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Information along contours and object boundaries

Jacob Feldman and Manish Singh
Department of Psychology, Center for Cognitive Science

Rutgers University—New Brunswick

Attneave (1954,Psychological Review) famously suggested that information along visual con-
tours is concentrated in regions of high magnitude of curvature, rather than being distributed
uniformly along the contour. Here we give a novel formal derivation of this claim, yielding an
exact expression for information, in Shannon’s sense, as a function of contour curvature. More-
over, we extend Attneave’s claim to incorporate the role ofsignof curvature, not justmagnitude
of curvature. In particular, we show that for closed contours, such as object boundaries, seg-
ments of negative curvature (that is, concave segments) literally carry greater information than
corresponding regions of positive curvature (i.e., convex segments). The psychological valid-
ity of our informational analysis is supported by a host of empirical findings demonstrating the
asymmetric way in which the visual system treats regions of positive and negative curvature.

In 1954, Attneave proposed that information along a vi-
sual contour is not distributed uniformly, but rather is con-
centrated in regions of high magnitude of curvature.1 His
observation was informal, but astute, and helped to inspire
interest in information-processing approaches to the study of
vision. Fig. 1a shows a shape with points of locally max-
imal magnitude of curvature marked. By way of demon-
stration that such points convey most of the psychologically
important information about shape, Attneave drew a line
drawing of a cat by taking only the points of local max-
ima of curvature magnitude, and joining them with straight
line segments.2 The resulting line drawing (now popularly
known as ‘Attneave’s cat’) was easily recognizable, suggest-
ing that not much loss of information had occurred. At-
tneave (1954) also briefly described the results of an ex-
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periment in which participants were asked to approximate
two-dimensional shapes with a fixed number of points, and
then asked to indicate where on the original shapes these
points were located. Histogram plots of the points selected
revealed salient peaks at precisely the points of local max-
ima of curvature magnitude (similar to Fig. 1b). The de-

1 Curvature is sometimes treated as anunsignedquantity—the
magnitude of the tangent deriviative or the “degree of bendiness”—
and sometimes as asignedquantity, in which case sign is conven-
tionally assigned positive for turns towards the interior of the “fig-
ure” (i.e. convexities) and negative for turns away from the inte-
rior (concavities). This discrepant senses can cause confusion, for
example when a reference to “low curvature” can refer either to
a relatively straight curve (when curvature is used in the unsigned
sense) or a region with high magnitude in the negative direction (i.e.
a sharp concavity). Attneave used the term curvature in its unsigned
sense. Thus in modern language his claim was that information de-
pends on themagnitudeof curvature. He made no reference in his
paper to the sign of curvature, and his proposal did not distinguish
between convex and concave regions of a contour.

2 Irving Biederman (speaking informally at the Psychonomic So-
ciety conference, November, 2000) has related that, in Attneave’s
own telling—and contrary to myth—Attneave never actually made
a smoothly curved line drawing of a cat. Rather, Attneave drew the
famous feline polygon by hand directly from visual inspection of
his own pet.
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tails of Attneave’s experiment were apparently never pub-
lished (Attneave’s 1954 article cites only a ‘mimeographed
note’). However Norman, Phillips, and Ross (2001) have re-
cently conducted this experiment and replicated Attneave’s
results. Moreover, contour deletion experiments (Biederman
and Blickle, discussed in Biederman, 1987) have shown that
deletion of high-curvature contour segments creates greater
difficulties in recognition than deletion of low-curvature seg-
ments of comparable length, demonstrating the special role
high-curvature contour segments play in recognition.

More recently, Resnikoff (1985) has provided a deriva-
tion of Attneave’s claim, based on Shannon’s mathemati-
cal definition of information. Although Resnikoff deserves
credit for placing Attneave’s proposal on a formal footing
for the first time, we feel that his derivation has several prob-
lems that leave it short of providing a mathematical sub-
stantiation of Attneave’s idea (see Appendix). In this arti-
cle, we provide a novel derivation of the information con-
tent of contours, which does not require the assumptions im-
plicit in Resnikoff’s analysis, but rather is informed by recent
psychophysical findings about the mental representation of
curves. Moreover, we extend the informational analysis to
the case ofclosed contours—as might correspond to object
boundaries—deriving an asymmetry in the information con-
tent of negative and positive curvature regions. This analysis
extends Attneave’s original claim—which treats positive and
negative curvature regions symmetrically—and is supported
by a host of empirical findings in the literature demonstrating
the influence of sign of curvature on shape perception.

Information

We begin with a statement of Shannon’s formula for a con-
tinuous measureM. Assume first a distribution (probability
density function)p(M), which represents the observer’s be-
liefs about the value ofM before a measurement is taken.
What information is gained by measuringM? Shannon’s in-
sight was that this depends on the value obtained, and, more
specifically, on its likelihood. If the observedM is rela-
tively close to what was expected—say, it was the most likely
case—then relatively little information has been gained by
measuring it. But if it reveals a surprising value—say, some-
thing in the tails of the distributionp(M)—then relatively
much information has been gained. Specifically, Shannon
showed that this dependence must follow the negative lo-
gorithm3 of the probability, i.e.,

u(M) =− log[p(M)]. (1)

The quantityu(M) is sometimes called thesurprisal of M.
The informationcontained in the distributionp(M), i.e. the
entire ensemble of probabilitiesp(M) taken as a whole, is
simply the expected value of the surprisal,

I(p) =−∑
M

p(M) log[p(M)]. (2)

that is, the mean of the all possible surprisals weighted by
their probabilities.

∆s

∆φ = α

φ

φ + ∆φ

Figure 2. A simple plane curve sampled at intervals of arclength
∆s. Each point has a tangentφ; the angle∆φ between successive
tangents is denotedα.

Contours

Now consider the case of a simple planar curve (i.e., with
no self-intersections) of lengthL, sampled atn uniformly-
spaced points separated by intervals∆s= L/n (Fig. 2). From
point to point along the sampled curve, the tangent direction
changes by an angle∆φ. (Without loss of generality, we as-
sign the field of normals such that positive values of∆φ cor-
respond to clockwise turns, and negative values to counter-
clockwise turns.) The structure of the (sampled) curve is de-
termined completely by the succession of choices of∆φ. Let
α denote the change in angle∆φ (see Fig. 2). What is the
probability distribution ofα? That is, as one moves around
the curve, choosing successively the next change in tangent
angle, from what distribution are these choices drawn?

Recent work modeling the process by which human ob-
servers interpolate smooth contours through fields of dots
suggests an answer to this (Feldman, 1997, 2001; see also
Williams & Jacobs, 1997). Experiments suggest that the hu-
man visual system assumes a distribution forα that is ap-
proximately normal4 (Gaussian) centered at “straight” (α =
0), i.e.

p(α) = N (0,σ) =
1

σ
√

2π
e
(− α2

2σ2 )
, (3)

whereσ is the standard deviation of the distribution, empir-
ically assigned a value of aboutπ/3 radians (60◦). The de-
tails of this distribution are actually not very important to

3 Treatments of information theory usually assume logs in base
2, but the choice of base does not really matter since they differ only
by a multiplicative constant. In what follows we actually use basee
for reasons that will become apparent.

4 This equivalence must be approximate because a Gaussian has
infinite support, while the required distribution has support(−π,π).
Still the functional form is simple and the approximation is good
nearα = 0, which is the region of psychological interest. It should
be clear that while empirical data support the choice of a Gaussian,
they likewise support any number of generally similarly-shaped dis-
tributions. We adopt the Gaussian because it has approximately the
desired functional form and is simple to work with; beyond these
factors we do not attach much importance to its particular proper-
ties. Elsewhere in the paper we consider the case of arbitrary dis-
tributions more explicitly in order to substantiate the claim that our
main conclusions do not depend on the Gaussian assumption.
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Figure 1. Information on the boundary of a shape is concentrated in regions of high magnitude of curvature. (a) A shape with curvature
extrema marked, including both positive (convex) extrema and negative (concave) extrema (i.e., minima of signed curvature). (b) The same
shape with contour information (surprisal) plotted, reminiscent of Attneave’s (1954) histograms. (c) Another shape, with matching regions
of positive and negative curvature with equal magnitude, and (d) a plot of surprisal, showing the asymmetry between information due to
positive and negative curvature.

p(α)p
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+-
Figure 3. The expected change in tangent directionα is normally
distributed about 0 (straight).

our argument here (see below); the important properties of
this choice of distribution are that (i) it is centered atα = 0,
meaning that straight continuation of the tangent direction is
considered the most likely case, and (ii) probability decreases
symmetrically with deviations from straight.

Now, at a particular point along the curve, and particu-
lar choice of angleα, what is the information at that point?

Following Shannon, all we can give for a particular measure-
ment is its surprisal. Combining Eqs. 1 and Eq. 3, we get

u(α) =− log[p(α)] =− log[
1

σ
√

2π
]+

α2

2σ2 . (4)

The first term is an additive constant, not dependent onα,
which we can ignore. (It gives the absolutely minimal sur-
prisal, obtained in the case of a straight line; its exact value
derives from the specifics of the Gaussian prior.) The second
term, α2

2σ2 , shows how the suprisal depends onα: it increases

with its square, as measured in standard units of size
√

2σ).
Fig. 1b shows a plot of the surprisal along a shape bound-
ary, which closely resembles Attneave’s empirically-derived
histogram plots (see also Norman et al., 2001).

The monotonic increase in suprisal with curvature does
not depend on the choice of a Gaussian distribution. To show
this, we appeal to Chebyshev’s inequality (see Duda, Hart, &
Stork, 2001), which provides an upper bound that applies to
all distributions. One statement of Chebyshev’s inequality is
that any probability distributionp with mean 0 obeys

p(x)≤ 1
z2 ,

wherez is thez-score ofx, that is, its value normalized by
the standard deviation of the distribution. This is a rather
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loose bound, but one that holds regardless of the details of
the distribution. In our notation, it means that for any angular
distributionp(α) with mean 0,

p(α)≤
(σ

α

)2
,

where as beforeσ is the standard deviation of the angular
distribution. Substituting this bound into the definition of
suprisalu(x) = − logp(x), we see that the surprisal of the
turning angleα is bounded below by

u(α) ≥ − log
(σ

α

)2

≥ −(logσ2− log[α2])
≥ constant+2log|α|.

In words, the surprisal increases with turning angle, at least
as quickly as twice the log of its magnitude. Note that the
quadratic increase derived above, based on the assumption of
Gaussian distribution (see Eq. 8), clearly satisfies this bound.
Thus regardless of the exact choice of distribution, informa-
tion increases monotonically with turning angle.

Curvature

Now we connect this to curvature. The curvatureκ is the
change in tangent direction as we move along the curve, and
hence is approximated by the ratio between the change in the
tangent direction (i.e.,α = ∆φ) and∆s:

κ≈ α
∆s

. (5)

By definition, this approximation becomes exact in the limit
as∆s→ 0 (i.e., as the number of sample pointsn→∞). Note
thatκ inherits its sign fromα, i.e. clockwise turns are con-
sidered positive. Now rearrange terms to yield an expression
for α:

α≈ ∆sκ. (6)

We assumed above thatα was distributed normally about
0 with standard deviationσ (Eq. 3). Becauseκ∆s≈ α this
means thatκ∆s is distributed likewise, which in turn means
that κ is distributed about 0 with standard deviationσ/∆s,
i.e.,

p(κ)≈N (0,σ/∆s) =
∆s

σ
√

2π
e[−

1
2 ( ∆sκ

σ )2]. (7)

Plugging this into the definition of suprisal (Eq. 1), we find
that the surprisal of a given value of curvatureκ is

u(κ)≈− log[
∆s

σ
√

2π
]+

1
2

(
∆sκ
σ

)2

. (8)

Again ignoring the additive constant (lefthand term), we see
that at a given point along a curve the surprisal is proportional
to the square of the curvature,

u(κ) ∝ κ2, (9)

and thus increases monotonically with curvature, exactly as
Attneave proposed. Moreover, this expression is symmetric
with respect to the sign of curvature (i.e., the surprisal is iden-
tical for κ and−κ), depending only in its magnitude—again
consistent with Attneave’s articulation of the claim. The de-
tails of Eqs. 8 and 9 depend on the Gaussian assumption,
but the Chebyshev argument above can be extended to the
curvature case to yield a distribution-free bound on surprisal
in terms of curvature,

u(κ)≥ constant+2log|∆sκ|. (10)

The main conclusion—that suprisal increases with the mag-
nitude of curvature—is thus guaranteed to obtain regardless
of the choice of distribution.

To be slightly more precise, we see that in any of these
expressions (e.g. Eq. 8 or 10), information along a contour
depends on the product of curvatureκ and∆s. What exactly
does this mean? Recall that curvature itself is not a scale-
invariant quantity. When the entire figure is expanded uni-
formly by a given ratio (say, by inspecting it from a shorter
viewing distance), all curvature values decrease by the same
ratio. But because∆s = L/n, by definition∆s scales with
the figure. This means that the valueκ∆s is scale-invariant,
because whenever the figure doubles in size (say), curva-
ture κ is halved but∆s is doubled, leavingκ∆s unchanged.
Another way of seeing this is to recall that the magnitude
of curvature is equal to the inverse of the radius of the lo-
cally best-fitting circle, 1/R. Henceκ∆s = ∆s/R = L/Rn.
But becauseL and R scale by the same factor, this ratio
is clearly invariant to scale.5 ∆s can be thought of as the
length of our “measuring stick,” and the productκ∆s as a
measure ofscale-invariant curvatureor normalized cuvature
(see, e.g.,Hoffman & Singh, 1997; Koenderink, 1990).6

Hence our expression for the surprisal of curvature (Eq. 8)
accords with the intuition that information along a curve is
scale-invariant: it depends only on the inherentshapeof the
curve, and not on the particular viewing scale at which we
happen to look at it.

5 Note that this argument doesnot depend on∆s being a small
or infinitesimal quantity:Lκ is a measure of scale-invariant curva-
ture forany length that is tied to the scale of the figure, as all such
measures are clearly proportional to one another.

6 On 3D surfaces, one hastwo principal curvatures at each
point—namely, the curvatures along the directions in which the sur-
face curves the most and the least. Hence, it is possible to define
scale-invariant notions of surface curvature by taking ratios of these
quantities. Koenderink (1990), for example, defines theshape index
in terms of the ratioκmax+κmin

κmax−κmin
, a quantity that clearly remains invari-

ant across uniform scalings. For 2D contours, however, each point
has a single value of curvature associated with it—and one must
thus use some measure of the scale of the figure itself to normalize
the value of curvature.
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Closed contours

As we noted earlier, Attneave’s claim refers only to the
magnitude of curvature, and does not distinguish between
positive and negative curvature (i.e., clockwise and counter-
clockwise turning of the tangent, or equivalently, convex and
concave regions). Correspondingly, our Eq. 8 is insensitive
to the sign ofα or κ—which followed from the fact that the
distributionp(α) is symmetric about 0. So far, there has been
no reason for it be otherwise.

However, when a visual contour is the boundary of an
object—with one side of the contour assigned “figure” and
the other “ground”—an asymmetry is introduced between
turning one way and turning the other: one is toward fig-
ure (positive curvature), the other toward ground (negative
curvature). (Our assumption that clockwise turns have pos-
itive sign means that we are travelling clockwise around the
figure.) This asymmetry has been demonstrated to have clear
psychological consequences.

Citing theoretical analysis and practice from art history,
Koenderink (1984) noted that positive curvature regions
are typically perceived as having a “thing-like” character,
whereas negative curvature regions are perceived as having
a “glue-like” character.7 In their seminal paper on part seg-
mentation, Hoffman and Richards (1984) proposed that the
visual system uses negative minima of curvature (points of
locally highest curvature magnitude, in concave regions of
a shape) to segment shapes into component parts. Thus all
curvature maxima (in Attneave’s sense of unsigned curva-
ture) are not treated alike psychologically: those with nega-
tive curvature are given special status as boundaries between
perceived parts, whereas equivalent ones with positive cur-
vature are not (being perceived generally as lying on a single
part).

The empirical consequences of this proposed asymme-
try between positive and negative curvature (or equivalently,
between convex and concave regions) have been demon-
strated in a wide variety of tasks, including probe discrim-
ination (Barenholtz & Feldman, in press), positional judg-
ment (Gibson, 1994; Bertamini, 2001), memory for shapes
(Driver & Baylis, 1996; Braunstein, Hoffman, & Saidpour,
1989) the perception of figure and ground (Baylis & Driver,
1994; Driver & Baylis, 1996; Hoffman & Singh, 1997),
amodal completion (Liu, Jacobs, & Basri, 1999), the percep-
tion of transparency (Singh & Hoffman, 1998), and visual
search (Hulleman, te Winkel, & Boselie, 2000; Humphreys
& M üller, 2000; Elder & Zucker, 1993).

How can the difference between positive and negative cur-
vature be reflected in the informational analysis? Intuitively,
the idea is that on a closed contourC, with the interior as-
sumed figure, the distributionp(α) is “biased” so that turning
in the positive-curvature direction ismore likelythan turning
in the negative direction. Otherwise, the curve will not even-
tually close upon itself. Indeed, the geometry of curves tells
exactlyhow muchmore likely. Over the complete circuit of
the curve, the total turning angle must add up to exactly 2π
(360◦) of total turning angle,

∑
C

α = 2π, (11)

which means that the expected value (mean) of the distribu-
tion p(α), rather than being 0 as before, must now be 2π/n,
wheren is the number of samples taken at intervals∆s. For
simplicity, we assume the same Gaussian form of the distibu-
tion of α as before, except with mean shifted from 0 to 2π/n;
that is, the entire distribution is simply translated inα-space
by a small amount 2π/n toward the interior of the shape:

p(α) =
1

σ
√

2π
e

[
− 1

2( α− 2π
n

σ )2
]

(12)

Now substituting into the formula for suprisal as before, we
get

u(α) =− log[
1

σ
√

2π
]+

1
2σ2

(
α− 2π

n

)2

. (13)

Now we progress from angle to curvature by replacingα with
its approximationκ∆s, andσ with σ/∆s, yielding a formula
for the suprisal as a function of curvature:

u(κ) =− log[
∆s

σ
√

2π
]+

∆s
2σ2

(
κ∆s− 2π

n

)2

. (14)

Note thatκ here must be interpreted in its “signed” sense
with positive values assigned to changes of the tangent to-
wards the figure.

Here in the closed-contour case the surprisal is minimal
when the tangent direction turns slightly (2π/n) inwards.
Straight (κ = 0) tangents, rather than being the most expected
case as before, are now slightly surprising. The key thing to
observe is that points of negative curvature (κ < 0) are now
more suprisingthan points of equivalent positive curvature.
However much a given positive value of curvature (i.e., a
turn towards the figure) is “in the tails” of the distribution—
thus entailing surprise and information—the same value in
the negative direction is evenmore in the tails, and hence
even more suprising.

This means that negative curvature points literally carry
greater information than otherwise equivalent positive-
curvature points; Fig. 1d shows a plot of the information (sur-
prisal) along a shape containing convex and concave sections
of equal magnitude of curvature, illustrating the asymme-
try. The magnitude of contour curvature contributes informa-
tion, and negative curvature contributes additional informa-
tion. This picture is supported by recent empirical data show-
ing that perceptual comparisons along the contour are gener-
ally slowed by curvature, and slowed an additional amount

7 Koenderink’s analysis was developed in the context 3D-
surface curvature—and more precisely, Gaussian curvature—which
is somewhat more complicated than contour curvature. However, a
theorem by Koenderink (1984) ensures that, for smooth surfaces,
the sign of curvature of an occluding contour correspondes to the
sign of Gaussian curvature on corresponding surface region. Hence
his analysis transfers easily to contour curvature.
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by negative curvature, as compared to positive curvature of
equal magnitude (Barenholtz & Feldman, in press).

Note that again our main conclusions—that information
generally increases with curvature, and is greater for concave
compared for convex turns—do not depend on the precise
choice of a Gaussian for the distribution (which is, though,
supported by empirical data; Feldman, 1997, 2001). Rather
they follows directly from the symmetry of the distribution
p(α) about its mean, which is required to be positive follow-
ing the assumption of a closed curve. The same conclusions
would have followed from any symmetric monotonically de-
creasing distribution, although the exact functional form of
the resulting equations would be different.

It is especially interesting that no psychological assump-
tions about the mechanisms underlying part boundary identi-
fication were necessary to derive the fact that more informa-
tion is carried by negative curvature. Rather, this followed
simply from the assumption of a closed curve and the impli-
cations this must have for the distribution of turning angles
as the curve is traversed.

It should be noted that there exists a situation in which the
contour is biased to turnawayfrom the “figure” rather than
toward it: namely, where a simple closed curve bounds a
hole or window. In this case, the informational analysis pre-
dicts greater concentration of information in regions of the
contour that are concave relative to the shaped hole, rather
than concave relative to the surrounding material surface.
Although this sounds counterintuitive at first, it is actually
consistent with recent psychological work on the perception
of holes. In particular, holes present the following perceptual
anomaly: although the region surrounding the hole is clearly
“figural”—in the sense of being a material surface that oc-
cludes the backdrop visible through it—the hole is never-
theless seen as a distinct perceptual entity that has its own
intrinsic shape (Palmer, 1999). Thus, unlike other forms of
“ground,” recognition memory for the shapes of holes has
been found to be just as good as for similarly-shaped blobs
(Rock, Palmer, & Hume, unpublished manuscript; cited in
Palmer, 1999, p.286). From the point of view of the vi-
sual system, this means that although the surrounding sur-
face is given a figural status as far as depth and occlusion
relations are concerned, the hole is given a quasi-figural sta-
tus, as far as shape analysis is concerned (Nelson & Palmer,
2001; Palmer, 1999; see also Subirana-Vilanova & Richards,
1996). Therefore, it is natural to expect that convexity rela-
tionships would be assigned relative to the hole, rather than
relative to the surrounding material surface.

Conclusion

Theories of shape have often emphasized the role of cur-
vature extrema (Richards, Dawson, & Whittington, 1988),
and, in the context of perceptual part structure, negative ex-
trema specifically (Hoffman & Richards, 1984; Hoffman &
Singh, 1997; Singh, Seyranian, & Hoffman, 1999; Singh
& Hoffman, 2001). It follows from our analysis that cur-
vature extrema (in particular, positive maxima and negative
minima of signed curvature) are also local maxima of infor-

mation. Thus in a very concrete sense, these points carry
greater information about shape than do other sections of the
contour—consistent with Attneave’s observation. In addition
to providing mathematical justification for Attneave’s claim,
our analysis also extends it by demonstrating, for closed con-
tours, a role for the sign of curvature. Whereas Attneave con-
sidered only the magnitude of curvature—treating regions of
positive and negative curvature symmetrically—our analy-
sis shows that regions of negative curvature actually carry
greater information than corresponding regions of positive
curvature. The psychological validity of this asymmetry is
supported by empricial work on the representation of visual
shape, which shows that the visual system treats regions of
negative and positive curvature quite differently. Finally, our
analysis also makes clear that information attaches not to
mathematical curvature per se, but rather to a normalized,
scale-invariant, version of curvature (κ∆s in our notation).
Thus the contribution of the geometrical structure of a shape
to its mental representation does not depend on scale (as
curvature proper does); information is a function of “shape
only” in the sense of Kendall (1977).
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Appendix: Resnikoff’s
formulation

Resnikoff (1985) derives an information measure based
on contour curvature that, he argues, mimics Attneave’s pro-
posal that information is localized in regions of extremal
curvature. Resnikoff deserves credit, we feel, for placing
Attneave’s proposal on a mathematical footing for the first
time. However, his derivation has two main problems that
leave it short of providing a mathematical substantiation of
Attneave’s idea. First, his approach is based on the idea of
gaining information by making successively finer measure-
ments of a fixed (though unknown) quantity, which seems
inappropriate when applied to the problem of measuring con-
tour orientation at successive points along a contour. Second,

the behavior of the resulting information measure comes out
wrong compared to to both Attneave’s claim and other psy-
chological intuitions. In this appendix we briefly review and
critique his approach.

Resnikoff’s formulation is based on a general framework
for quantifying the amount of information gained by suc-
cessive measurements of a given parameter of fixed, but un-
known, value. While Shannon’s original theory assumed an
observer who knows the underlying probability distribution
of messages along the channel (like our shape observer, who
we assume to know the distribution of turning angle along the
contour), Resnikoff’s theory assumes a blank-slate observer
lacking this or any other prior information about the quantity
in question. The question then is how successive messages
(measurements) augment such an observers’ knowledge.

Resnikoff’s general approach is as follows. Any measure-
ment of a parameterp has finite precision, meaning that it
really consists of discovering that the parameter falls within
a certaininterval of finite non-zero size. Assume that a
previous measurement has revealed has revealedp to fall
within some interval (a,b) of size|(a,b)|. Now we take a
second measurment and find thatp falls within a smaller in-
terval (a′,b′) of size |(a′,b′)| < |(a,b)|. How much infor-
mation have we gained by taking the second measurement?
Resnikoff shows that the informationI (that is, really the sur-
prisal) of the second measurement is

I =− log

(
|(a′,b′)|
|(a,b)|

)
. (15)

This expression is very general, showing how information is
transmitted via a measurement that increases precision.

Now Resnikoff relates this to curvature by applying Eq. 15
to the measurement of an angle, and specifically, the turning
angleα as one moves around a smooth curve at discrete in-
tervals∆s. Resnikoff considers that as one moves along the
curve, successive measurements of the turning angle consti-
tute successive measurements of an angle, suitable for eval-
uation via Eq. 15. For a given turning angleα and a given
reference turning angleαR, this gives

I =− log

(
α

αR

)
, (16)

as the information due to a given turning angleα (cf.
Resnikoff’s Eq. 5.2). Just as in our formulation, this can then
be related directly to curvature via the relationshipα = ∆sκ,
to give

I =− log

(
κ

κR

)
(17)

as the expression for information as a function of curvature
relative to a standard reference curvatureκR (Resnikoff’s
Eq. 5.8). Resnikoff argues next that, having fixed a standard
curvatureκR, information will be extremal when curvature is
extremal, exactly as Attneave proposed.

However, there are several flaws in the above argument,
which we feel make Resnikoff’s claim unwarranted. First,
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application of Eq. 15 to the case of turning angle (or cur-
vature) seems ill-motivated. As derived and developed by
Resnikoff, this equation refers to the gain in information by
successive measurements of a givenfixed quantity: that is,
to changes in the state of knowledge of the observer about a
fixed but unknown parameter. But turning angles at succes-
sive points along a curve do not fit this description. Turn-
ing angles have different values at different points along the
curve because of the inherent geometry of the curve—the
fact that it curves at different rates at different points—not
because the observer has changed his or her state of knowl-
edge about some fixed quantity. Turning angle decreases (or
increases) because the curve bends, not because the observer
has measured it more (or less) precisely. Hence applying
Eq. 15 to turning angle does not seem valid.

Second, even accepting the validity of Resnikoff’s basic
set-up, the behavior of his information measure comes out
wrong. As Resnikoff notes, his information measure depends
always on the comparison (i.e., ratio) of two turning angles
(or curvatures). Hence to evaluate the information at a par-
ticular point along a curve, one needs first a reference angle
to compare it to. There are two general ways of choosing this
angle, both of which Resnikoff discusses.

One is to select successive angles as one moves along the
curve, comparing each turning angle to the previous one.
This leads to information depending not on the turning an-
gle, but rather on the way it (and in the smooth version,
the curvature) changes as one moves along the curve. This
means, extrapolating to the smooth version, that information
would depend on thederivativeof curvature with respect to
arclength—not on curvature itself. This is not what Attneave
proposed—and it is not, in fact, psychologically plausible.
For example, it would imply that highly curved regions of
a contour that were locally nearly circular would contain al-
most no information.

The second approach, which Resnikoff in any case favors,
is to fix a reference turning angle somewhere on the curve
and compare all others to it. This way, he argues, informa-
tion will be extremal when turning angle, and thus curvature,
is extremal with respect to this fixed standard. The problem
now is that information will be extremal in the wrong way—
or more precisely in one of several wrong ways depending
on the choice of reference angle. Imagine that we choose a
straight (zero-curvature) reference point. Now ratios of other
turning angles to the reference will always be infinite (unde-
fined), which is clearly undesirable. So instead, select as a
reference a high-curvature point. Now points with similarly-
high curvature will havelow information, while points with
low curvature will have high information, exactly the oppo-
site of Attneave’s proposal. Finally, consider fixing some
low-curvature point as the reference; this is Resnikoff’s pref-
erence. Now regions of higher curvature will contain more
information, with curvature extrema providing the most in-
formation, consistent with Attneave’s proposal. However
straight (zero-curvature) regions will have infinite (unde-
fined) information, which seems qualitatively the wrong be-
havior.

In our formulation, in contrast with Resnikoff’s, the prob-

ability of a turning angle derives not from a comparison to
another one but by reference to a particular visual expectation
about how smooth curves will continue, namely that they will
most likely continue straight (in the open-curve case, Eq. 3).
Probability is never zero and thus suprisal never infinite.

Indeed, the essential difference between our approach and
Resnikoff’s concerns the nature of the observer’s prior as-
sumptions about the turning angle. In Resnikoff’s formu-
lation, all the observer knows when taking a measurement
is that a prior measurement revealed it to fall within a par-
ticular interval; the observer thus has has no particular ex-
pectation aboutwhereinside that interval the next measure-
ment is likely to fall. This is equivalent to an assumption
of uniform probability densityover the given interval, with
all values equally likely. By contrast, in our formulation, we
assumed that points had been sampled from a smooth curve,
so that probability density about the position of the next point
was concentrated in the “forward” direction, at zero turn-
ing angle; this assumption was encapsulated in our Gaussian
prior. As discussed, this general form (centered at zero and
monotonically decreasing away from zero—like a Gaussian
though not exclusively so) is supported by empirical data,
and, moreoever, is related to the assumption that the points
were generated by sampling a smooth curve. Hence in the
context of the psychological representation of smooth con-
tours, our non-uniform, forward-centered assumption seems
justified.

However, it is well worth noting that in other contexts,
something closer to Resnikoff’s uniform density assumption
might be appropriate. For example, if the series of vertices
were generated but by a fractal-like process, with succes-
sive angles generated from a uniform density, rather than by
sampling from a smooth curve, then Resnikoff’s assumptions
would be more apt.8 In this case, information would follow
Resnikoff’s prescriptions more closely than ours. Of course,
the curve resulting from such a process would little resemble
the smooth contours discussed above. This raises the fasci-
nating empirical question of whether the human visual sys-
tem can “tune” its turning-angle distribution to differing en-
vironments or contexts, and if so, whether there is any way of
empirically measuring the concommitant differences in the
information measure. These and other questions await future
research.

8 We are grateful to Howard Resnikoff for this suggestion.


