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Individuation of Visual Objects over Time
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How does an observer decide that a particular object viewedeatime is actually theame
object as one viewed at a different time? We explored thistipre using an experimental task
in which an observer views two objects as they simultangagbroach an occluder, disappear
behind the occluder, and re-emerge from behind the occlhdeing switched paths. In this
situation the observer either sees both objects contimagykt behind the occluder (called
“streaming”) or sees them collide with each other and switichctions (“bouncing”). This
task has been studied in the literature on motion perceptitrere interest has centered on
manipulating spatiotemporal aspects of the motion patlgs {elocity, acceleration). Here we
instead focus ofeatural properties (size, luminance, and shape) of the objects.tWdéesl the
way degrees and types of featural dissimilarity betweertwloeobjects influence the percept
of bouncing vs. streaming. When there is no featural diffeeg the preference for straight
motion paths dominates, and streaming is usually seen. Bemfeatural differences increase,
the preponderance of bounce responses increases. Thabjiscts prefer the motion trajec-
tory in which each continuously existing individual objé@jectory contains minimal featural
change. Under this model, the data reveal in detail exadiigtwnagnitudes of each type of
featural change subjects implicitly regard as reasonatgistent with a continuously existing
object. This suggests a neat mathematical definition ofividdal object:” an object is a path
through feature-trajectory space that minimizes feathenge, or, more succinctly, an object
is ageodesic in Mahalanobis feature space

Objects Spelke, 1990). Infants understand objects to be bounded
and coherent three-dimensional entities (Spelke, Brejeti,

An important component of our perception of a stable andMacomber, & Jacobson, 1992), and as young as four months
unified world is the subjective impressionatfherent objects of age believe that objects continue to exist when they disap
having continuous existence over time. Yet the full psycho{pear behind occluders (Baillargeon, 1987). Thus over time
logical meaning of the term “object” in this context remains infants develop something like the adult's conception of ob
elusive. What causes an object at one time to be regarded gects, including expectations of boundedness and coherenc
the “same object” as another at a previous time, and whatontinuity of existence over time, and stability of featwta
does “same” mean in this connection? This problem hagributes. Yet the exact meaning of many of these terms in
sometimes been referred totasnporal groupindGepshtein  the adult's conception is still somewhat unclear; the rafv
& Kubovy, 2000) (as contrasted withpatial grouping in  questions in adults have scarcely been studied. Adults pre-
which elements within a given visual image are aggregategumably have “object constancy” in the sense in which the
together). In this paper we will use the teohject individ-  term is usually used; but exactly what does this mean? What
uation, to emphasize the mental construction of individualis held subjectively constant over the course of an object’s
phenomenal objects having continuous existénce. existence? In this paper we study the problem of object iden-

Pioneering research in the study of the object concept hddfication in adult observers, and attempt to shed light ae tr
come from the developmental literature (Baillargeon, 1994 psychological meaning of the term “object” and the compu-
tations underlying it.

We focus on the notion of featural stability, and on how
_ expectations about the stability of objects’ features tivee
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main, phenomenally, the “same” object (Fig. No change  motion paths, an important bias of the motion interpretatio
in features may be the most likely case (a); but clearly somsystem (Ramachandran & Anstis, 1983), and hence this task
featural changes, such as the change in retinal shape as$was most often been used to investigate basic motion mech-
ciated with rotation in depth, are quite plausible (b); whil anisms. Such studies usually use featurally identicalatbje
other changes, such as non-rigid changes in shape, are leshile manipulating spatiotemporal aspects such as spekd an
plausible (c); and still other changes highly implausilag ( acceleration (Sekuler & Sekuler, 1999), attentional dessan
Later in this paper, we will seek to capture this nexus of(Watanabe & Shimojo, 1998), or exogenous cues such as
vague expectations about the evolution of an object’'s propsound (Sekuler, Sekuler, & Lau, 1997).
erties as a concrete probability distribution defined over a In our slightly modified version of this task (Fig. 2), the
feature space, which we call tlubject evolution function two objects appear from the upper left and right corners of
In the theory we develop below, this probability distritmti  the screen, moving down and towards a central occluder;
will then serve as the centerpiece of the observer’s dewsio simultaneously disappear behind the occluder; and then re-
about object individuation in an ambiguous situation, suchemerge on the two original paths, but having switched prop-
as our experimental paradigm. Our main conclusion will beerties. Crucially, one can regard the two objects as having
that observers perceive as continuously existing objeotsst  constant properties, but exchanging paths (in which case on
paths that entail the minimum of feature change over time—sees bouncing); or as having constant (straight) paths, but
or, more precisely, thieast unlikelyfeature change given the swapping properties (streaming).
observer’s subjective probabilistic expectations asuraplt Subijectively, the percept of “bouncing” or “streaming” in
in the evolution function. this task is very vivid: one either has an immediate percept
The developmental literature has at times explicitly coun-of two objects crossing without touching or, alternativeify
terposedspatiotemporaproperties, such as continuity of lo- an abrupt collision, with a concomitant sense of which dbjec
cation over time, wittfeaturalproperties, usually visual fea- is which after they emerge from behind the occluder.
tures such as shape and color. Infants as young as four Our displays differ from those of Bertenthal et al. (1993),
months of age can individuate objects based on spatiotenBekuler and Sekuler (1999) and others in two respects, First
poral properties such as continuity (Spelke, Kestenbaiin, Sour two paths cross transversally at the occluder, while oth
mons, & Wein, 1995). But even at the age of nine monthsgrs’ are strictly horizontal. We felt that the “accidental”
infants do not reliably individuate based on featural prepe collinear alignment between perfectly horizontal pathgtmhi
ties (Tremoulet, Leslie, & Hall, 2000), but develop thislabi bias observers to see the two paths as causally related g som
ity by 12 months (Xu & Carey, 1996), though this issue re-way. Moreover Michotte (1946/1963), using a horizontal dis
mains controversial. Experiments with adults have alse sugplay, had observed in a small number of subjects an anoma-
gested that location is primary while properties are seapnd lous depth-rotation interpretation which we wished to dvoi
(Johnston & Pashler, 1990; Nissen, 1985). Our experimenSecond, in our displays, an occluder covers the point of in-
tal paradigm is designed so that all candidate object pa¢hs atersection, while in others’ displays there is no occludée
continuous and hence spatiotemporally possible. Thig/allo occluder was necessary to ensure that displays with certain
us to manipulate featural differences and investigate thei  featural differences (especially in shape and size) weme co
fluence on object interpretations. pletely ambiguous between bouncing and streaming (i.¢. tha
both interpretations were consistent with the display).

Th i ' _
© boggrcallg%rsr'][reammg Related phenomena and literature

Before presenting our experiments we briefly review some

The paradigm we will use in the experiments below is Grelevant phenomena already studied in the literature.

variant of one introduced by Michotte (1946/1963, exp. 24),
and later, independently, by Julesz (in about 1959; sesdule ;
1995, p.50). More recently it was reintroduced (apparentIyApparent motion
without knowledge of these earlier uses) by Bertenthal-Ban An analogous and related area of research is apparent or
ton, and Bradbury (1993) and Sekuler and Sekuler (1999) ashi motion (see Anstis, 1980). In an apparent motion display
a tool to study motion perception. (Fig. 3a), one visual item is briefly flashed at one time, and
In a typical display, two objects approach each other fronthen anotheritem is flashed at a different location at a #jigh
the left and right edges of the screen, “collide” in the ma&ldl later time; the usual result is a perception of motion betwee
and then two objects emerge from the collision moving inthe two locations. Some authors (Burt & Sperling, 1981,
opposite directions. The question for the subject is: dfter Navon, 1976) have found that apparent motion is influenced
collision, which object is which? In the simplest case of two primarily by spatiotemporal properties (e.g. the magresid
identical objects moving at constant velocity, the most com of the spatial and temporal gaps between the two items), and
mon percept is that the objects appear to pass through orikat featural properties of the items play little role. How-
another (“streaming”), but under certain circumstances th ever others (Shechter, Hochstein, & Hillman, 1988; Prazdny
objects appear to strike each other and abruptly reverse md986) have found a measurable benefit of featural similar-
tion direction (“bouncing”). The preference for streamiag ity between the items. Many authors have suggested a dis-
thought to reflect a preference for straight, constanteiglo tinction between short-range and long-range apparenbmoti
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Figure 1 As an object evolves over time, zero feature change (agisibst likely case, but certain featural changes are highlysible
(b), while others are less plausible (c), and others ardyigiplausible (d).

(Lu & Sperling, 2001 for a recent review), with only the latte  Multiple-object tracking
being influenced by later visual processing involving overt

featural properties (see also our discussion below of motio  Another relevant literature is that on multiple-objectta
energy models). It is thus certainly possible that object injng (MOT) (Pylyshyn & Storm, 1988; see Fig. 3b). In this
dividuation is related to long-term apparent motion; the tw task, subjects are asked to track a small set of moving ob-
processes are at the very least closely analogous. HowevRicts amid a field of (visually identical) distractor objgct
the items in our paradigm disappear briefly behind an ocost subjects can track about four such objects among a field
cluder at the critical moment in each trial, so it seems unpf eight. Normally in this task all the items are featurally
likely that the two tasks are identical. In any case, as willigentical, so tracking is based on continuous monitoring of
be seen later, the assumption that our task does not pymarikpatial trajectories rather than featural information. olw
involve early motion mechanisms is bolstered by the findingcnowledge the influence of featural information on tracking
that performance in the bouncing/streaming task is not welin MOT has not been studied. Subjects in an MOT task can
accounted for by standard early motion models (see sectiofgck objects behind occluders (Scholl & Pylyshyn, 1999),
below on motion energy models). and in a similar task can track using continuity in abstract

Figure 2 The bouncing/streaming task.
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ily on spatiotemporal factors (e.g. the interframe int&rsee

—> Yantis, 1995), but extant studies have all used featurdd

(a) . . .

tical elements, so the effect of featural differences igimag
unknown. Hence notwithstanding a great deal of speculation
about the role of featural continuity in determining object
identity, the actual influence of featural information iruttd’
judgments remains largely unstudied.

Experiments

When describing our displays, for clarity of exposition we
will refer to the left-hand item agand the right-hand item as
b (see Fig. 2); hence the symba®ndb each refer consis-
tently to an entity with constant properties. (This terntino
ogy is for convenience; in the actual displays left and right
sides were counterbalanced.) We parameterize the displays
with respect to the featural differené®- betweena andb;
e.g. AF = 0 meansa = b. Later we will present a theoret-
ical model in which we predict the probability of a bounce
response as a function of the featural differefAEe
Summing up, when confronted with any of our displays,
O O the observer has a choice between a percept of streaming—
but with an attendant abrupt feature change of magnifide
as each object passes behind the occluder; or a percept of
bouncing, with no attendant featural change. Hence this tas
directly measures the observer’s judgment of the likelthoo
O O of a featural change oAF within the lifeline of a single,
coherent object. The subjective likelihood of a given featu
change, in turn, reflects the nexus of subjective expectatio
Figure 3  (a) Apparent motion paradigm. (b) Multiple-object about plausible feature change, which we hope will illumi-
tracking paradigm. (c) Ternus illusion. One either seesdbjects  nate the subjects’ underlying mental model of “objects.”
rigio]ly translatir!g, or the left-hand object “leap-froggi’ over the As noted above, wheAF = 0, subjects usually report
static center object. streaming, consistent with (or analogous to) the geneed pr
erence for straight motion paths and “inertia” in appareot m
tion (Bertenthal et al., 1993; Ramachandran & Anstis, 1983)
feature-space (Blaser, Pylyshyn, & Holcombe, 2000), a noHence clearly featural differences are not the only fagter i
tion closely related to the abstract feature-change space Wjyencing interpretation of our displays. However this bas
will develop below. Hence the notion of “individual object” g constant throughout all our conditions, while featuré di
tapped by our bouncing/streaming task is probably the samgyrences\F are manipulated. In the formalism presented be-
as that tapped by MOT. The emphasis in MOT studies thoughw, we will assume the bias for streaming is a single scalar
is on the division of_attentlo_n among t_he various items to bQNeight (in effect, the subjective prior probability attachto
traCked, and how this attentional load is affected by the'numthe Streaming hypothesis) that does not interact W|th any Of
ber of items. Our displays do not vary the number of itemsithe manipulated effects.
rather the emphasis is on how observers solve the ambiguous |, ihe following experiments, we manipulated the featural
correspondence between the items before the occluder a erenceAF between items andb (see Fig. 2), and mea-
those after the occluder, an ambiguity not normally preseng e its influence on “bouncing” vs. “streaming” responses
in the MOT task. As features, we focused on luminance (Exp. 1), size (Exp.
Finally, we also mention two other phenomena that relate?), and shape (Exp. 3). We were also especially interested
to object individuation. A study by Gepshtein and Kubovy in the manner in which multiple cues are combined (a topic
(2000) considered spatiotemporal grouping using a tenhipor®f substantial recent interest among perceptual thepsets
variant of the method of dot lattices introduced by Kubovydiscussion below), so we also separately ran conditions ma-
(1994) to study spatial grouping. This study drew several in nipulating all three pairs of features: ; luminangesize
teresting conclusions about temporal grouping, in padicu (Exp. 4), luminancex shape (Exp. 5), and size shape
concerning the effect of spatial and temporal factors, mit d (EXp. 6).
not consider featural differences. Second, the well-known Notation. Each of our objects can be thought of as a point
Ternus illusion (see Fig. 3c) features an ambiguity of abjecin luminance-size-shape space (Fig. 4), which we denote by
identity over motion. This illusion is known to depend heav- F:

N

<
(b) O . <O
O

(c)

time
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and similarly for size differencAfs ;e and shape difference
Afsyape: This means that “no difference” is always signi-
A fied by Af = 0 (because ©=log(1)). In the experiments,
we attempt to choose values of edkhgiving a wide range

of differences, and always including a same-feature case
(fLUM == fSlZE == fSHAPE: O, |e Fa == Fb) Then we Choose
pairs of values of that center their differena®f symmetri-
cally around an intermediate value of the parameter.

r
N
m

Parameters

Luminance Each object was a uniform gray region (on a
white background) with reflectance drawn from the range be-
4_‘ ‘ » 1. tweenO (black) and 1 (brightest white). As explaingd,yy

T represents the log ratio of the raw luminances (percent
white) ofa andb.

Size.Objects were uniformly scaled to create size differ-
ences.Afg ;e thus represents the log ratio of the linear span
of ato that ofb.

ShapeAs a shape parameter, we created a one-parameter
continuum of shapes running from square to triangle (see

“SHAPE  ghape axis in Fig. 4), with intermediate values producing a
spectrum of of trapezoids. As with the other parameters, we
then take the log ratio, #fsyaperepresents the log of the ra-

v tio of a’s position along this spectrum (i.e., percent triangle)

Figure 4 Feature spac, showing variations in luminance, size, (© thatofb. _ _

and shape. In each experiment, the feature(s) not manipulated were

fixed at an intermediate value (50% white, medium size
[about T of visual angle at 45cm of viewing distance], or
50% triangle). Hence all shapes in the luminance condition
F—(f f f > (1) (I_E?(p. 1), size condition (Exp. 2), _and Iu_minamce?ize con-
T \LUM, TSIZE) TSHAPE/ - dition (Exp. 4) were trapezoids with an intermediate valfie o

We denote by, andFy, the feature vectors for objeasindo ~ the shape parameter.

respectively. We are interested in the differeA€ebetween In the two-parameter experiments (Exps. 4-6), we used
them, given by the same values of each of the parameters as had been tested

in the single-parameter experiments, so subjects’ traatme
of parameters in combination could be compared as directly
as possible to the same parameters taken singly.

M

AF = Fa— Fp, 2)

which is a vector of three individual feature differences,
Method

AF = (Afium, Afsize, Afshape) - 3) Methods for all six experiments were identical except for
Th . ioulation in th : s is alwa the choices of feature change vectafs. For clarity of pre-
e main manipulation in the experiments is alwa¥s  coniation we give the general method first, then details of

with each experiment focusing on a single component or PaiL, oh of the experiments’ parameters in sequence, before giv
of components. ing results |

By Fechner’s law, we actually expect psychological dif-
ferences to reflect ratios rather than differences of the raw sypjects Exps. 1-6 used 16, 16, 14, 16, 15, and 17 sub-
values. So in order to makea simple vector space, we use jects respectively. Subjects were undergraduate stugants
logarithmic features, e.g. ticipating for course credit and were naive to the purpo$es o

the experiment.

fLum = log (raw luminance) (4) . _
General method The subject was seated in front of the

and similarly forfs,ze andfsuape. This means that vector dif- computer screen at a viewing distance of approximately
ferences in this space reflect ratios in the original raweslu 45cm. The subject would then fixate on the central occluder,
e.g. a textured circular patch subtending aboub®visual angle
(the exact size is calculated to be sufficient to fully ocelud
the largest object in any trial). After pressing the space-
(5) bar, the two objects would appear from the upper left and

Af,u = log <raw luminance Ofi> 7

raw luminance ob
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Exp. 5 (luminancex shape) Exp. 5 used the same five
levels of luminance changeyw as in Exp. 1, and the same
five levels of shape chandeuape@s in Exp. 3, fully crossed,
for a total of 25 feature-change combinations (i.e., vahfes
AF).

Exp. 6 (sizex shape) Exp. 6 used the same five levels
of size changds,;c as in Exp. 2, and the same five levels of
Figure 5 lllustration of the incidence angtein the displays. The shape changésapeas in Exp. 3, fully crossed, for a total of
figure also illustrates the texture pattern on the occluder. 25 feature-change combinations (i.e., valueAej.

right, traveling towards the occluder. The objects woukhth Results

both simultaneously disappear behind the occluder, becom- _. .
ing progressively occluded until they were both completely  F19S- 6-11 show results for Exps.1-6 respectively. Each
invisible. Then two objects would progressively emergeP!Ot shows the proportion bounce responses as a function
from behind the occluder traveling along the original motio ©f fgaltur?]l_ ck?z_angeﬁllz._ Eg‘?h gl?t .‘?E’Ol shows a theoretical
paths, as explained above, except with obgenbw contin- ~ MOY€l, Which IS éxplained in detail below. ,
uing b’s motion path and vice-versa. The subject was then Ve followed a two-tiered analysis strategy. First, we en-
asked to indicate whether he or she had perceived a “bouncéred the data from each experiment into an analysis of vari-
or “stream” via response keys on the computer keyboard. ance (ANOVA), in order to establish the significance of each
Several other variables in additionA& were also manip- _of the manipulations. Generally, these_ analyses showfsigni
ulated, fully crossed with the main manipulation&f. In icant effects of all of the featural manipulations, as wall a

all experiments, the speed of the moving objects was either gheir interactions in the two-feature experiments (andhwi

12, or 18 degrees of visual angle per second. The incidenca féwW exceptions, no effects of the nuisance variables speed
angle (Fig. 5) was either 25 or 45 degrees. and incidence angle). The plots suggest complex but highly
On each trial, subjects were forced to respond “hounceSystematic nonlinear interactions between the featund va

or “cross” (stream). The main dependent variable was th@bles. Hence in the second phase of our analysis, we at-

proportion of “bounce” responses (one minus the proportiorji_empt to model these n_onlingarities with a detailed qua-nti_t
of “cross” responses), which later we model as function oftlve mOdel' The modelis a S|mple_ Bayesian observgr, which
the featural differencAF. predicts the bounce/stream classification as a functioneof t

featural variables. This model give a good account of the
Exp. 1 (luminance)Exp. 1 used the following raw lu- €xact nonlinear shape of the decision surfaces shown in the

minance pairs&b, raw percent white): 50:50, 52.5:47.5, Plots.
55:45, 60:40, and 70:30 (i.e. spreads of 0, 5, 10, 20, and
40 percentage points centered around 50). These values cgknalyses of variance
respond to ratios of.00,1.1,1.22 1.5 and 233, or log ratios
Afium 0f0,0.1,0.2,0.41 and 085. The actual appearance of  Exp. 1 (luminance) The effect of luminance change was
these values is illustrated along the abscissa in Fig. 6. highly significant E(4,60) = 12521 p < .0001). The ef-
) , i ) fect of speed was also significarf (2,30) = 5.697,p =
Exp. 2 (size) We used size ratiosa(p, linear span) of  0og), with bounce responses generally increasing witefast

1:1,1.05:1,1.1:1,1.15:1 and 1.21:1 (actually equal ietlsr  gpeeds. No other effects or interactions were significant
in log units before rounding; the real values are 1.1 raised t(, . 1 in all cases).

the power of 0, 0.5, 1, 1.5, and 2 respectively). These values
correspond to log ratios of abofy,,z 0f 0,0.05,0.1,0.14 and

0.19. These ratios are illustrated along the abscissa irvFig Exp. 2 (size) The effect of size change was highly

significant £ (4,60) = 35.995 p < .0001). The interaction

Exp. 3 (shape)We used shape ratioa:b, percent trian-  P€tween size and speed was also signific&8(120) =
gle) og 50:(50, 5?5:)45, 60:40, 7O:F3)O, and 9(()):50. These values-353 P = .002), with bounce responses rising more quickly
correspond to ratios of.00,1.22,1.5,2.33 and 9, or log ra-  With size change at low speeds than at high speeds. No other
ti0S Afguape Of 0,0.2,0.41,0.85 and 22. The corresponding effects or interactions were significaqt ¢ .05 in all cases).
shapes are illustrated along the abscissa in Fig. 8.

Exp. 3 (shape) The effect of shape change was highly

Exp. 4 (luminancex size) Exp. 4 used the same five significant £(4,52) = 24.434,p < .0001). The interaction
levels of luminance changkyw as in Exp. 1, and the same of speed and incidence angle was also signifida(2,26) =
five levels of size changé; ;e as in Exp. 2, fully crossed, 3.637 p= .044), with more of a (non-monotonic) influence
for a total of 25 feature-change combinations (i.e., vabfes of speed at 45incidence angle than at 25No other effects
AF). or interactions were significanp (> .05 in all cases).
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Exp. 4 (luminancex size) The main effects of luminance A Bayesian observer model
change and size change were again significant (luminance,
F(4,60) = 11.796,p < .0001; size,F(4,60) = 4.367,p = When confronted with one of our displays, or indeed with

.004). The luminance by size interaction was also significan@ny real stream of images, an observer is faced with an un-
(F(16,240) = 1.887, p = .022). No other effects or interac- certain decision. If an object in the current image perfect|
tions were significantg{ > .05 in all cases). matches the features of exactly one in the previous image,
then the individuation might be unambiguous. But far more
Exp. 5 (luminance< shape) The main effects of lumi- often no match is perfect, because of noise in the image, and
nance change and shape change were again significant (lalso more substantively because objects’ features reaily c
minance,F (4,52) = 15916 p < .0001; shape-(4,52) =  change, due to pose change, non-rigidity, and other vesieti
11.121, p < .0001). The effect of speed was also significantof common transformations.
(F(2,26) = 6.611, p=.005), with more bounce responses at  Such a decision can be modeled effectively in a Bayesian
higher speeds. The luminance by shape interaction was al§tamework, often applied recently to perceptual inference
significant £ (16,208) = 3.054, p=.0001). No other effects (see Bulthoff & Yuille, 1991; Feldman, 2001; Knill &
or interactions were significanp( .05 in all cases). Richards, 1996; Landy, Maloney, Johnston, & Young, 1995
for examples). In this section we formulate a Bayesian model
Exp. 6 (sizex shape) The main effect of size and shape of observers in our task. As with any observer model, the
were again significant (sizé;(4,64) = 11.010,p < .0001;  critical issue is what to assume about the observer’s state
shape, [ (4,64) = 13.669 p < .0001). The interaction of of knowledge and beliefs. In our model, we assume only

size and shape was also significaf16,256) = 1.942 p=  that the observer has certain subjective expectationstabou
.017). The three-way interaction of shape, speed, and inthe probability of feature changes, which are encoded in a
cidence angle was also significaft(g,128) = 2.179 p=  probability distribution function. The observer can théurh

.033), with bounce responses rising rapidly at low speed¢he Bayesian crank,” and place an interpretation on a par-

and 25 incidence angle but more slowly at high speeds andicular display by, in essence, plugging this distributioto

45 incidence angle. No other effects or interactions wereBayes’ rule. This yields a decision function that, we then

significant { > .05 in all cases). show, serves very well as a model of the data from our six
experiments.

Summary The main conclusion from the ANOVAs is
that, as expected, bounce responses generally increatted wAssumptions
greater featural change. The madiffered fromb, the
more often subjects report seeing the bouncing percet; tha In Bayesian theory, the observer’s subjective belief in a
is, thelesslikely they were to see the given featural changeparticular hypothesisl given dataD is associated with the
as consistent with a single, coherent object. This result iposterior probability gH|D), which can be computed via
not in itself surprising, but it confirms the basic idea thret Bayes' rule,
subjectively continuous existence of an object is mentaly
sociated with small changes in its features. p(D|H)pn

This conclusion requires one caveat. We have assumed so P(HID) = sip(DIH)pi)’ 6)
far that the visual system first reduces each visual item to a
featural representation, and then determines correspoade Here the numerator is the productlidelihood of hypothe-
over time based on the features. Gepshtein and Kubovgis H, p(D|H) (which gives the probability of observirg
(2000) have shown however that the process of perceptuallj H were in fact true) and itgrior probability py (which
interpreting each individual time-slice can be influencgd b says how likelyH was before this particular trial was ob-
the inferred correspondence with subsequent frames, sugerved). The denominator sums this product over all possi-
gesting in their terms an interactive rather than sequientigble hypotheses, including bokthand all other alternative hy-
model. They drew this conclusion based on displays (usingpothesesi;. Hence the whole expression says how plausible
their spatiotemporal dot lattice paradigm) in which therel H is relative to the set of competing hypotheses.
tive grouping strengths of within-frame and between-frame In our situation, we are interested in the posterior prob-
correspondences were deliberately manipulated. In our disability of the bounce interpretation given the display as pa
plays, the interpretation of each individual frame is not am rameterized by the observed featural differeAEe denoted
biguous in this way. Hence we assume that the spatiotemp@@(BOUNCE|AF). Via Bayes' rule, this is given by
ral interactivity discovered by Gepshtein and Kubovy (2000
will play only a minimal role.

The challenge next is to model the bounce/stream classix
fication data more precisely, in order to understand exactl
what mental assumptions and mechanisms they reflect. We
take up this challenge in the next section by postulating avhere pgounce and pstream are the priors on bounc-
Bayesian observer endowed with a simple subjective modehg and streaming respectively, arg{AF|BOUNCE) and
of “objects.” p(AF|STREAM) are respectively the likelihoods of a given

P(AF |BOUNCE) Pgounce
(AF|BOUNCE) pgounce+ p(AF|STR|§7A)M) PsTREAN

(BOUNCEJAF) = 5
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feature change under the bouncing and streaming interpre- AF
tations. We make the following simple assumptions con-
cerning these parameters. First, we assume that all dsplay
are either bouncing or streaming, Bgounce = 1 — Pstream
and p(BOUNCE|AF) = 1 — p(STREAM|AF). More substan-
tively, we assume that objects may take on any feature value n
F with equal probability or, more precisely, that all values
of AF are equally likely when it represents the featural dif-
ference between twdistinctobjects (as opposed to two dif-
ferent incarnations of theameobject, as under the stream-
ing interpretation). In mathematical terms, this meansg tha
p(AF|BOUNCE) = 1 always: any feature change is perfectly = ~ ~
consistent with a bounce interpretation.

With these assumptions, we can now rewrite the posterior
on the bounce interpretation as

P(AF |STREAM) Pstream

BOUNCE|AF)=1— .
P( [AF) p(AF|STREAM) Pstream+ 1—pST?§§M

This equation has only two variables on the right-hand
side: the priorpstream, Which is a simple scalar, and the
likelihood term p(AF|STREAM), which is a function map- t t+ At N
ping feature change vectors to probabilities. In our anglys , - +
we treat the priopstream @s a free parameter to be estimate(;-lme
from the data. The main focus then is on the likelihood termFigure 12 lllustration of the evolution functiod(AF ). The func-
p(AF|STREAM), which represents the likelihood of a partic- tion gives the expected distribution of changg in the object’s
ular feature changAF under the streaming interpretation. over the time intervaht.
The next section asks what this crucial function might be ex-
pected to look like.

object is most likely to have theamefeatures as at the pre-
The object evolution function vious time slice. This is a very basic and non-trivial assump
tion about feature change, which we refer to asfdaure
The function p(AF|STREAM) expresses the subject’s stability assumption:
probabilistic expectations about how features may change . .
from before an object disappears behind the occluder until  LFeature Stability assumption]
afte_r it reappears, given that it is actuaif_;e same individual E[W(AF)] = 0. (10)
entity. More generally, we assume, this function expresses
how likely it is for a given featural change to occur within This means tha#(AF) will be centered afF = 0.
the lifeline of a single individual object from tirrteto time Another way of thinking of the same idea is to think of
t+ At: that is, the probability that an object will “evolve” by the object in terms of its feature vector over tifi¢), that
AF during an intervalt (Fig. 12). Hence we will refer to this  is, over the "evolution” of the object. If an object has featu
function as theobject evolution probability density functipn vectorF (to) at a certain timéy, then at time + At we expect
or more briefly, as thevolution function and denote it as it to have feature vector:
W(AF),
(4F) E[F (to+ At)] = F(to) + E[W(AF)]. (11)

W(AF) = p(AF |STREAM). (9)  Plugging in the feature stability assumptiBfi’(AF)] = 0,

thisi diately yield
This functionW(AF) lies at the heart of the subject’s beliefs 'S Immediately yields

%br(r)#g how objects tend to behave. What can we say about its E[F (to + At)] = F(to). (12)

We begin by asking whanean valuehe evolution func- N Wor_ds, at each time slice, all else being equal, an obg'.;ect i
tion ought to have, formally expressed by the mathematicalost likely to have theamefeatures as at the previous time
expectatiorE[W(AF)]. That is, given that we observe an ob- Slice.

jectF at timet, by how much do we typically expect it to 2 fe spacer is unbounded this creates the possibility of what

change aft(_ar an interv_&t?_ _ ~are calledmproper priorsin the Bayesian literature. However stan-
Our basic assumption is that, all else being equal, objeaiard methods for dealing with this situation have been dypesi
properties tend to be stable. That is, at each time slice, afsee Box & Tiao, 1973 for introduction).
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Having established the mean of the evolution function, wetime. We have so far assumed that its mean will be at zero
next have to worry about its functional form. In what follgws (no change the most likely) and that its form will be gen-
we assume that it is normal (Gaussian) in form—a very comerally Gaussian. However this leaves open several qusstion
mon assumption in the Bayesian literature, for a variety ofabout the nature and sources of these distributions. Wirere d
good and bad reasofsn our case this means that in general the observers’ subjective expectations about object &eolu
we assumél(AF) is Gaussian ovehF, centered aAF =0  come from? Our data do not speak directly to this question,

and with covariance matrix, notated so our discussion is necessarily speculative.
Some changes to observed object properties are intrinsic,
W(AF) = N(AF;0,%). (13) in the sense that the properties are tied to the object them-

ore spciicaly i ou experiments s aiaysavecor 5SS, 209 0T XIS, L ey Sepens o v
of either one featural dimension (Exps. 1-3) or two (EXps. ' mp pite percept i8S,
ects may appear different colors or luminances at differen

4-6). Hence in Exps. 1-3 the evolution functionis a Slmplelmoments despite constant material properties. Such sitrin
univariate normal, . ; .
changes add uncertainty to the data our observer is using to
N . , track identity. Thus from a formal point of view they would
W(afi) = N(Af;0,0), (14) be folded into the evolution function. Another importanidi
whereAf; is eitherAf gy, Afsize, or Afsyaps, @andaj is an  of extrinsic property change is change in shape due to view-
associated standard deviation. Similarly in Exps. ¥4 a  point change. However as pointed out by Ullman (1977),
bivariate normal such changes are potentially almost unbounded; one can con-
struct objects whose appearances from orthogonal viewing
W(Af,Afj) = N(Afi,Afj;(0,0),04,0j,r), (15) directions are arbitrarily dissimilar. Of course the pdially
large changes in shape introduced by viewpoint changes are
one of the central problems studied in the object recognitio
literature (Tarr & Pinker, 1989).
_As for intrinsic property changes, many objects in the
natural world can alter their intrinsic shape, color, oresiz
though generally not on the sub-second time-scale of our
experiments. It is intriguing in this regard to consider the
chameleon, blowfish, and hognose snake, three animals that
PstreanP(AF) ) alter respectively their color, size, and shape in resptmse
h {1— — \]16)threat. Such adapations seem designed to conceal the ani-
pSTREAMw(AF)+1 PsTrREAM . . ' . :
_ mal’s identity precisely by fooling predators’ perceptsyd-
— h [ _ PstreavN(AF; 2) ] tems via their assumption that such changes are generally
PstreamN(AF;Z) +1— psrream| unlikely. More mundanely, shape changes in articulated and
non-rigid objects such as animal bodies are commonplace.
This will now serve as a model of the data from Exps. 1_One would not want to think that your cat had been replaced

6, with the free parameters fitted to the data. In the singlepy adifferentcat simply begauge I m.oved its tail. ,
feature experiments (Exps. 1-3), the model has three free More generally, one might imagine that observers’ ex-
parameters: the leading scaling tehmthe streaming prior pectations about how intrinsic properties might changar ove
Pstream and the single feature standard deviationin the time would relate to their beliefs about the material preper
two-feature experiments (Exps. 4-6), the model has five frel€S Of the surfaces in question. Many computational models
parameters: the leading scaling tehmthe streaming prior of surface perception, in which smooth surfaces are recon-
Psrreaw: the two featural standard deviationsanda;, and structed from isolated depth values (e.g. see Blake & Zisser
the correlation coefficientbetween them. Fitting the datain Man, 1987), rely on assumptions about the physical flexibil-
the single-parameter experiments, which have only five datfy Of the underlying surfaces, which would naturally relat
points (i.e., mean bounce responses for each of five Ievef their likelihood of changing shape over time. Thus a sur-
of feature change) is relatively easy; the main question i$2C€ judged to be made of wood would be expected to have a
whether the model gives qualitatively the right behavidreT ~Ughter shape evolution function than one judged to be made
more serious challenge to the Bayesian model is in the two@! rubber. Of course in our impoverished displays, the sub-
parameter experiments, where we will use the five-parametdf¢ts had little data on which to base estimates of material
model to fit 25 data points (a:65 grid of feature change PropPerties, so they might been led to employ some kind of

levels); here the question is whether the same basic Bayesia

whereAf; andAf; are the two relevant feature-change pa-
rametersg; ando;j are their associated standard deviations
andr is the correlation between them.

To produce our final Bayesian model, we plug these as
sumptions abou¥ back into Eq. 8, and place a scaling coef-
ficienthin front of the entire expression:

P(BOUNCE|AF)

model will fit the more complex dataset. ®Good reasons include that the Gaussian is the maximum en-
tropy function with a given fixed mean and variance (see Bema
Sources of the evolution function & Smith, 1994), and that the Gaussian is the limiting sum @irgé

_ ) number of independent distributions (the Central Limitotfeen).
The evolution functior?(AF) represents the observer's Bad reasons include that it is mathematically simple anaeuient
expectations about how an object is prone to change oveo work with.
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\

neutral default distribution. x > x

Finally we note that the observer’s subjective expectation t
may not themselves be firmly fixed, but may vary depenging b
on context and mental set. Specifically it is certainly pos-
sible that our subjects’ distributions were “tuned” by thei
experiences viewing our stimuli; over the course of trjals
they may have gradually developed a sense of the range of,
feature changes at play in the experiments. This posyibilit \
means that we cannot draw any very firm conclusion apo

a ‘ a

the meaning of the specific values@fstandard deviation)
observed in our data. Rather it is the general form of|the
decision procedure that is of interest.

/

(a) (b)
Fits of the Bayesian model Figure 13 Two ways of applying a motion energy model to our
. - displays. (a) Standard arrangement, with a pair of mutualy

We fitted the data (probability of a bounce response as gipjtory receptive fields (one positive and one negativaiheori-
function of featural differencéF) to the Bayesian model ented in space-timeandt (or x,y andt in the full model). In the full
(Eg. 17) using Levenburg-Marquardt (a common nonlin-model, such fields would normally be coupled in quadratuies é
ear model estimation technique). Estimated parameters angbposite contrast polarity. (b) An alternative arrangetngelding
goodness-of-fit R%) for each experiment are given in Ta- the difference or change in motion energy as the items creisiag
bles 1 (Exps. 1-3) and 2 (Exps. 4-6). The fitted modelghe occluder.
are plotted alongside the data in Figs. 6-11.

The Bayesian model fits the data very closely in all six ex-
periments, as demonstrated by the hiftvalues, and even than just in space; see Fig. 13). In order to apply such a
more vividly by the extremely close matches visible in themodel to our displays, we need to make a few assumptions:
figures. In the single-parameter experiments, as mentioned) that the positive lobe of one such receptive field exactly
above, because the dataset has few degrees of freedom cog@vers the straight (“streaming”) path of our moving shapes
pared to the model, the very good fR%(> .95 in all cases) Symmetrically around the occluder (and presumably no sin-
is not in itself very probative; it shows only that the model gle receptive field exactly covers the bent “bouncing” path)
has qualitatively the correct form. But in the two-paramete (i) that we can ignore the presence of the occluder (which
experiments, where the number of data-points (25 per exin reality would diminish the motion energy but not change
periment) greatly exceeds the number of degrees of freedoie direction of any of the model’s predictions); and (it
in the model (5), the good fitRf > 0.79 in all cases) is far a filter is available at each of the velocities (space-tinie or
more demonstrative (and is significantin each case: for Expgntations) used in the experiment. With these assumptions,
4,5, and 6F(5,19) = 14.50,94.65 and 1496 respectively, suchamodelwould indeed explain the general preference for
p < .00001 in each case). Informally, the fact that all thestreaming percepts, because there would always be more mo-
fitted parameters take on reasonable and meaningful valu&en energy along the streaming path than along the bouncing
(e.g., prior probabilities between 0 and 1, correlationfcoe path.
ficient between -1 and 1, etc., none of which conditions are However, the motion energy model cannot explain the
forced by the fitting procedure) suggests very strongly thatwvay responses varied with featural differedde. The total
the model is qualitatively correct in form. In practice, whe energy is computed as the total stimulation within the exci-
the model is qualitatively defective in even a small way, som tatory lobe (minus that in the inhibitory lobe, which we are
parameters will tend to diverge (go to infinity or minus infin- assuming is empty and thus zero). In our displays this means
ity), which never happened here. that the energy is proportional to the luminance of each item

In summary, the Bayesian model gives a very accuratéwhich depends offi yy ), integrated over the total area of the
prediction of the subject’s responses. Subjects weighithe e item (which depends ofze and fspape), integrated over all
idence they observe from each of the feature changes thedf the items that fall within the receptive field. The area of
observe—and combine these cues to form an impression @éftrapezoid with shape paramefefiapeis (1 — fsuape/2)S,
which object is which in the display—in a manner very closewheres is the width at the bottom edge (a constant). Hence

to that prescribed by Bayes. the total motion energy due to each item is proportional to
Comparison with motion energy models f
p gy E|tem = fLUM fSIZE(li SH2APE)52' (17)

A natural competitor for the Bayesian model in explain-
ing our subjects’ responses are spatiotemporal energy mod-is is linear in all three parameters, increasing withy,
els of motion perception, such as that of Adelson and Bergeand fs,;c and decreasing witlisy4pe. The total motion en-
(1985). Such models, which have been very successful toolsrgy from a given display sums this energy over all the items
in understanding early motion perception, are based on theithin the positive lobe of the receptive field (Fig. 13a),
idea of receptive fields that are oriented in space-timéérat which by assumption includes an equal numbeadems
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Fit of model | Estimated parameters
Exp. Manipulation R? h PsTrReAM o
1 fLum .9948 722 (.011) .205 (.013) 115 (.007)
2 fsize .9600 .690 (.025) .016 (.018) .007 (.007)
3 fsHAPE .9900 .824 (.026) .589 (.029) .503 (.042)

Table 1
Summary of fits of data from Exps. 1-3 to the Bayesian modeafi experiment showing goodness of ff)@d estimated
values of parameters Pstream @ndo (with asymptotic standard errors).

Fit of model | Estimated parameters

Exp Features (ix j) R? h PsTreAM r i gj
4 luminancex size .7923 .811 (.020) .275 (.028) .055 (.388) .235 (.043) .154 (.033)
5 Tuminancex shape .9614 .806 (.008) .364 (.014) 459 (.123) .189 (.014) .705 (.065)
6 size x shape 7974 .869 (.015) .231 (.024) -.617 (.652) .125 (.094) .784 (.636)
Table 2

Summary of fits of data from Exps. 4—6 to the Bayesian modeafd experiment showing goodness of ff)@d estimated
values of parameters, Pstream I, 0i andaoj (with asymptotic standard errors).

andb items. By the design of the experiment, whatever pashape data with zero mean bounce responses, despite ar-
rametersa has,b has values that are equally extreme but inbitrarily large totalAF, as the respectivAf’s cancel each
the opposite direction. Hence every manipulation of any feaother out. There is no such valley in the data, and thus
ture change parameter induces a linear change in the motiar evidence of this cancellation characteristic of motion e
energy due t@ and anequal and oppositénear change in  ergy. To test the fit of model more systematically, we re-
the motion energy due to, with zero net effect on total mo- gressed the mean bounce responses onto the calculated mo-
tion energy. Hence the motion energy from any one filter istion energy differential (using a quadratic model as in Adel
approximatel§ constant over our entire experiment. son & Bergen, 1985) in the two cases where this trade-off
However it is possible to rig the spatiotemporal receptiveexists, Exp. 5 and 6. The fit in Exp. 5 (luminanse
fields in a slightly more complex way in order to give a bet- shape) was(2,22) = 6.69, p = .0054R?> = .3783; good
ter account of our data (Fig. 13b). This arrangement incdudebut far weaker than the fit of the Bayesian model (again
positive and negative lobes covering respectivelydtend F = 14.95 p < .000001R? = .7974). Similarly the mo-
b parts of the path (with similar lobes nearby in oppositetion energy fit in Exp. 6 was good=(2,22) = 6.75,p =
phase), yielding a “difference of motion energy,” or motion .0052 R? = .3804) but much poorer than the Bayesian model
energy differential, as the item crosses behind the occlude(againF = 94.64, p < .000001R? = .9614). Thus we can
This quantity seems more apt for our displays, in that it reteasonably conclude that the Bayesian model gives a better
flects how much the motion energy along the streaming pathccount of human judgments, and that our task does not pri-
changess itema changes td. Presumably the streaming marily reflect simple motion energy.
response is maximally consistent with zero motion energy It is worth noting that motion energy is insensitiveaoy
differential along the streaming path (i.e. simple coherenpure shape change which does not change area or luminance,
object motion). Hence we would expect bounce responses t@nlike our shape parameter that does change area). This is
increase with the motion energy differential. inherent in the fact that motion energy does not encode shape
However, this motion energy differential model makesfeatures directly, but only insofar as they affect the luamice
several predictions that are qualitatively at odds withd.  integral within the receptive field. (Indeed, this is theient
Note that motion energy increases with item sfzge but  point of motion energy models—to get away from overt fea-
decreasesvith the shape parametdg,\pe (EQ. 17). This  tural representations, and this seems to fit early motion-com
means that an increase in one parameter coupled with a gputations well.) So for example any motion energy model
multaneous decrease in the other parameter leaves energy
constant, with zero change in the differential; the two fea- “In the case of size change, the net effect is only approxigate
ture changes “cancel each other out” from a motion energyero because size changes are equal and opposite in log sibéee
perspective. The same applies to any two feature paramé&nergy depends on actual linear area (not log area). Hoviretiee
ters that have opposite effects on motion energy, such as 1§&s€ of luminance change, where luminance themselves are pr
minance and shape. Note that this is an inevitable result dg?ég?cr;isn’gcEszgf:ng'ﬂgaznegooﬂﬁg??gggﬁgg?ﬂfgf&‘gg&% u
the way motion energy is CQmDUt.ed’ by deS|g.n Itis blmd tOnance pair ofa = 55%, b = 45% gives sums to 100% (standard)
feature values per se, but simply integrates stimulatidtsin

- . . . luminance over the entire receptive field, exactly the sasneab
spatiotemporally oriented window (cf. Chubb & Sperling, - 5006, The same applies to change in the shape parametere Henc

1991). N ) ) ) the simple motion energy model predicts no effect of lumasaor
Specifically, this means that the differential model pre-shape changes by themselves, which is obviously at oddsthéth
dicts a deep “valley” in the luminance shape and siz& results of Exps. 1 and 3 respectively.
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would predict equal bounce responses wheandb were Object individuation: a more
both circles as when whemwas a rabbit and an (equal- extended view

size, equal-luminance) hat. This prediction seems implaus
ble in our displays, though admittedly this extreme cooditi
was not tested.

Summing up, we have established so far that the subjects
observing our displays make in effect a Bayesian decision
about what the most likely interpretation is: which type of
event (bouncing or crossing), and thus which assignment of
. . . individual identities to the two objects, best explains dive
The role of spatiotemporal information served featural differences. We now attempt to show how
this decision procedure entails what is in effect a pargicul
“theory of objects” on the part of the observer.

To this end, in this section we recast the mathematics of
he Bayesian decision procedure established in the previou
section in a more complete and naturalistic setting. Inpart
ular, we assume that the bounce/stream decision in our-exper
posed Gonnsion & Pashler, 1950 Nisen: 1585). How gL B ek o o s s oo Secan s
this type of information be integrated into our framework? a correspondence must be subjectively established between

In our view, spatiotemporal information can be integratedobjects in one “frame” of the stream and the next (we con-
into the framework we have developed above in a very seansider the case of a continuous image stream below). That is,
less way by observing that spatiotemporal factors do not inwe assume that subject’s expectations about feature change
fluence observers’ object assignments, as it were, ditectlys an object passes behind the occluder in our displays cor-
but rather only via observerskpectationgbout them. That respond closely to their expectations about feature change
is, a spatiotemporal feature such as the object’s posion ¢ whenever an object in one image evolves into a subjectively
be regarded as just another type of feature, in no way quato-individual object in the next image. Thus the evolution
itatively distinct from other types of properties, excepatt  function W(AF) refers not only to subjective expectations
the observer has particularly strong subjective expentati in the experimental displays but also, more generally, éo th
aboutits value. As in the theory so far, such subjective expe evolution of objects over time in a natural setting.
tations express themselves via the evolution functioriror We emphasize that the our proposals in this section, per-
example a strong expectation that objects ought to be statio haps despite appearances, actually represent only a rather
ary would be represented by a very tight (low-variance) dismodest extension of the Bayesian model discussed above.
tribution W(Ax) (with x representing spatial position). Simi- The “objects as geodesics” hypothesis presented below is
larly, a strong expectation that objects move in straigthipa a direct mathematical consequence of the properties of the
would be expressed as a very tight distributiB@\v) (with  Bayesian observer, except generalized to continuous time
v representing velocity). These expectations can be intefinstead of a single discrete decision as the object eneasint
grated into the evolution functio® simply by considering the occluder) and to an arbitrary continuous feature space.
its domain to be the full feature-change spAgeviewed as  The relevance of Mahalanobis distance (discussed below),
including spatiotemporal feature change as well as fehturaimilarly, is a mathematical entailment of the subjectiee d
factors. pendence on the likelihood of feature change as evidenced

The tendency for spatiotemporal information to dominateln the experimental data. Hence unless the success of the
over featural information then simply corresponds to tine te Bayesian model in some way critically depended on the de-
dency for spatiotemporal changes to have relatively tights  tails of the experimental situation and the featural vaesb
jective distributions. In standard Bayesian theory, tifeiin ~ Used, then the theory below is only a modest extrapolation of
ence of a cue turns out to depend inversely on its variancihe data at hand.

(see Box & Tiao, 1973) Thus the Bayesian observer in our . .
model, having tight distributions around its expected spa-EXtend'ng the Bayesian model

tlote_mporal predictions, would con_sequently_tend to We_lgh We begin by postulating an arbitrary feature spRc&0
spatiotemporal factors correspondingly heavily in itsebj |5nger limited to the three features in our experiments, but
|nd|V|du§t|ons. No special mechanisms or dominance ruleg,q encompassing all potential observable properties of ob
are required. jects in the visual field. Assume that at timéhe observer

A similar situation exists in the literature on haptic vs. vi sees a single object with feature vedtgr At timet + At, the
sual cues, where classical studies had suggested that viswabserver is confronted with some d&tF», ... of possible
cues dominated over haptic cues in cases of conflict. A recemiandidate objects, each of which might be the same object
study (Ernst & Banks, 2002) has shown instead that subjectsls Fy but with somewhat altered features. Of course, these
behavior is consistent with a uniform Bayesian model inte-objects may all be different locations and distances froen th
grating both visual and haptic cues, while the superiority o original location offy; we take up this issue below. For the
visual cues is accounted for by the relative tightness df the moment assume that they are all equally plausible spatiotem
noise distributions (i.e., their greater reliability). porally (e.g., all equidistant from the location Bf) so we

So far we have explicitly ignored spatiotemporal infor-
mation such as the position and velocity of candidate obf
jects. As mentioned, such information is definitely impor-
tant to perceived object identity, and in fact probably dom-
inates over featural information when the two are counter
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can restrict our discussion to the effects of featural cues. infinitesimal, and as a result the likelihoods of the various
The Bayesian model discussed above says that in this sit@andidate objects will differ from each other only infinites

ation, the observer will perceive as the continuatioRgthat  imally: all will have moved only infinitesimally “down the

object whose featural differenéd; = F; — Fp has the highest  hill” of W(AF) (see below for a more careful explanation). In

likelihood p(AFR|STREAM) (i.e., what in the experiments we this case, as in the discrete case, the choice of where tbe giv

would have called the “likelihood under the streaming inter objects’ identity ought to go is still perfectly well-defiegit

pretation”). Note that this does not exactly meandhwll-  depends on the directions in which the candidates lie and the

estfeatural change per se, but rather lbast unlikelyfeatu-  structure of¥.

ral change given the expected distribution of feature chang . .

This distribution is none other than what in the previous secObjects as geodesics

tion we called the object evolution functidH(AF). Thus Extrapolating this to a full-fledge continuous image

the observer faced with the choice ,... Simply ought g ; . X

to—and by our data WiII—chooselﬁtth';2 one thapt >;naxgimizesStream yields a particularly succinct way of stating the-pro

W(F - Fo) ' posed “object concept.” In the discrete version of our thigor
| - .

) . N . . an object is viewed as a sequence of Bayesian choices among
Fig. 1.4 |Ilus'grate_s the situation by placing aII_ the Obje.CtScandidate identities, such that the winning chain minimize
under discussion in the context of the evolution function

. . X . Mahalanobis distance through the feature space at each step
W(AF), illustrated schematically as a Gaussian via a oy, vy continuous version, an object is a continuous path
E(:)”ré)_'é)t't Thfe Oi'r?'nall‘)bji‘fo '? at ?gadﬁ(;en:eﬂtq: =0)-  through feature space such that eadmitesimal stepnini-
(?sniti:)nas?r? fgarlturg-rzigno ecsona?eualr:ot?]e eilarr? I\éasnr?gy\s;n mizes Mahalanobis distance. In mathematical terminolagy,
P : lange space. Intt pie SHOWN, - hinimum-length path on a curved surface is callegadesic
is closer toFp in Euclidean distance: it has the minimum

. D . (a generalization of the notion of “straight line” appraie
feature change if a step any directiom¥R space istakenas ¢ %,y ed spaces: see below for a more technical explana-
equally important. But; is closer in gprobabilistic sense,

as can be checked by examining the isoprobability contourtion)' Hence in our proposal, a subjective mental object is a
closely: F» is less than two bands froffy, while Fy is two aeodesmthrough Mahalanobis feature spésee Fig. 15 for

p a schematic illustration).
mni)lfero?r?ngs E;Vr\]’gyi's Tr?unsd%Q?es Eg?n Lljifjseﬁ;]edgylvor}l}tri]gn A physical analogy may be helpful. Just as in relativistic
(o T y : ravity, where physical objects move along geodesics in a
function; it represents a less-unexpected magnitude of fe

. e : pacetime that is warped by massive objects, in our frame-
teLi/r(le(j:tri](?r??)feF];ronFO’ and is thus the subjective winner as thework psychologicabbjects move along geodesics in feature-

This fairly intuitive notion of probabilistic distance is space-time that is warped by subjective probability digk

L . N tions. In the vivid phrase sometimes used, in physics an ob-
fermed hdfhalanobs distanc the mathematce Ierejec is a“space-ime worm” by our heor, mycholog
tuitively, Mahalanobis distance is Euclidean distancdesta cal object is a minimal-length worm through a subjectively

A ; S warped feature space.
by probability in the underlying d|_str|but|o?1.'l'hus_ rephras- Aprelated progosal was made by Carlton and Shepard
ing, we can say that the Bayesian observer in our set-u

. . : ) S ?1990), developing an earlier suggestion of Shepard (1957)
simply chooses the candidate object at timeAt whichis 1o 'g\ g gested that the motion path mentally interpolated
at minimum Mahalanobis distance from the original object, . een two viewed objects tends to be geodesic in psycho-
at timet. This expression of the rule emphasizes that thq, ;oo snace (cf. Tenenbaum, de Silva, & Langford, 2000).
observer is indeed finding a “minimally-distant” extension Their proposal was primarily aimed at understanding appar-

of the original object, but doing so under a distance metrlcent motion without feature change, but with an obvious ex-

which is itself informed (and indeed determined) by subject g sion to featural similarity spaces similar to that deped
expectations about the probability of feature change.

Ext.ending this to a sequence of discrete t".“es. is simple. e[I'eﬁis idea can be fleshed out formally a bit more, as fol-
Now instead of one step, whose Mahalanobis distance Wf?)ws. A continuous image stream can be thought of as func-
would like to minimize, we have a sequence of steps, each o
which the observer would like to make as small as possible in s pore technically, Mahalanobis distance simply replaces th
the Mahalanobis sense. The resulting chain of steps (ireagireuclidean norm, which in our notation would be expressed as
a sequence of minimum-distance jumps from rock to rock as
one crosses a river) constitutes the observer’s judgment of (AF)Y(AF) (18)
the most likely continuous existence of the object throughyith the transformed norm
the world under observation. More pointedly, one can think
of this chain of choices as in effeconstitutingthe “object” (AF)'z-1(aF), (19)
itself: that is, a subjectively continuous stream of existe in which X is the covariance matrix of the subjective probability
over the sequence of frames. _ _ distributionW(AF), and the superscriptindicates the matrix trans-

Another natural generalization is to consider a continuoUgose. Thus the Mahalanobis norm is simply the Euclidean norm
rather than discrete progression of images over timedle. t scaled by the (co-)variance of the underlying distributiorthe
ing At — 0. In this case the featural chang€& becomes given direction.
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Geodesic path

AT T

INRNRNAN

Figure 15 Schematic illustration of a geodesic through Mahalanéésgure space. At each (possibly) infinitesimal step, theepler
chooses the path of minimum Mahalanobis distance from titeifes of the object at the previous step.

tion of space and time(x,y,t). Running this stream through The hypothesis, then, is that at each point in space-time
the observer’s feature representation yields a featupsbre subjective object identity moves in the directi®that mini-
sentatiorF (x,y,t), in which each point in space-timg, y, t) mizes the subjective probability of feature change
maps to a feature vectér, which we understand to include
any object features that the observer cares to represent. oF
Now consider an individual object located at a par- y [—} .
ticular point in space-timexo, yo,to), with feature vector 28
F (X0, Yo,t0). To subjectively continue this object’s existence ) ) )
to pointxq,ys at timet; = to -+ At entails space-time motion We can now state the objectsjas-geOQesms hypotheS|s
of the object's identity, which we denofix = (x,y1,t) — more formally as follows. Each poirk,y,t) in space-time
(Xo,Yo,to), and an associated feature chadge which as Maps to a feature vectt(x,y,t). Each motionx through
before denoteB (x4, y1,t1) — F (X0, Yo, to). As discussed, this tr_ns space-time entails a _partlc_ular feature change, vgish-a
feature chang&F has an associated subjective probability€iated subjective probability given BY. Now, impose upon
W(AF), which determines its plausibility, and thus under theSPace-time the Mahalanobis metric under the probability di
Bayesian model the probability with which the observer will tribution ¥. Objects, as conceived by the Bayesian observer,

(22)

subjectively continue the object in the directirn are geodesics through this space:

In the case of continuous time, we simply take the limit
as/At — 0. The space-time motiofix becomes a vector, de- [Objects as geodesics]
notedX, meaning the instantaneous direction in which the o _ ] )
object’s identity is moving at timé. (In the experiments, An individual object is a geodesic through
this was forced to be either in the streaming direction or in space-time under the Mahalanobis metric given
the bouncing direction; here we consider all possible direc the subjective probability functio#(9F /0X).

tions.) In place of the discrete featural differentie, we

now take the limit aét — 0 Again, it should be understood that this proposal is really

AE a direct consequence, or more accurately a restatement, of
lim —, (20) the properties of the Bayesian object observer as proposed
£—0 AX above, simply extrapolated to a continuous stream of infer-

which is simply the partial derivative ences each of which is analogous to the single decision made

by our subjects in the bouncing/streaming task. The geodesi
a_F7 (21) characterization of objects is simply a way of capturing the
ox idea that psychological individual objects represent ecij
meaning the instantaneous change in feature vector as otigely maximally-probable paths through the space of possi
moves in the directioR. ble feature changes.
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would expect in a totally random world. Indeed, if the world
PRl in fact did contain some objects with relatively stable prop

= — erties, than some of these geodesics will be extremely.short
e UL S A The hypothesis that such patths in fact exists thus a ver-

a - ~ \P(AF) sion of what is sometimes called the “object hypothesi< (se
S B S Feldman, 1999; Gregory, 1970; Reynolds, 1985), and is a

F SR S F ‘ - particularization of W. Richards’ (1988) “Principle of Nat
: 1 S 2 ) ‘ ral Modes.” The underlying idea is that the world we inhabit

v ; does in fact contain stable entities:

\\
\ H .
1 T ! [Object hypothesis]

s "\ C A 0 Afz In the natural world, some geodesics in Maha-

T T VA N ) lanobis feature space will be short.
/' H ' \ - , ) / /'
. ,

./ This assumption is not necessary for our scheme to be

! \ Mo 77 well-defined: again, even if the world were random (and
/'/ L, thus did not obey the object hypothesispmepath would

in order for the Bayesian decision scheme to be a sensible

S . e \ : be shortest. But something like this assumption is necgssar
. - , ; . .
N A \ one. Without it, the Bayesian observer would be choosing

S g among hypothesesone of which actually corresponds to
0 a stable object as hoped. That the object hypothesis is im-

plicitly believed by human observers is testified by our data
0 which demonstrate that subjects do have evolution funstion
centered near zero, meaning that they do expect evolving in-
Af.l dividual objects to have stable properties. Without such a
FO hypothesis in their mental arsenal, our subjects’ pattérn o
responses makes little sense.

Figure 14 An illustration of objectry and its possible extensions .
F1,F,... as situated in the evolution distribution functi&f{AF) Conclusion

(schematically indicated as a contour plot). Given objgct time .
t, which of Fy, F, .. is perceived as the evolution of the same ob- [N summary, our experiments suggest that human ob-
ject? The Bayesian answer is: the one that has the highedit lik Servers form a correspondence between items in succes-

hood according to the evolution function—the one that hilerfa  sive time-slices—and thus create a representation of indi-
the least “down the hill,” in this cask,. As illustrated in the ex- vidual objects bearing continuous existence—by determin-
ample, this is not necessarily the one with the smallesttetdure  ing the most plausible featural correspondence given stbje
change, but rather the one with tleaist unlikelyfeature changef;  tive expectations about objects are likely to change owes ti

is closer in Euclidean distance, Htt is closer probabilistically, as  These expectations, encoded as a subjective probabiity di
can be checked by examining the isoprobability contourbkerfig- tribution (our “evolution function”), are then combinedan

ure. This sense of “probabilistic proximity” is callédahalanobis simple way, via Bayes' rule, to establish object individaat

distance) Again, our model is expressed in terms of featural prop&rtie
because these were the only ones that were informative in

. . our displays; spatiotemporal properties would probableha
The object hypothesis dominated were they useful to the observer, but in our stud-

ies they were completely ambiguous. However, as discussed

We conclude this theoretical discussion with one addi-above, spatiotemporal properties could be incorporated in
tional remark. In any sequence of images, no matter howhe Bayesian observer model, and thus into our “object con-
structured or unstructuredomepath will be of minimal  cept,” without substantially altering it.
length. Our object definition so far simply says the observer In everyday conception, the individuation of physical ob-
chooses the shortest from available alternatives. If thedvo jects is often described as if there were an objective, phys-
is very random, the best available hypothesis may still inical fact of the matter: one object is at a certain time is re-
volve a large amount of feature change at each time step-garded asn fact the same as another at a previous time, in
truly a “blooming, buzzing confusion,” in William James’s virtue of continuous intervening existence. Considerimg t
famous phrase. However, implicit in this entire scheme (andouncing/streaming task, however, it becomes apparent tha
more particularly, in the feature stability assumptionjakth  the very notion of “continuous intervening existence” has a
led to the assumption that the evolution function is cemtere subjective element. One mud¢cidewhether existence has
at zero) is the presumption thabmepaths will in fact be in fact intervened continuously; and in doing so, all one has
much shorter (i.e. entail much less featural change) than orto work with are observable properties. Our proposal is that
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this situation extends to object individuation generatlgt  Feldman, J. (2001). Bayesian contour integrati®erception &

just when the choices are made artificially ambiguous as in  Psychophysic$3(7), 1171-1182.

our laboratory. All object individuation, in the end, is leds Gepshtein, S., & Kubovy, M. (2000). The emergence of visual

on observables, and no further ground truth is available. objects in space-timeProceedings of the National Academy of
Our data suggest that mental representation of object indi- Science97, 8186-8191.

viduation depends in fact on subjective apprehension of howsregory, R. L. (1970).The intelligent eyeNew York: McGraw-

things change (the object evolution function), and in par- Hill.

ticular, on the subjective expectation that real physidal o Johnston, J. C., & Pashler, H. (1990). Close binding of iteand

jects tend not to change too much (the feature stability as- location in visual feature perceptiordournal of Experimental

sumption). These assumptions lead via Bayes’ rule to a very Psychology: Human Perception and Performanté(4), 843

specific quantitative prediction of how choices will be made

when individuation is rendered ambiguous, as in our experiJulesz, B. (1995).Dialogues on perceptionCambridge: M.LT.

mental task, which are borne out by the data. The conclusion Press.

is that human observers follow a very reasonable strateghnill, D., & Richards, W. (Eds.). (1996)Perception as Bayesian

when individuating objects, one based on making the best inference.Cambridge: Cambridge University Press.

guess possible given the data available. Kubovy, M. (1994). The perceptual organization of dot ta8.
Psychonomic Bulletin and Revie#(2), 182—190.
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