima :B1 and :B2

coincide with the minimum :A=+2,2,2,, and hence cannot defeat any additional profiles. The only
relevant non-singleton set is B={+3,6,1,$, +6,3,1,(}, which shares the minimal value ‘1’ on the third
coordinate C3. The corresponding minimum, :B=+4,4,1, is not bounded by :A and adds to L(A) all
the profiles collectively bounded by $ and ( that share their minimal value on C3, and hence are not
defeated by A because reciprocity could not be satisfied on C3.
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Singletons can be relevant subsets as well. Profile "=+1,1,3,, for example, posts the minimal
values for C1 and C2, and thus forms a relevant subset. Its relevance is easily assessed once one
considers that " simply bounds infinitely many losers of the kind 8=+1, 1+i, 3+k,, with i,k$0, none
of which are bounded by :A=+2,2,2, which is too high on C1.

The corollary also has an important recursive aspect: it can be applied again to each relevant
subset. For example, let A={+0,1,1,3,", +0,3,6,1,$, +0,6,3,1,(,  +9,9,9,0,*}. A first relevant subset is
B={+0,1,1,3,", +0,3,6,1,$, +0,6,3,1,(} which is minimal on C1. The minimum :B=+0,2,2,2, ensures
that losers sharing the same minimal value on C1 will be bounded. We may now apply the corollary
again to this subset, and notice that within B, the subset C={+0,3,6,1,$, +0,6,3,1,(} forms an
additional relevant subset sharing two minimal coordinate values for the superset B, namely C1 and
C4, and yielding the minimum :C=+0,4,4,1,, which will collectively bound those losers posting the
same minimal values on C1 and C4. For example, the loser 8=+0,5,5,1, is bounded by :C, but neither
by :B=+0,2,2,2, nor :A=+1,2,2,1,. 

It follows that we may systematically seek relevant subsets by applying the corollary
recursively. Let A be a set of profile in VN. At level zero, we build all the N largest subsets sharing
the first, or second, or third, ...,  or nth coordinate value minimal in A. For each discovered subset
S, we repeat the procedure fixing one of the n!1 coordinates not yet fixed, creating further relevant
subsets. The procedure applies recursively until all coordinates are fixed and all subsets are
singletons formed by the single profiles. By the above theorem and corollary, every new subset so
discovered is relevant, adding new defeated profiles to L(A) via simple bounding by the
corresponding bounding minimum. Consider for example once again A={+0,1,1,3,", +0,3,6,1,$,
+0,6,3,1,(,  +9,9,9,0,*}. The computation of the subsets proceeds as shown in the figure below. When
a relevant subset contains only one profile, no further branching occurs, because all coordinates of
a singleton are shared, albeit only vacuously so, therefore they are not R-coordinates and no new
relevant subset can be built. 

The tree starts at level 0, where no coordinate is yet fixed; this is the root node of the tree,
and the associated subset is the entire A, with :A=+1,2,2,1,. The maximal subsets sharing one
minimal coordinate yield the four subsets shown at level 1. The only non-singleton subset occurs
when minimizing C1, allowing for further subset searches. All other subsets contain only one
profile: the corresponding : is identical to the candidate, and no further search is conducted. Note
that the same profile may occur in multiple branches of the tree: this happens whenever a profile
contains more than one minimal coordinate for some of its supersets. For example, "=+0,1,1,3, is
minimal on C1, C2, and C3 in A, and again on C2 and C3 on the leftmost level-1 subset.
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(26) Recursive tree of relevant subsets:

In the following, we formalize the procedure for building relevant subsets by first defining
the tree of relevant subsets T(A) for a profile set A, and then demonstrating how the sets in T(A)
are sufficient to defeat any loser in L(A). We will then use the tree to establish an upper bound on
the number of minima required to compute L(A). A priori, this would seem to be as high as the
number of available subsets, i.e. 2K!1 for any set of size K. But not all subsets are relevant and
when this factor is taken into account the final number is considerably lower. For example, the
example in the above figure requires only seven distinct subsets —and hence only seven minima—
to simply bound any loser in L(A), rather than the fifteen suggested by the number of possible non-
empty subsets .

The tree of relevant subsets T(A) for a profile set A is defined recursively level by level
starting from level 0. First we defined a minimal-coordinate subset relative to some profile set A
and coordinate c as the subset ‘c(A)’ of profiles posting the minimal value available in A for
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coordinate c. This definition permits us to track which coordinates get recursively fixed. For
example, in the above case, the four subsets for level 1 would be characterized as 1(A), 2(A), 3(A),
and 4(A), as in figure (30) below. The first subset shown for level 2 would be 2(1(A). This also
records at once for each subset which coordinates have already been fixed and in what order. The
order is crucial, because each relevant subset is only sensitive to the minimal coordinates of its
immediate superset. For example, 4(1(A)) fixes as minimal for the fourth coordinate the value ‘1’,
i.e. the minimal value available in 1(A), rather than the value ‘0’ available on A. In contrast, 1(4(A)),
with the reverse order, does not correspond to any relevant set, because 4(A) fixes the  4th coordinate
to ‘0’ forming the singleton subset containing +9,9,9,0,.

(27) Def.  Min-coordinate Subset. Let A be a profile set, and c a coordinate in the set of
coordinates G, then the subset ‘c(A)’ with minimal coordinate c relative to A is defined as the set
of profiles in A with minimal c-coordinate across A.

c(A)={":"0A, œ"N0A, "(c)#"N(c)} 

As an auxiliary tool, we define the set Fixed(A) which returns the set of coordinates that
have already been fixed for some minimal-coordinate subset A. This will help us prevent fixing
again a coordinate that has already been fixed. 

(28) Def.  Fixed Coordinates. Let B be a recursively determined min-coordinate set of the form
B=c1(..(ck(A)), then the set Fixed of fixed coordinates for B includes all the fixed coordinates ci
determining B. 

B=c1(..(ck(A))) Y Fixed(B)={c1,..,ck} 

We may now introduce the definition of T(A), which collects together all the relevant
subsets determined by each level of the tree. The first level, L0, contains the initial set of profiles
A, where no minimal coordinate value has been fixed yet. Then, any successive level Li is defined
in terms of the immediately precedent level Li!1 as collecting any new subset that can be formed
from those in Li-1 by fixing a minimal value among one not yet minimal R-coordinate. Note that as
soon as a singleton is formed, no further subsets are sought, because all coordinates become shared
M-coordinates.

(29) Def. T(A). Let G the set of constraints determining the coordinates of V, and A a set of profiles
in V. Then the tree of relevant subsets is built level by level according to the following recursive
steps, with each level Li collecting all the relevant subsets determined on the basis of the immediate
preceding level. The tree of relevant minimal subsets T(A) for A is then defined as the union of all
levels.

T(A) = ci Li, where each Li is defined as follows:
Step 0: L0={A}.
Step i: Li={B : B=c(BN), BN0Li!1, c0RBN, c0G, cóFixed(BN)}.  
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The example considered above is reexamined in the figure below with the corresponding subsets
and levels used in the above definitions.

(30) Recursive tree of relevant subsets:

T(A)={A, 1(A), 2(A), 3(A), 4(A), 3(1(A)), 3(1(A)), 4(1(A)), 2(4(1(A))), 3(4(1(A)))}

We now need to demonstrate that the relevant subsets in T(A) are sufficient to compute
L(A). That each profile defeated by some set in T(A) is a loser in L(A) follows trivially from the
L-decomposition theorem (22) on p. 15, because L(A) collects any profile defeated by any subset
of A. Any loser in L(A) is defeated by some subset in T(A): this follows from the relevant subsets
corollary in (25) above applied recursively to the sets in T(A): by L-decomposition, each loser is
defeated by some subset B, and by the corollary the members of B must share some value minimal
in A. The subsets of level L1 within T(A) are the largest possible subsets satisfying this condition,
therefore B is either one of them, proving the theorem, or it is a subset of one of them. In this latter
case the same reasoning applies again, level by level in a recursive fashion. We are guaranteed to
discover B, because each application reduces the size of the sets being considered eventually
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reaching the singletons in T(A). For B to differ from all sets in T(A) is not possible, as the corollary
on relevant minima forces it to be a subset of some set in T(A), and once the singletons in T(A) are
reached the only additional possible subset is the empty set, but this contradicts L-decomposition,
which requires B to be non-empty.

A possible cause of confusion arises from the fact that a loser in L(A) could be defeated by
some set BN not in T(A) whose members do not share any coordinate value. A loser, however, can
be defeated by many distinct sets, and the theorem simply asserts that one of these sets is certainly
in T(A), and this is the subset which the demonstration focuses on. 

(31) Thm. Sufficiency of T(A). Let A be a set of profiles and T(A) its corresponding tree of
relevant subsets. Then a profile 8 is a loser in L(A) if and only if it is defeated by some subset B in
T(A) (i.e.iff  it coincides or is simply bounded by :B forsome subset B in T(A)).

80L(A) ] ›B0T(A), B¤8.

Pf.   (Z) By hypothesis, ›B0T(A), B¤8.  By definition of T(A), BfA and B…Ø. By
L-decomposition, 80L(A).
            (Y) Let 80L(A) and let Li be determined according to the definition for T(A).
   1.By L-decomposition ›BfA, B…Ø,  B¤8. Since T(A)=ci Li, all we need to show is ›i, B0Li.
   2. We assume this is false, i.e. òi, B0Li, and derive a contradiction.
   3. As we show in 3.1 and 3.2 below by induction on Li, it holds: œLi, ›BN0Li+1, BdBN.

3.1 Consider L0={A}. By hypothesis Aë8, else B=A against 2.  By the corollary on relevant
subsets, B shares a minimal value "min(i) on some coordinate i in RA. Therefore, by definition of Li,
›BN0L1, BfBN, and since by 2 above BóL1, it holds  ›BN0L1, BdBN,  proving the property for i=0.

3.2 Let the property hold for Li and let us derive it for Li+1. Because it holds of Li, it follows
›S0Li, BfS and also Së8, else B=S against 2. By the corollary on relevant subsets, B shares a
minimal value Fmin(i) for Fmin0S on some coordinate i in RS. Therefore, by definition of Li,
›BN0Li+1, BfBN, and since by 2 above BóLi+1, it holds ›BN0Li+1, BdBN.
   4. Each subset S in Li+1 is a proper subset of some set SN in Li, because by definition of T(A) the
coordinate whose value Fmin(i) is shared across S must be in RSN, and therefore ›F0SN F(i)>Fmin(i).
It follows that œS0Li+1 ›SN0Li |S|<|SN|. 
   5. Let max be the highest level in T(A). By 4 level max is defined and finite because |A| is finite.
Then by 3, ›BN0Lmax+1, BdBN, contradicting the hypothesis that max is maximal.       ~

5. Preliminary Observations on the Complexity of Bounding Reduction

A bounding minimum is necessary when it is not defeated by some other set in T(A). Here
we examine the following question: given a set of winner-profiles A of size K, how many necessary
minima are there in the corresponding T(A)? For simplicity, we assume throughout that A consists
of winners only. More general sets should be reducible to this case via simple bounding, and via
their bounding minima, whose definition makes no similar assumption about the original set. Also
recall in the following discussion that the members of A are themselves relevant bounding minima,
and hence eventually contribute to the total number of minima.



24

The first section examines the conditions for necessary minima. The next considers how the
number of dimensions relative to the size of a set affects the availability of necessary minima. The
last one presents some interesting cases, either because they maximize coordinate sharing, or
because they minimize it.

5.1 Conditions on Necessary Minima: 

The bounding minimum for a set A is necessary only if required to defeat via simple
bounding at least one profile not defeated by any of the relevant subsets of A, as in the definition
below.

(32) Def. Necessary Minima. Let A be a set of profiles corresponding to some node in T(A), and
B one of the relevant subsets for A in T(A). Then :A is necessary if and only if it is not defeated by
any of its relevant subsets. 

:A is necessary ] œBfA, B0T(A), Bë:A. 

Not all minima of the relevant subsets composing T(A) are necessary, because some are
simply bounded by others. The subset-superset relation between a node in T(A) and its daughters
does not entail necessity. If we replace each node with the : for the corresponding set, we can easily
build examples where the : of one node is necessary even though the :’s of all its daughters are
bounded by some daughter of their own, as in case (a) below, or vice versa where the : of a node
is unnecessary even though the minima of all its daughters are necessary, as in (b) below.

(33) Necessary :’s.

An example of case (b) occurs for S={+8,2,2,, +2,8,2,, +2,2,8,}. The minimum :S=+3,3,3,
is bounded by the minimum of any pair of members, e.g. B={+2,8,2,, +2,2,8,} with minimum
:B=+2,3,3,, simple bounds :S. Note that :B is itself necessary, as it is not bounded by any of the
members of B. The same is true for any other pair of members of S.

Case (a) is more complex, and has the above example as a component. Consider set A
below. Each column groups together the profiles with the same minimal coordinate, thus identifying
the 4 relevant subsets B1=1(A), B2=2(A), B3=3(A), and B4=4(A). Note how on any unshared
coordinate each subset has the same structure as the set S from the previous example. The
corresponding minima, given below, are thus bounded by their daughter subsets in T(A), each



4  An example where this condition applies is the following: A={+0,2,4,6,, +0,2,6,4,, +7,1,5,5,}.
Then :A=+1,2,5,5,, bounded by :B=+0,2,5,5, for B={+0,2,4,6,, +0,2,6,4,}. The minimal value for A is
lower than that for B on the second coordinate, but "min(i)+1 is not, making bounding possible.
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including two of their members. For example, :B1=+0,3,3,3, is bounded by :C=+0,2,3,3,
corresponding to the subset C={+0,2,8,2,, +0,2,2,8,} of B1. Nevertheless, even if all minima for the
subsets B1-B4 are bounded, the global minimum :A=+1,1,1,1, is not, nor is it defeated by any other
minimum among A’s relevant subsets.

(34) B1 B2 B3 B4
A={ +0,8,2,2,, +8,0,2,2,, +8,2,0,2,, +8,2,2,0,,

+0,2,8,2,, +2,0,8,2,, +2,8,0,2,, +2,8,2,0,,
+0,2,2,8,, +2,0,2,8,, +2,2,0,8,, +2,2,8,0, }

:A=+1,1,1,1, :B1=+0,3,3,3, :B2=+3,0,3,3, :B3=+3,3,0,3, :B4=+3,3,3,0,

The conditions determining whether the minimum of a profile set A is unnecessary because
defeated by some relevant subset B, depends on the size of B. When B is not a singleton, it is
sufficient that :A is lower than :B  on some coordinate. This in turn translates into a condition on
the minimal values available in A and B, according to the lemma below.

(35) Lemma. Necessary Minima I. Let A be a set of profiles corresponding to some node in T(A),
and B a non-singleton relevant subset for A in T(A). Then :A is not defeated by B if and only if the
following condition holds. 

œBfA, B0T(A), Bë:A ] [ ›i, i0MB, "min(i)+1<$min(i) ] OR
[ ›i, i0RB, "min(i)<$min(i) ].

Pf.        (Z) Note that ióMA, otherwise "min(i)=$min(i) contrary to hypothesis. Therefore, by definition
of minimum, :A(i)="min(i)+1. 
   1. Assume only the first disjunct holds. Then :B(i)=$min(i), and :A(i)="min(i)+1<$min(i)=:B(i).
Hence Bë:A.
    2. Assume the second disjunct hold. Then :B(i)=$min(i)+1 and :A(i)="min(i)+1<$min(i)+1=:B(i).
It follows that Bë:A.
            (Y) Since |B|>1, by hypothesis and by the bounding minimum theorem :AóD(:B) c{:B}.
   1. By definition of defeating set for singletons, it follows ›i, :A(i)<:B(i). 
  2.  Note that ióMA,  because in this case the minimal value "min(i) is shared across both sets
because B is a subset of A, yielding "min(i)=$min(i), and therefore :A(i)="min(i)=:B(i) against 1.
   3. Therefore i0RA and by definition of minimum :A(i)="min(i)+1.
   4. If i0MB, then "min(i)+1=:A(i)<:B(i)=$min(i), and therefore "min(i)+1<$min(i).4 Otherwise i0RB,
and hence "min(i)+1=:A(i)<:B(i)=$min(i)+1, and therefore "min(i)<$min(i).      ~
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When the relevant subset B is a singleton, D(B) no longer includes :B. In this case, :A is a
necessary minimum even if it coincides with :B, because :A is defeated by A, and thus crucially
adds to L(A) a profile which would otherwise incorrectly escape loser status. Note that in singleton
sets, there only are M-coordinates, and hence the second condition in the above lemma cannot
apply.

(36) Lemma. Necessary Minima II. Let A be a set of profiles corresponding to some node in T(A),
and B a singleton relevant subset for A in T(A). Then :A is not defeated by B if and only if the
following condition holds. 

œBfA, B0T(A), Bë:A ] [ ›i, i0RA, "min(i)+1<$min(i) ] OR
[ œi, i0RA, "min(i)+1=$min(i) ].

Pf.  By hypothesis on B, œi, :B(i)=$min(i).
             (Z) Assume only the first disjunct holds. Then :A(i)="min(i)+1. Therefore :A(i)<:B(i).
Hence Bë:A. Assume the second disjunct holds. Then :A(i)="min(i)+1=$min(i)= :B(i).  Therefore
:A=:B. Hence Bë:A, because by the bounding minimum theorem singletons do not defeat their own
minima.
                (Y)  By hypothesis and by the bounding minimum theorem, :AóD(:B).  
   1. By definition of defeating set for singletons, either ›i, :A(i)<:B(i) or œi, :A(i)=:B(i).
 2. Assume the first disjunct from 1 holds, i.e. ›i, :A(i)<:B(i). Then ióMA, else
:A(i)="min(i)=$min(i)=:B(i) against hypothesis. Therefore i0RA.  Hence :A(i)="min(i)+1<$min(i)=:B(i).
  3. Now assume the second disjunct from 1 holds, i.e. œi, :A(i)=:B(i).  Then, œi, i0RA,
"min(i)+1=$min(i), and by definition of minimum, œi, i0RA, :A(i)="min(i)+1=$min(i)=:B(i).          ~

5.2 Dimensions of the Violation Space

Can it happen that  the number of dimensions of the space VN affect the number of necessary
minima needed for a profile set A of size K? While we do not yet have an exhaustive answer for this
question, we show that the worst case scenario, where all 2K!1 non-empty subsets of A constitute
subsets with necessary minima, is impossible whenever K$N, while it becomes possible at least in
some cases if K<N. The three possible relations of K to N are examined here below.

‚‚‚‚ K>N
Under these circumstances, the worst scenario is not possible..The result follows from a simple
calculation over the number of relevant sets in T(A) required to accommodate the 2K!1 subsets of
A. The tree T(A) may at most identify N relevant subsets of size K!1, one for each dimension (see
the definition of T(A) on p. 21 above). However, there are K subsets of size K!1 in A. Therefore,
there simply are not enough relevant sets of the appropriate size in T(A) for the possible sets of the
same size in the power set P(A). It follows that one or more sets in P(A) are necessarily irrelevant,
since we know from the theorem on the sufficiency of T(A), on page 23, that its subsets and
corresponding minima are sufficient to determine all losers in L(A).
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‚‚‚‚ K=N
If K=N, the worst case scenario is equally impossible. Forming K subsets of size K!1 requires each
member of A to occur in K!1 of these subsets. This entails that on each coordinate, K!1 members
of A share the minimal value for A, else they could not be part of the corresponding relevant sets.
This must hold on all K distinct coordinates, yielding K distinct subsets. But this is possible only
if the original set A has the shape shown below, where each mi is the global minimal value on the
ith coordinate, and each Vj is non-minimal. 

(37) A={ + m1, m2, m3, ..., mk!1, Vk ,1,
+ m1, m2, m3, ..., Vk!1, mk ,2,
+ m1, m2, m3, ..., mk!1, mk ,3,

.... ... ....
+ m1, m2, V3, ..., mk!1, mk ,k!2,
+ m1, V2, m3,   ..., mk!1, mk ,k!1,
+ V1, m2, m3, ..., mk!1, mk ,k    }

The minimum for A will then be :A=+m1+1, m2+1, m3+1, ..., mk!1+1, mk+1,, and will be defeated
by each of the K subset at issue here. The subset for coordinate i will in fact shares with :A all but
the minimal value mi, and thus bound :A. 

For example, the minimum for 1(A) is :1(A)=+m1, m2+1, m3+1, ..., mk!1+1, mk+1,, and bounds
:A. At least one :, that for A, is thus unnecessary, showing that the worst scenario is not possible
for K=N.

‚‚‚‚ K<N. 
The worst case scenario becomes possible when K<N. What has been said about the layout for the
K=N case, remains true here too. Therefore there are K coordinates on each of which K!1 members
of A share a minimal value for A. However, the remaining coordinates may host non-minimal
values that ensure that the corresponding minima do not bound each other nor the global minimum
for A. An example follows below for N=8 and K=4. To ease comparisons, global minimal values
are underlined in the minima for non-singleton relevant subsets, and high values that prevent the
minimum to bound other minima are bolded. The 24!1=15 minima never bound each other.



28

(38) Worst Case: A={ ", $, (, *}

" = 1 3 5 9 8 8 8 5 = :(") 

$ = 1 3 9 7 7 7 5 7 = :($) 
( = 1 9 5 7 9 5 7 8 = :(()
* = 9 3 5 7 5 9 9 9 = :(*)

2 4 6 8 6 6 6 6 = :A

1 4 6 8 8 6 6 6 = :({", $, (})

2 3 6 8 6 8 6 6 = :({", $, *})

2 4 5 8 6 6 8 6 = :({", (, *})

2 4 6 7 6 6 6 8 = :({$, (, *})

1 3 6 8 8 8 6 6 = :({", $})

1 4 5 8 9 6 8 6 = :({", (})

1 4 6 7 8 6 6 8 = :({$, (})

2 3 6 7 6 8 6 8 = :({$, *})

2 4 5 7 6 6 8 9 = :({(, *})

2 3 5 8 6 9 9 6 = :({", *})

5.3 Some Interesting Cases of T(A)

Here we consider two possible arrangements of T(A), the first guarantees necessity of all
minima in the tree (i.e. corresponding to the relevant subsets in the tree), while the second
maximizes coordinate sharing among the profiles. As we will see, both cases require less minima
than the worst case scenario examined above.

T(A) with only necessary minima: When the daughters of any set in T(A) partition the set, then
every node in T(A) yields a necessary :. In this case, every set of profiles in the tree will have the
shape shown below, with no profile ever hosting two minimal coordinate values across the set.
When building the next layer of T(A), only the profiles sharing a minimal value m will be selected,
with empty intersection between the various subsets.
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(39) S={ +m1, V2, ..., Vn,, +V1, m2, ..., Vn,, .... , +V1, V2, ..., mn,
+m1, VN2, ..., VNn,, +VN1, m2, ..., VNn,,  .... , +VN1, VN2,..., mn,
...........    }

The minimum for the entire set is :S=+m1+1, m2+1, ..., mn+1,, and it cannot bound the : of
each subset i(S), which would post the lower value mi on the ith coordinate. Likewise, each subset
minimum cannot bound :S, since their value on some other coordinate is higher than mi+1=:S(i).
This is ensured by the empty intersection that must hold across the subsets. For a subset to match
the value of :S on all coordinates other than i, and thus bound it via its own minimum, some of its
profiles would have to contain a minimal value on some coordinate other than i. For example, a set
collecting the profiles with minimal ith coordinate with the profile p=+ ..., mi, ..., mj, ..., would make
it possible for the corresponding : to match :S on the jth coordinate. But p would of course now be
part of two subsets, namely i(S) and j(S), violating the intersection requirement.

For T(A) to only allow necessary minima, the condition must hold on every node, and hence
the schema shown for S in the above example must reoccur on each of S relevant subsets, where
it would affect the V-values shown above, which thus should not be considered to be unconstrained.
The practical example below shows how a complete case could look like.

A final problem arises with singleton subsets, where :’s coincide with profiles in A. To avoid
bounding, each profile must show at least one value which is 2 violations higher than any minimal
coordinate of the subsets dominating it in T(A). The example below conforms to all conditions
examined here. The next one is similar, but lets the singleton sets bounding the subsets immediately
dominating them.

(40) S={ +0, 1, 3,, +1, 0, 3,, +1, 3, 0,, :S=+1,1,1,
+0, 3, 1,, +3, 0, 1,, +3, 1, 0, }

1(S)= {+0, 1, 3,, +0, 3, 1,} :1(S)=+0,2,2,
2(S)= {+1, 0, 3,, +3, 0, 1,} :2(S)=+2,0,2,
3(S)= {+1, 3, 0,, +3, 1, 0,} :3(S)=+2,2,0,

2(1(S)={+0, 1, 3,} :2(1(S))=+0, 1, 3, 
3(1(S)={+0, 3, 1,} :3(1(S))=+0, 3, 1,  

1(2(S)={+1, 0, 3,} :1(2(S))=+1, 0, 3,  
3(2(S)={+3, 0, 1,} :2(1(S))=+3, 0, 1,  

1(3(S)={+1, 3, 0,} :1(3(S))=+1, 3, 0,  
2(3(S)={+3, 1, 0,} :2(3(S))=+3, 1, 0,  
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(41) S={ +0, 1, 2,, +1, 0, 2,, +1, 2, 0,, :S=+1,1,1,
+0, 2, 1,, +2, 0, 1,, +2, 1, 0, }

1(S)= {+0, 1, 2,, +0, 2, 1,} :1(S)=+0,2,2,
2(S)= {+1, 0, 2,, +2, 0, 1,} :2(S)=+2,0,2,
3(S)= {+1, 2, 0,, +2, 1, 0,} :3(S)=+2,2,0,

2(1(S)={+0, 1, 2,} :2(1(S))=+0, 1, 2, bounds :1(S)

3(1(S)={+0, 2, 1,} :3(1(S))=+0, 2, 1, bounds :1(S)

1(2(S)={+1, 0, 2,} :1(2(S))=+1, 0, 2, bounds :2(S)

3(2(S)={+2, 0, 1,} :2(1(S))=+2, 0, 1, bounds :2(S)

1(3(S)={+1, 2, 0,} :1(3(S))=+1, 2, 0, bounds :3(S)

2(3(S)={+2, 1, 0,} :2(3(S))=+2, 1, 0, bounds :3(S)

Note that this class of profile sets cannot give rise to the worst scenario independently of the
number of dimensions. The condition on subset-partition goes directly against coordinate sharing,
making it impossible, except for K=2, to construct K subsets within T(A) each containing K!1
profiles, since this would inevitably require some profiles to occur in more than one subset.

Maximal Sharing. An interesting case arises when profiles are allowed to maximize coordinate
sharing. If we set the number of profiles equal to that of the allowed dimensions, the profile set will
look like the schema below, with each two profiles diverging on exactly two coordinates i and j.

(42) A={ + m1, m2, m3, ..., mk!1, Vk ,1,
+ m1, m2, m3, ..., Vk!1, mk ,2,
+ m1, m2, m3, ..., mk!1, mk ,3,

.... ... ....
+ m1, m2, V3, ..., mk!1, mk ,k!2,
+ m1, V2, m3,   ..., mk!1, mk ,k!1,
+ V1, m2, m3, ..., mk!1, mk ,k    }

   
Provided that each Vi is at least 2 units greater then the corresponding minimum, each of the

pairs of profiles will yield a necessary :, because it will beat each candidate on coordinates iK
2










and j. On the other hand, the minima of any larger set will be bounded by those of its relevant
subsets, because the subsets will share across all their profiles some additional minimal value mi not
shared by the superset. The : for the superset will thus post a value mi+1 against the lower mi value
of the subset minimum, while on any other coordinate superset and subset will be identical. The
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overall number of necessary minima will thus be K+ , hence equal to . An exampleK
2










K K( )+ 1

2
follows below.

(43) S={ +0, 0, 2,, +0, 2, 0,, +2, 0 0, } :S=+1,1,1,

1(S)= {+0, 0, 2,, +0, 2, 0,} :1(S)=+0,1,1, bounds :S

2(S)= {+0, 0, 2,, +2, 0 0,} :2(S)=+1,0,1, bounds :S

3(S)= {+0, 2, 0,, +2, 0 0,} :3(S)=+1,1,0, bounds :S

2(1(S)=1(2(S)={+0, 0, 2,} :=+0, 0, 2, 
3(1(S)=1(3(S)={+0, 2, 0,} :=+0, 2, 0,  
3(2(S)=2(3(S)={+2, 0 0,} :=+2, 0 0,
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Appendix

The Defeating-Bounding lemma and the Defeating theorem are repeated below together with their
demonstration. For an intuitive outline, see p. 6.

(44) Lemma. Defeating-Bounding. Let A be a profile set and 8 a profile in V. Then A is a non-
empty defeating set for 8 if and only if there exists a non-empty set B in A that constitutes a
bounding set for 8.

œA…Ø, 80D(A) ] ›BfA, B…Ø, B=B(8). 

Pf.      (Z) By hypothesis, B…Ø is a bounding set for 8, hence it satisfies reciprocity, therefore B is
also a non-empty defeating set for 8.
         (Y) 
   1. Let A…Ø be a defeating set for 8. Then A satisfies reciprocity with respect to 8. Moreover, by
definition of defeating set, 8óA.  
   2. Let B be the subset of A formed by collecting each " in A beating 8 on some coordinate, i.e.
B={": "0A and ›i, "(i)<8(i)}. 
   3. B satisfies strictness by definition.
  4. B satisfies reciprocity; let i be a coordinate such that 8(i)<$(i) for some $0B. Then by
reciprocity on A ›", "(i)<8(i). By definition of B, "0B.
   5. Moreover B…Ø, because for any "0A, given 8óA from 1 above, it follows 8…", 
and therefore ›i, 8(i)…"(i). If 8(i)>"(i), then "0B, else by reciprocity ›"N, " N(i)<8(i).
   6. By 3, 4, and 5, set B is a non-empty bounding set for 8.       ~

The defeating and bounding lemma extends to defeating sets all the properties of bounding
sets associated with the bounding theorem, namely that if A is a non-empty defeating set for 8, then
8 is a loser in any optimization involving A. The corresponding defeating theorem is demonstrated
below.

(45) Defeating Theorem. Let E be a set of constraint coordinates for V, and let K be a profile set
in V and 8 a profile in K. Then 8 is suboptimal in K under any ranking of E iff there is in K a non-
empty defeating set A for 8.

8óW(K, E)]  ›A…Ø,  AfK, A¤8.    

Pf. (Z) By the defeating bounding lemma, set A contains a non-empty bounding subset AN for 8.
By  the bounding theorem, 8 is a loser on any optimization involving AN, and hence in K as well.
      (Y) Let 8 be a loser in K. Then, by the bounding theorem, there is in K a non-empty bounding
set A in V satisfying strictness and reciprocity with respect to 8. Since it satisfies reciprocity, A also
qualifies as defeating set for 8 in V.      ~

As already briefly explained earlier on, despite their close relation, bounding and defeating
sets are not identical. Consider the following informative example. Let A={+0,4,", +4,0,$, +2,2,().
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Set A qualifies as bounding set for 81=+1,3,, with " and ( satisfying strictness on i=1 and $
satisfying it on i=2. As the reader may check, A also satisfies reciprocity. Since bounding sets are
also defeating sets, A also qualifies as defeating set for 81. 

Now consider 82=+1,1,. Suddenly, ( is no longer able to satisfy strictness. As a consequence,
A can no longer qualify as bounding set for 82. It however still qualifies as defeating set for 82,
because reciprocity remain satisfied, with " acting as a reciprocity rescuer on i=1 and $ on i=2. 

The reason for this asymmetry is that ( is itself collectively bounded by B={", $}, but ruins
A’s prospects to qualify as bounding set for 82 due to its failure of strictness. Of course,  82 is the
minimum of A, i.e. :A= +1,1,=82. 

The notion of defeating set permits us to hold true for any set A that the set of profiles
defeated by the set minimum includes all profiles defeated by A itself (with the exception of the
minimum), i.e. that D(A)=D(:A)+{:A}. The notion of bounding set does not allow for the same
straightforward expression, because of problematic cases like the one just discussed arise whenever
A contains profiles bounded by some of its subsets. If we temporarily interpret D(A) as meaning
‘profiles bounded by the bounding set A’ the above equality would be falsified by the example just
considered, since :A is not bounded by A={", $, (} due to the failure of strictness by (. Nor does
the problem only concerns minima like :A: the profiles +1,2, and +2,1, are not minimal but they too
fail to be bounded by A due to a strictness failure. The equation does hold of bounding sets when
these contain only winners, but this assumption would diminish the generality of our results, besides
creating further difficulties when calculating L(A).
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