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Jacob Feldman and Patrice D. Tremoulet
Dept. of Psychology, Center for Cognitive Science, RutgersUniversity

How does an observer decide that a particular object viewed at one time is actually thesame
object as one viewed at a different time? We explored this question using an experimental task
in which an observer views two objects as they simultaneously approach an occluder, disappear
behind the occluder, and re-emerge from behind the occluder, having switched paths. In this
situation the observer either sees both objects continue straight behind the occluder (called
“streaming”) or sees them collide with each other and switchdirections (“bouncing”). This
task has been studied in the literature on motion perception, where interest has centered on
manipulating spatiotemporal aspects of the motion paths (e.g. velocity, acceleration). Here we
instead focus onfeaturalproperties (size, luminance, and shape) of the objects. We studied the
way degrees and types of featural dissimilarity between thetwo objects influence the percept
of bouncing vs. streaming. When there is no featural difference, the preference for straight
motion paths dominates, and streaming is usually seen. But when featural differences increase,
the preponderance of bounce responses increases. That is, subjects prefer the motion trajec-
tory in which each continuously existing individual objecttrajectory contains minimal featural
change. Under this model, the data reveal in detail exactly what magnitudes of each type of
featural change subjects implicitly regard as reasonably consistent with a continuously existing
object. This suggests a neat mathematical definition of “individual object:” an object is a path
through feature-trajectory space that minimizes feature change, or, more succinctly, an object
is ageodesic in Mahalanobis feature space.

Objects

An important component of our perception of a stable and
unified world is the subjective impression ofcoherent objects
having continuous existence over time. Yet the full psycho-
logical meaning of the term “object” in this context remains
elusive. What causes an object at one time to be regarded as
the “same object” as another at a previous time, and what
does “same” mean in this connection? This problem has
sometimes been referred to astemporal grouping(Gepshtein
& Kubovy, 2000) (as contrasted withspatial grouping, in
which elements within a given visual image are aggregated
together). In this paper we will use the termobject individ-
uation, to emphasize the mental construction of individual
phenomenal objects having continuous existence.1

Pioneering research in the study of the object concept has
come from the developmental literature (Baillargeon, 1994;
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Spelke, 1990). Infants understand objects to be bounded
and coherent three-dimensional entities (Spelke, Breinlinger,
Macomber, & Jacobson, 1992), and as young as four months
of age believe that objects continue to exist when they disap-
pear behind occluders (Baillargeon, 1987). Thus over time
infants develop something like the adult’s conception of ob-
jects, including expectations of boundedness and coherence,
continuity of existence over time, and stability of featural at-
tributes. Yet the exact meaning of many of these terms in
the adult’s conception is still somewhat unclear; the relevant
questions in adults have scarcely been studied. Adults pre-
sumably have “object constancy” in the sense in which the
term is usually used; but exactly what does this mean? What
is held subjectively constant over the course of an object’s
existence? In this paper we study the problem of object iden-
tification in adult observers, and attempt to shed light on true
psychological meaning of the term “object” and the compu-
tations underlying it.

We focus on the notion of featural stability, and on how
expectations about the stability of objects’ features overtime
influences observers’ object interpretations in ambiguoussit-
uations. Clearly, one expects objects generally to retain their
properties over the course of time. Yet it is obvious that an
object can change its properties to some degree and yet re-

1 The term “temporal grouping” is admittedly elegant, but we
feel that the analogy with spatial grouping is not perfectlyapt. In
spatial grouping elements are aggregated together while continuing
to maintain separate existence, whereas in the problem at hand dis-
tinct elements are interpreted as being in fact thesameindividual,
and thus unified.
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main, phenomenally, the “same” object (Fig. 1).No change
in features may be the most likely case (a); but clearly some
featural changes, such as the change in retinal shape asso-
ciated with rotation in depth, are quite plausible (b); while
other changes, such as non-rigid changes in shape, are less
plausible (c); and still other changes highly implausible (d).
Later in this paper, we will seek to capture this nexus of
vague expectations about the evolution of an object’s prop-
erties as a concrete probability distribution defined over a
feature space, which we call theobject evolution function.
In the theory we develop below, this probability distribution
will then serve as the centerpiece of the observer’s decisions
about object individuation in an ambiguous situation, such
as our experimental paradigm. Our main conclusion will be
that observers perceive as continuously existing objects those
paths that entail the minimum of feature change over time—
or, more precisely, theleast unlikelyfeature change given the
observer’s subjective probabilistic expectations as captured
in the evolution function.

The developmental literature has at times explicitly coun-
terposedspatiotemporalproperties, such as continuity of lo-
cation over time, withfeaturalproperties, usually visual fea-
tures such as shape and color. Infants as young as four
months of age can individuate objects based on spatiotem-
poral properties such as continuity (Spelke, Kestenbaum, Si-
mons, & Wein, 1995). But even at the age of nine months,
infants do not reliably individuate based on featural proper-
ties (Tremoulet, Leslie, & Hall, 2000), but develop this abil-
ity by 12 months (Xu & Carey, 1996), though this issue re-
mains controversial. Experiments with adults have also sug-
gested that location is primary while properties are secondary
(Johnston & Pashler, 1990; Nissen, 1985). Our experimen-
tal paradigm is designed so that all candidate object paths are
continuous and hence spatiotemporally possible. This allows
us to manipulate featural differences and investigate their in-
fluence on object interpretations.

The bouncing/streaming
paradigm

The paradigm we will use in the experiments below is a
variant of one introduced by Michotte (1946/1963, exp. 24),
and later, independently, by Julesz (in about 1959; see Julesz,
1995, p.50). More recently it was reintroduced (apparently
without knowledge of these earlier uses) by Bertenthal, Ban-
ton, and Bradbury (1993) and Sekuler and Sekuler (1999) as
a tool to study motion perception.

In a typical display, two objects approach each other from
the left and right edges of the screen, “collide” in the middle,
and then two objects emerge from the collision moving in
opposite directions. The question for the subject is: afterthe
collision, which object is which? In the simplest case of two
identical objects moving at constant velocity, the most com-
mon percept is that the objects appear to pass through one
another (“streaming”), but under certain circumstances the
objects appear to strike each other and abruptly reverse mo-
tion direction (“bouncing”). The preference for streamingis
thought to reflect a preference for straight, constant-velocity

motion paths, an important bias of the motion interpretation
system (Ramachandran & Anstis, 1983), and hence this task
has most often been used to investigate basic motion mech-
anisms. Such studies usually use featurally identical objects
while manipulating spatiotemporal aspects such as speed and
acceleration (Sekuler & Sekuler, 1999), attentional demands
(Watanabe & Shimojo, 1998), or exogenous cues such as
sound (Sekuler, Sekuler, & Lau, 1997).

In our slightly modified version of this task (Fig. 2), the
two objects appear from the upper left and right corners of
the screen, moving down and towards a central occluder;
simultaneously disappear behind the occluder; and then re-
emerge on the two original paths, but having switched prop-
erties. Crucially, one can regard the two objects as having
constant properties, but exchanging paths (in which case one
sees bouncing); or as having constant (straight) paths, but
swapping properties (streaming).

Subjectively, the percept of “bouncing” or “streaming” in
this task is very vivid: one either has an immediate percept
of two objects crossing without touching or, alternatively, of
an abrupt collision, with a concomitant sense of which object
is which after they emerge from behind the occluder.

Our displays differ from those of Bertenthal et al. (1993),
Sekuler and Sekuler (1999) and others in two respects. First,
our two paths cross transversally at the occluder, while oth-
ers’ are strictly horizontal. We felt that the “accidental”
collinear alignment between perfectly horizontal paths might
bias observers to see the two paths as causally related in some
way. Moreover Michotte (1946/1963), using a horizontal dis-
play, had observed in a small number of subjects an anoma-
lous depth-rotation interpretation which we wished to avoid.
Second, in our displays, an occluder covers the point of in-
tersection, while in others’ displays there is no occluder.The
occluder was necessary to ensure that displays with certain
featural differences (especially in shape and size) were com-
pletely ambiguous between bouncing and streaming (i.e. that
both interpretations were consistent with the display).

Related phenomena and literature

Before presenting our experiments we briefly review some
relevant phenomena already studied in the literature.

Apparent motion

An analogous and related area of research is apparent or
phi motion (see Anstis, 1980). In an apparent motion display
(Fig. 3a), one visual item is briefly flashed at one time, and
then another item is flashed at a different location at a slightly
later time; the usual result is a perception of motion between
the two locations. Some authors (Burt & Sperling, 1981;
Navon, 1976) have found that apparent motion is influenced
primarily by spatiotemporal properties (e.g. the magnitudes
of the spatial and temporal gaps between the two items), and
that featural properties of the items play little role. How-
ever others (Shechter, Hochstein, & Hillman, 1988; Prazdny,
1986) have found a measurable benefit of featural similar-
ity between the items. Many authors have suggested a dis-
tinction between short-range and long-range apparent motion
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Figure 1. As an object evolves over time, zero feature change (a) is the most likely case, but certain featural changes are highly plausible
(b), while others are less plausible (c), and others are highly implausible (d).
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Figure 2. The bouncing/streaming task.

(Lu & Sperling, 2001 for a recent review), with only the latter
being influenced by later visual processing involving overt
featural properties (see also our discussion below of motion
energy models). It is thus certainly possible that object in-
dividuation is related to long-term apparent motion; the two
processes are at the very least closely analogous. However
the items in our paradigm disappear briefly behind an oc-
cluder at the critical moment in each trial, so it seems un-
likely that the two tasks are identical. In any case, as will
be seen later, the assumption that our task does not primarily
involve early motion mechanisms is bolstered by the finding
that performance in the bouncing/streaming task is not well
accounted for by standard early motion models (see section
below on motion energy models).

Multiple-object tracking

Another relevant literature is that on multiple-object track-
ing (MOT) (Pylyshyn & Storm, 1988; see Fig. 3b). In this
task, subjects are asked to track a small set of moving ob-
jects amid a field of (visually identical) distractor objects.
Most subjects can track about four such objects among a field
of eight. Normally in this task all the items are featurally
identical, so tracking is based on continuous monitoring of
spatial trajectories rather than featural information. Toour
knowledge the influence of featural information on tracking
in MOT has not been studied. Subjects in an MOT task can
track objects behind occluders (Scholl & Pylyshyn, 1999),
and in a similar task can track using continuity in abstract



4 JACOB FELDMAN AND PATRICE D. TREMOULET

(a)

(b)

ti
m

e

(c)

Figure 3. (a) Apparent motion paradigm. (b) Multiple-object
tracking paradigm. (c) Ternus illusion. One either sees twoobjects
rigidly translating, or the left-hand object “leap-frogging” over the
static center object.

feature-space (Blaser, Pylyshyn, & Holcombe, 2000), a no-
tion closely related to the abstract feature-change space we
will develop below. Hence the notion of “individual object”
tapped by our bouncing/streaming task is probably the same
as that tapped by MOT. The emphasis in MOT studies though
is on the division of attention among the various items to be
tracked, and how this attentional load is affected by the num-
ber of items. Our displays do not vary the number of items;
rather the emphasis is on how observers solve the ambiguous
correspondence between the items before the occluder and
those after the occluder, an ambiguity not normally present
in the MOT task.

Finally, we also mention two other phenomena that relate
to object individuation. A study by Gepshtein and Kubovy
(2000) considered spatiotemporal grouping using a temporal
variant of the method of dot lattices introduced by Kubovy
(1994) to study spatial grouping. This study drew several in-
teresting conclusions about temporal grouping, in particular
concerning the effect of spatial and temporal factors, but did
not consider featural differences. Second, the well-known
Ternus illusion (see Fig. 3c) features an ambiguity of object
identity over motion. This illusion is known to depend heav-

ily on spatiotemporal factors (e.g. the interframe interval; see
Yantis, 1995), but extant studies have all used featurally iden-
tical elements, so the effect of featural differences is, again,
unknown. Hence notwithstanding a great deal of speculation
about the role of featural continuity in determining object
identity, the actual influence of featural information in adults’
judgments remains largely unstudied.

Experiments

When describing our displays, for clarity of exposition we
will refer to the left-hand item asa and the right-hand item as
b (see Fig. 2); hence the symbolsa andb each refer consis-
tently to an entity with constant properties. (This terminol-
ogy is for convenience; in the actual displays left and right
sides were counterbalanced.) We parameterize the displays
with respect to the featural difference∆F betweena andb;
e.g. ∆F = 0 meansa = b. Later we will present a theoret-
ical model in which we predict the probability of a bounce
response as a function of the featural difference∆F.

Summing up, when confronted with any of our displays,
the observer has a choice between a percept of streaming—
but with an attendant abrupt feature change of magnitude∆F
as each object passes behind the occluder; or a percept of
bouncing, with no attendant featural change. Hence this task
directly measures the observer’s judgment of the likelihood
of a featural change of∆F within the lifeline of a single,
coherent object. The subjective likelihood of a given feature
change, in turn, reflects the nexus of subjective expectations
about plausible feature change, which we hope will illumi-
nate the subjects’ underlying mental model of “objects.”

As noted above, when∆F = 0, subjects usually report
streaming, consistent with (or analogous to) the general pref-
erence for straight motion paths and “inertia” in apparent mo-
tion (Bertenthal et al., 1993; Ramachandran & Anstis, 1983).
Hence clearly featural differences are not the only factor in-
fluencing interpretation of our displays. However this biasis
a constant throughout all our conditions, while featural dif-
ferences∆F are manipulated. In the formalism presented be-
low, we will assume the bias for streaming is a single scalar
weight (in effect, the subjective prior probability attached to
the streaming hypothesis) that does not interact with any of
the manipulated effects.

In the following experiments, we manipulated the featural
difference∆F between itemsa andb (see Fig. 2), and mea-
sured its influence on “bouncing” vs. “streaming” responses.
As features, we focused on luminance (Exp. 1), size (Exp.
2), and shape (Exp. 3). We were also especially interested
in the manner in which multiple cues are combined (a topic
of substantial recent interest among perceptual theorists; see
discussion below), so we also separately ran conditions ma-
nipulating all three pairs of features: ; luminance× size
(Exp. 4), luminance× shape (Exp. 5), and size× shape
(Exp. 6).

Notation. Each of our objects can be thought of as a point
in luminance-size-shape space (Fig. 4), which we denote by
F :
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Figure 4. Feature spaceF , showing variations in luminance, size,
and shape.

F = 〈 fLUM , fSIZE, fSHAPE〉 . (1)

We denote byFa andFb the feature vectors for objectsa andb
respectively. We are interested in the difference∆F between
them, given by

∆F = Fa −Fb, (2)

which is a vector of three individual feature differences,

∆F = 〈∆ fLUM ,∆ fSIZE,∆ fSHAPE〉 . (3)

The main manipulation in the experiments is always∆F,
with each experiment focusing on a single component or pair
of components.

By Fechner’s law, we actually expect psychological dif-
ferences to reflect ratios rather than differences of the raw
values. So in order to makeF a simple vector space, we use
logarithmic features, e.g.

fLUM = log(raw luminance), (4)

and similarly forfSIZE and fSHAPE. This means that vector dif-
ferences in this space reflect ratios in the original raw values,
e.g.

∆ fLUM = log

(

raw luminance ofa
raw luminance ofb

)

, (5)

and similarly for size difference∆ fSIZE and shape difference
∆ fSHAPE. This means that “no difference” is always signi-
fied by ∆ f = 0 (because 0= log(1)). In the experiments,
we attempt to choose values of each∆ f giving a wide range
of differences, and always including a same-feature case
( fLUM = fSIZE = fSHAPE = 0, i.e. Fa = Fb). Then we choose
pairs of values off that center their difference∆ f symmetri-
cally around an intermediate value of the parameter.

Parameters

Luminance. Each object was a uniform gray region (on a
white background) with reflectance drawn from the range be-
tween 0 (black) and 1 (brightest white). As explained,∆ fLUM

thus represents the log ratio of the raw luminances (percent
white) ofa andb.

Size.Objects were uniformly scaled to create size differ-
ences.∆ fSIZE thus represents the log ratio of the linear span
of a to that ofb.

Shape.As a shape parameter, we created a one-parameter
continuum of shapes running from square to triangle (see
shape axis in Fig. 4), with intermediate values producing a
spectrum of of trapezoids. As with the other parameters, we
then take the log ratio, so∆ fSHAPE represents the log of the ra-
tio of a’s position along this spectrum (i.e., percent triangle)
to that ofb.

In each experiment, the feature(s) not manipulated were
fixed at an intermediate value (50% white, medium size
[about 1◦ of visual angle at 45cm of viewing distance], or
50% triangle). Hence all shapes in the luminance condition
(Exp. 1), size condition (Exp. 2), and luminance× size con-
dition (Exp. 4) were trapezoids with an intermediate value of
the shape parameter.

In the two-parameter experiments (Exps. 4–6), we used
the same values of each of the parameters as had been tested
in the single-parameter experiments, so subjects’ treatment
of parameters in combination could be compared as directly
as possible to the same parameters taken singly.

Method

Methods for all six experiments were identical except for
the choices of feature change vectors∆F . For clarity of pre-
sentation we give the general method first, then details of
each of the experiments’ parameters in sequence, before giv-
ing results.

Subjects. Exps. 1–6 used 16, 16, 14, 16, 15, and 17 sub-
jects respectively. Subjects were undergraduate studentspar-
ticipating for course credit and were naive to the purposes of
the experiment.

General method. The subject was seated in front of the
computer screen at a viewing distance of approximately
45cm. The subject would then fixate on the central occluder,
a textured circular patch subtending about 2◦ of visual angle
(the exact size is calculated to be sufficient to fully occlude
the largest object in any trial). After pressing the space-
bar, the two objects would appear from the upper left and
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Figure 5. Illustration of the incidence angleα in the displays. The
figure also illustrates the texture pattern on the occluder.

right, traveling towards the occluder. The objects would then
both simultaneously disappear behind the occluder, becom-
ing progressively occluded until they were both completely
invisible. Then two objects would progressively emerge
from behind the occluder traveling along the original motion
paths, as explained above, except with objecta now contin-
uing b’s motion path and vice-versa. The subject was then
asked to indicate whether he or she had perceived a “bounce”
or “stream” via response keys on the computer keyboard.

Several other variables in addition to∆F were also manip-
ulated, fully crossed with the main manipulation of∆F. In
all experiments, the speed of the moving objects was either 6,
12, or 18 degrees of visual angle per second. The incidence
angle (Fig. 5) was either 25 or 45 degrees.

On each trial, subjects were forced to respond “bounce”
or “cross” (stream). The main dependent variable was the
proportion of “bounce” responses (one minus the proportion
of “cross” responses), which later we model as function of
the featural difference∆F.

Exp. 1 (luminance). Exp. 1 used the following raw lu-
minance pairs (a:b, raw percent white): 50:50, 52.5:47.5,
55:45, 60:40, and 70:30 (i.e. spreads of 0, 5, 10, 20, and
40 percentage points centered around 50). These values cor-
respond to ratios of 1.00,1.1,1.22,1.5 and 2.33, or log ratios
∆ fLUM of 0,0.1,0.2,0.41 and 0.85. The actual appearance of
these values is illustrated along the abscissa in Fig. 6.

Exp. 2 (size). We used size ratios (a:b, linear span) of
1:1, 1.05:1, 1.1:1, 1.15:1 and 1.21:1 (actually equal intervals
in log units before rounding; the real values are 1.1 raised to
the power of 0, 0.5, 1, 1.5, and 2 respectively). These values
correspond to log ratios of aboutfSIZE of 0,0.05,0.1,0.14 and
0.19. These ratios are illustrated along the abscissa in Fig. 7.

Exp. 3 (shape). We used shape ratios (a:b, percent trian-
gle) of 50:50, 55:45, 60:40, 70:30, and 90:10. These values
correspond to ratios of 1.00,1.22,1.5,2.33 and 9, or log ra-
tios ∆ fSHAPE of 0,0.2,0.41,0.85 and 2.2. The corresponding
shapes are illustrated along the abscissa in Fig. 8.

Exp. 4 (luminance× size). Exp. 4 used the same five
levels of luminance changefLUM as in Exp. 1, and the same
five levels of size changefSIZE as in Exp. 2, fully crossed,
for a total of 25 feature-change combinations (i.e., valuesof
∆F).

Exp. 5 (luminance× shape). Exp. 5 used the same five
levels of luminance changefLUM as in Exp. 1, and the same
five levels of shape changefSHAPE as in Exp. 3, fully crossed,
for a total of 25 feature-change combinations (i.e., valuesof
∆F).

Exp. 6 (size× shape). Exp. 6 used the same five levels
of size changefSIZE as in Exp. 2, and the same five levels of
shape changefSHAPE as in Exp. 3, fully crossed, for a total of
25 feature-change combinations (i.e., values of∆F).

Results

Figs. 6–11 show results for Exps.1–6 respectively. Each
plot shows the proportion bounce responses as a function
of featural change∆F . Each plot also shows a theoretical
model, which is explained in detail below.

We followed a two-tiered analysis strategy. First, we en-
tered the data from each experiment into an analysis of vari-
ance (ANOVA), in order to establish the significance of each
of the manipulations. Generally, these analyses show signif-
icant effects of all of the featural manipulations, as well as
their interactions in the two-feature experiments (and, with
a few exceptions, no effects of the nuisance variables speed
and incidence angle). The plots suggest complex but highly
systematic nonlinear interactions between the featural vari-
ables. Hence in the second phase of our analysis, we at-
tempt to model these nonlinearities with a detailed quantita-
tive model. The model is a simple Bayesian observer, which
predicts the bounce/stream classification as a function of the
featural variables. This model give a good account of the
exact nonlinear shape of the decision surfaces shown in the
plots.

Analyses of variance

Exp. 1 (luminance). The effect of luminance change was
highly significant (F(4,60) = 12.521, p < .0001). The ef-
fect of speed was also significant (F(2,30) = 5.697, p =
.008), with bounce responses generally increasing with faster
speeds. No other effects or interactions were significant
(p > .1 in all cases).

Exp. 2 (size). The effect of size change was highly
significant (F(4,60) = 35.995, p < .0001). The interaction
between size and speed was also significant (F(8,120) =
3.353, p= .002), with bounce responses rising more quickly
with size change at low speeds than at high speeds. No other
effects or interactions were significant (p > .05 in all cases).

Exp. 3 (shape). The effect of shape change was highly
significant (F(4,52) = 24.434, p < .0001). The interaction
of speed and incidence angle was also significant (F(2,26)=
3.637, p = .044), with more of a (non-monotonic) influence
of speed at 45◦ incidence angle than at 25◦. No other effects
or interactions were significant (p > .05 in all cases).
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Figure 6. Results from Exp. 1 (luminance), showing the proportion “bounce” responses as a function of luminance differencefLUM . The
dotted line shows the Bayesian model (see text). Error bars show standard error.
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Exp. 4 (luminance× size). The main effects of luminance
change and size change were again significant (luminance,
F(4,60) = 11.796, p < .0001; size,F(4,60) = 4.367, p =
.004). The luminance by size interaction was also significant
(F(16,240) = 1.887, p = .022). No other effects or interac-
tions were significant (p > .05 in all cases).

Exp. 5 (luminance× shape). The main effects of lumi-
nance change and shape change were again significant (lu-
minance,F(4,52) = 15.916, p < .0001; shapeF(4,52) =
11.121, p < .0001). The effect of speed was also significant
(F(2,26) = 6.611, p= .005), with more bounce responses at
higher speeds. The luminance by shape interaction was also
significant (F(16,208)= 3.054, p= .0001). No other effects
or interactions were significant (p > .05 in all cases).

Exp. 6 (size× shape). The main effect of size and shape
were again significant (size,F(4,64) = 11.010, p < .0001;
shape, (F(4,64) = 13.669, p < .0001). The interaction of
size and shape was also significant (F(16,256) = 1.942, p=
.017). The three-way interaction of shape, speed, and in-
cidence angle was also significant (F(8,128) = 2.179, p =
.033), with bounce responses rising rapidly at low speeds
and 25◦ incidence angle but more slowly at high speeds and
45◦ incidence angle. No other effects or interactions were
significant (p > .05 in all cases).

Summary. The main conclusion from the ANOVAs is
that, as expected, bounce responses generally increased with
greater featural change. The morea differed from b, the
more often subjects report seeing the bouncing percept; that
is, thelesslikely they were to see the given featural change
as consistent with a single, coherent object. This result is
not in itself surprising, but it confirms the basic idea that the
subjectively continuous existence of an object is mentallyas-
sociated with small changes in its features.

This conclusion requires one caveat. We have assumed so
far that the visual system first reduces each visual item to a
featural representation, and then determines correspondence
over time based on the features. Gepshtein and Kubovy
(2000) have shown however that the process of perceptually
interpreting each individual time-slice can be influenced by
the inferred correspondence with subsequent frames, sug-
gesting in their terms an interactive rather than sequential
model. They drew this conclusion based on displays (using
their spatiotemporal dot lattice paradigm) in which the rela-
tive grouping strengths of within-frame and between-frame
correspondences were deliberately manipulated. In our dis-
plays, the interpretation of each individual frame is not am-
biguous in this way. Hence we assume that the spatiotempo-
ral interactivity discovered by Gepshtein and Kubovy (2000)
will play only a minimal role.

The challenge next is to model the bounce/stream classi-
fication data more precisely, in order to understand exactly
what mental assumptions and mechanisms they reflect. We
take up this challenge in the next section by postulating a
Bayesian observer endowed with a simple subjective model
of “objects.”

A Bayesian observer model

When confronted with one of our displays, or indeed with
any real stream of images, an observer is faced with an un-
certain decision. If an object in the current image perfectly
matches the features of exactly one in the previous image,
then the individuation might be unambiguous. But far more
often no match is perfect, because of noise in the image, and
also more substantively because objects’ features really can
change, due to pose change, non-rigidity, and other varieties
of common transformations.

Such a decision can be modeled effectively in a Bayesian
framework, often applied recently to perceptual inference
(see Bülthoff & Yuille, 1991; Feldman, 2001; Knill &
Richards, 1996; Landy, Maloney, Johnston, & Young, 1995
for examples). In this section we formulate a Bayesian model
of observers in our task. As with any observer model, the
critical issue is what to assume about the observer’s state
of knowledge and beliefs. In our model, we assume only
that the observer has certain subjective expectations about
the probability of feature changes, which are encoded in a
probability distribution function. The observer can then “turn
the Bayesian crank,” and place an interpretation on a par-
ticular display by, in essence, plugging this distributioninto
Bayes’ rule. This yields a decision function that, we then
show, serves very well as a model of the data from our six
experiments.

Assumptions

In Bayesian theory, the observer’s subjective belief in a
particular hypothesisH given dataD is associated with the
posterior probability p(H|D), which can be computed via
Bayes’ rule,

p(H|D) =
p(D|H)pH

∑i p(D|Hi)pi)
. (6)

Here the numerator is the product oflikelihood of hypothe-
sis H, p(D|H) (which gives the probability of observingD
if H were in fact true) and itsprior probability pH (which
says how likelyH was before this particular trial was ob-
served). The denominator sums this product over all possi-
ble hypotheses, including bothH and all other alternative hy-
pothesesHi . Hence the whole expression says how plausible
H is relative to the set of competing hypotheses.

In our situation, we are interested in the posterior prob-
ability of the bounce interpretation given the display as pa-
rameterized by the observed featural difference∆F, denoted
p(BOUNCE|∆F). Via Bayes’ rule, this is given by

p(BOUNCE|∆F)=
p(∆F|BOUNCE)pBOUNCE

p(∆F |BOUNCE)pBOUNCE+ p(∆F|STREAM)pSTREAM

(7)
where pBOUNCE and pSTREAM are the priors on bounc-
ing and streaming respectively, andp(∆F|BOUNCE) and
p(∆F|STREAM) are respectively the likelihoods of a given
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feature change under the bouncing and streaming interpre-
tations. We make the following simple assumptions con-
cerning these parameters. First, we assume that all displays
are either bouncing or streaming, sopBOUNCE = 1− pSTREAM

and p(BOUNCE|∆F) = 1− p(STREAM|∆F). More substan-
tively, we assume that objects may take on any feature value
F with equal probability,2 or, more precisely, that all values
of ∆F are equally likely when it represents the featural dif-
ference between twodistinctobjects (as opposed to two dif-
ferent incarnations of thesameobject, as under the stream-
ing interpretation). In mathematical terms, this means that
p(∆F|BOUNCE) = 1 always: any feature change is perfectly
consistent with a bounce interpretation.

With these assumptions, we can now rewrite the posterior
on the bounce interpretation as

p(BOUNCE|∆F)= 1−
p(∆F |STREAM)pSTREAM

p(∆F |STREAM)pSTREAM+1− pSTREAM

.

(8)
This equation has only two variables on the right-hand

side: the priorpSTREAM, which is a simple scalar, and the
likelihood term p(∆F|STREAM), which is a function map-
ping feature change vectors to probabilities. In our analysis,
we treat the priorpSTREAM as a free parameter to be estimated
from the data. The main focus then is on the likelihood term
p(∆F|STREAM), which represents the likelihood of a partic-
ular feature change∆F under the streaming interpretation.
The next section asks what this crucial function might be ex-
pected to look like.

The object evolution function

The function p(∆F|STREAM) expresses the subject’s
probabilistic expectations about how features may change
from before an object disappears behind the occluder until
after it reappears, given that it is actuallythe same individual
entity. More generally, we assume, this function expresses
how likely it is for a given featural change to occur within
the lifeline of a single individual object from timet to time
t + ∆t: that is, the probability that an object will “evolve” by
∆F during an interval∆t (Fig. 12). Hence we will refer to this
function as theobject evolution probability density function,
or more briefly, as theevolution function, and denote it as
Ψ(∆F),

Ψ(∆F) = p(∆F |STREAM). (9)

This functionΨ(∆F) lies at the heart of the subject’s beliefs
about how objects tend to behave. What can we say about its
form?

We begin by asking whatmean valuethe evolution func-
tion ought to have, formally expressed by the mathematical
expectationE[Ψ(∆F)]. That is, given that we observe an ob-
ject F at time t, by how much do we typically expect it to
change after an interval∆t?

Our basic assumption is that, all else being equal, object
properties tend to be stable. That is, at each time slice, an

t+ tt
time

0

Ψ( F)

F

Figure 12. Illustration of the evolution functionΨ(∆F). The func-
tion gives the expected distribution of change∆F in the object’s
over the time interval∆t.

object is most likely to have thesamefeatures as at the pre-
vious time slice. This is a very basic and non-trivial assump-
tion about feature change, which we refer to as thefeature
stability assumption:

[Feature Stability assumption]

E[Ψ(∆F)] = 0. (10)

This means thatΨ(∆F) will be centered at∆F = 0.
Another way of thinking of the same idea is to think of

the object in terms of its feature vector over timeF(t), that
is, over the ”evolution” of the object. If an object has feature
vectorF(t0) at a certain timet0, then at timet0+∆t we expect
it to have feature vector:

E[F(t0 + ∆t)] = F(t0)+E[Ψ(∆F)]. (11)

Plugging in the feature stability assumptionE[Ψ(∆F)] = 0,
this immediately yields

E[F(t0 + ∆t)] = F(t0). (12)

In words, at each time slice, all else being equal, an object is
most likely to have thesamefeatures as at the previous time
slice.

2 If the spaceF is unbounded this creates the possibility of what
are calledimproper priorsin the Bayesian literature. However stan-
dard methods for dealing with this situation have been developed
(see Box & Tiao, 1973 for introduction).
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Having established the mean of the evolution function, we
next have to worry about its functional form. In what follows,
we assume that it is normal (Gaussian) in form—a very com-
mon assumption in the Bayesian literature, for a variety of
good and bad reasons.3 In our case this means that in general
we assumeΨ(∆F) is Gaussian over∆F , centered at∆F = 0
and with covariance matrixΣ, notated

Ψ(∆F) = N(∆F ;0,Σ). (13)

More specifically, in our experiments∆F is always a vector
of either one featural dimension (Exps. 1–3) or two (Exps.
4–6). Hence in Exps. 1–3 the evolution function is a simple
univariate normal,

Ψ(∆ fi) = N(∆ fi ;0,σi), (14)

where∆ fi is either∆ fLUM ,∆ fSIZE, or ∆ fSHAPE, andσi is an
associated standard deviation. Similarly in Exps. 4–6Ψ is a
bivariate normal

Ψ(∆ fi ,∆ f j ) = N(∆ fi ,∆ f j ;〈0,0〉,σi ,σ j , r), (15)

where∆ fi and∆ f j are the two relevant feature-change pa-
rameters,σi andσ j are their associated standard deviations,
andr is the correlation between them.

To produce our final Bayesian model, we plug these as-
sumptions aboutΨ back into Eq. 8, and place a scaling coef-
ficienth in front of the entire expression:

p(BOUNCE|∆F) = h

[

1−
pSTREAMΨ(∆F)

pSTREAMΨ(∆F)+1− pSTREAM

]

(16)

= h

[

1−
pSTREAMN(∆F ;Σ)

pSTREAMN(∆F ;Σ)+1− pSTREAM

]

This will now serve as a model of the data from Exps. 1–
6, with the free parameters fitted to the data. In the single-
feature experiments (Exps. 1–3), the model has three free
parameters: the leading scaling termh, the streaming prior
pSTREAM, and the single feature standard deviationσ. In the
two-feature experiments (Exps. 4–6), the model has five free
parameters: the leading scaling termh, the streaming prior
pSTREAM, the two featural standard deviationsσi andσ j , and
the correlation coefficientr between them. Fitting the data in
the single-parameter experiments, which have only five data
points (i.e., mean bounce responses for each of five levels
of feature change) is relatively easy; the main question is
whether the model gives qualitatively the right behavior. The
more serious challenge to the Bayesian model is in the two-
parameter experiments, where we will use the five-parameter
model to fit 25 data points (a 5× 5 grid of feature change
levels); here the question is whether the same basic Bayesian
model will fit the more complex dataset.

Sources of the evolution function

The evolution functionΨ(∆F) represents the observer’s
expectations about how an object is prone to change over

time. We have so far assumed that its mean will be at zero
(no change the most likely) and that its form will be gen-
erally Gaussian. However this leaves open several questions
about the nature and sources of these distributions. Where do
the observers’ subjective expectations about object evolution
come from? Our data do not speak directly to this question,
so our discussion is necessarily speculative.

Some changes to observed object properties are intrinsic,
in the sense that the properties are tied to the object them-
selves, and other extrinsic, in that they depend on viewing
conditions. For example despite perceptual invariances, ob-
jects may appear different colors or luminances at different
moments despite constant material properties. Such extrinsic
changes add uncertainty to the data our observer is using to
track identity. Thus from a formal point of view they would
be folded into the evolution function. Another important kind
of extrinsic property change is change in shape due to view-
point change. However as pointed out by Ullman (1977),
such changes are potentially almost unbounded; one can con-
struct objects whose appearances from orthogonal viewing
directions are arbitrarily dissimilar. Of course the potentially
large changes in shape introduced by viewpoint changes are
one of the central problems studied in the object recognition
literature (Tarr & Pinker, 1989).

As for intrinsic property changes, many objects in the
natural world can alter their intrinsic shape, color, or size,
though generally not on the sub-second time-scale of our
experiments. It is intriguing in this regard to consider the
chameleon, blowfish, and hognose snake, three animals that
alter respectively their color, size, and shape in responseto
threat. Such adapations seem designed to conceal the ani-
mal’s identity precisely by fooling predators’ perceptualsys-
tems via their assumption that such changes are generally
unlikely. More mundanely, shape changes in articulated and
non-rigid objects such as animal bodies are commonplace.
One would not want to think that your cat had been replaced
by adifferentcat simply because it moved its tail.

More generally, one might imagine that observers’ ex-
pectations about how intrinsic properties might change over
time would relate to their beliefs about the material proper-
ties of the surfaces in question. Many computational models
of surface perception, in which smooth surfaces are recon-
structed from isolated depth values (e.g. see Blake & Zisser-
man, 1987), rely on assumptions about the physical flexibil-
ity of the underlying surfaces, which would naturally relate
to their likelihood of changing shape over time. Thus a sur-
face judged to be made of wood would be expected to have a
tighter shape evolution function than one judged to be made
of rubber. Of course in our impoverished displays, the sub-
jects had little data on which to base estimates of material
properties, so they might been led to employ some kind of

3 Good reasons include that the Gaussian is the maximum en-
tropy function with a given fixed mean and variance (see Bernardo
& Smith, 1994), and that the Gaussian is the limiting sum of a large
number of independent distributions (the Central Limit theorem).
Bad reasons include that it is mathematically simple and convenient
to work with.
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neutral default distribution.
Finally we note that the observer’s subjective expectations

may not themselves be firmly fixed, but may vary depending
on context and mental set. Specifically it is certainly pos-
sible that our subjects’ distributions were “tuned” by their
experiences viewing our stimuli; over the course of trials
they may have gradually developed a sense of the range of
feature changes at play in the experiments. This possibility
means that we cannot draw any very firm conclusion about
the meaning of the specific values ofσ (standard deviation)
observed in our data. Rather it is the general form of the
decision procedure that is of interest.

Fits of the Bayesian model

We fitted the data (probability of a bounce response as a
function of featural difference∆F) to the Bayesian model
(Eq. 17) using Levenburg-Marquardt (a common nonlin-
ear model estimation technique). Estimated parameters and
goodness-of-fit (R2) for each experiment are given in Ta-
bles 1 (Exps. 1–3) and 2 (Exps. 4–6). The fitted models
are plotted alongside the data in Figs. 6–11.

The Bayesian model fits the data very closely in all six ex-
periments, as demonstrated by the highR2 values, and even
more vividly by the extremely close matches visible in the
figures. In the single-parameter experiments, as mentioned
above, because the dataset has few degrees of freedom com-
pared to the model, the very good fit (R2 > .95 in all cases)
is not in itself very probative; it shows only that the model
has qualitatively the correct form. But in the two-parameter
experiments, where the number of data-points (25 per ex-
periment) greatly exceeds the number of degrees of freedom
in the model (5), the good fit (R2 > 0.79 in all cases) is far
more demonstrative (and is significant in each case: for Exps.
4, 5, and 6,F(5,19) = 14.50,94.65 and 14.96 respectively,
p < .00001 in each case). Informally, the fact that all the
fitted parameters take on reasonable and meaningful values
(e.g., prior probabilities between 0 and 1, correlation coef-
ficient between -1 and 1, etc., none of which conditions are
forced by the fitting procedure) suggests very strongly that
the model is qualitatively correct in form. In practice, when
the model is qualitatively defective in even a small way, some
parameters will tend to diverge (go to infinity or minus infin-
ity), which never happened here.

In summary, the Bayesian model gives a very accurate
prediction of the subject’s responses. Subjects weigh the ev-
idence they observe from each of the feature changes they
observe—and combine these cues to form an impression of
which object is which in the display—in a manner very close
to that prescribed by Bayes.

Comparison with motion energy models

A natural competitor for the Bayesian model in explain-
ing our subjects’ responses are spatiotemporal energy mod-
els of motion perception, such as that of Adelson and Bergen
(1985). Such models, which have been very successful tools
in understanding early motion perception, are based on the
idea of receptive fields that are oriented in space-time (rather
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Figure 13. Two ways of applying a motion energy model to our
displays. (a) Standard arrangement, with a pair of mutuallyin-
hibitory receptive fields (one positive and one negative), each ori-
ented in space-timex andt (or x,y andt in the full model). In the full
model, such fields would normally be coupled in quadrature pairs of
opposite contrast polarity. (b) An alternative arrangement, yielding
the difference or change in motion energy as the items cross behind
the occluder.

than just in space; see Fig. 13). In order to apply such a
model to our displays, we need to make a few assumptions:
(i) that the positive lobe of one such receptive field exactly
covers the straight (“streaming”) path of our moving shapes,
symmetrically around the occluder (and presumably no sin-
gle receptive field exactly covers the bent “bouncing” path);
(ii) that we can ignore the presence of the occluder (which
in reality would diminish the motion energy but not change
the direction of any of the model’s predictions); and (iii) that
a filter is available at each of the velocities (space-time ori-
entations) used in the experiment. With these assumptions,
such a model would indeed explain the general preference for
streaming percepts, because there would always be more mo-
tion energy along the streaming path than along the bouncing
path.

However, the motion energy model cannot explain the
way responses varied with featural difference∆F . The total
energy is computed as the total stimulation within the exci-
tatory lobe (minus that in the inhibitory lobe, which we are
assuming is empty and thus zero). In our displays this means
that the energy is proportional to the luminance of each item
(which depends onfLUM ), integrated over the total area of the
item (which depends onfSIZE and fSHAPE), integrated over all
of the items that fall within the receptive field. The area of
a trapezoid with shape parameterfSHAPE is (1− fSHAPE/2)s2,
wheres is the width at the bottom edge (a constant). Hence
the total motion energy due to each item is proportional to

Eitem = fLUM fSIZE(1−
fSHAPE

2
)s2. (17)

This is linear in all three parameters, increasing withfLUM

and fSIZE and decreasing withfSHAPE. The total motion en-
ergy from a given display sums this energy over all the items
within the positive lobe of the receptive field (Fig. 13a),
which by assumption includes an equal number ofa items
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Fit of model Estimated parameters
Exp. Manipulation R2 h pSTREAM σ

1 fLUM .9948 .722 (.011) .205 (.013) .115 (.007)
2 fSIZE .9600 .690 (.025) .016 (.018) .007 (.007)
3 fSHAPE .9900 .824 (.026) .589 (.029) .503 (.042)

Table 1
Summary of fits of data from Exps. 1–3 to the Bayesian model, for each experiment showing goodness of fit (R2) and estimated
values of parameters h, pSTREAM andσ (with asymptotic standard errors).

Fit of model Estimated parameters
Exp. Features (i× j) R2 h pSTREAM r σi σ j

4 luminance× size .7923 .811 (.020) .275 (.028) .055 (.388) .235 (.043) .154 (.033)
5 luminance× shape .9614 .806 (.008) .364 (.014) .459 (.123) .189 (.014) .705 (.065)
6 size× shape .7974 .869 (.015) .231 (.024) -.617 (.652) .125 (.094) .784 (.636)

Table 2
Summary of fits of data from Exps. 4–6 to the Bayesian model, for each experiment showing goodness of fit (R2) and estimated
values of parameters h, pSTREAM, r,σi andσ j (with asymptotic standard errors).

andb items. By the design of the experiment, whatever pa-
rametersa has,b has values that are equally extreme but in
the opposite direction. Hence every manipulation of any fea-
ture change parameter induces a linear change in the motion
energy due toa and anequal and oppositelinear change in
the motion energy due tob, with zero net effect on total mo-
tion energy. Hence the motion energy from any one filter is
approximately4 constant over our entire experiment.

However it is possible to rig the spatiotemporal receptive
fields in a slightly more complex way in order to give a bet-
ter account of our data (Fig. 13b). This arrangement includes
positive and negative lobes covering respectively thea and
b parts of the path (with similar lobes nearby in opposite
phase), yielding a “difference of motion energy,” or motion
energy differential, as the item crosses behind the occluder.
This quantity seems more apt for our displays, in that it re-
flects how much the motion energy along the streaming path
changesas itema changes tob. Presumably the streaming
response is maximally consistent with zero motion energy
differential along the streaming path (i.e. simple coherent
object motion). Hence we would expect bounce responses to
increase with the motion energy differential.

However, this motion energy differential model makes
several predictions that are qualitatively at odds with thedata.
Note that motion energy increases with item sizefSIZE but
decreaseswith the shape parameterfSHAPE (Eq. 17). This
means that an increase in one parameter coupled with a si-
multaneous decrease in the other parameter leaves energy
constant, with zero change in the differential; the two fea-
ture changes “cancel each other out” from a motion energy
perspective. The same applies to any two feature parame-
ters that have opposite effects on motion energy, such as lu-
minance and shape. Note that this is an inevitable result of
the way motion energy is computed; by design it is blind to
feature values per se, but simply integrates stimulation inits
spatiotemporally oriented window (cf. Chubb & Sperling,
1991).

Specifically, this means that the differential model pre-
dicts a deep “valley” in the luminance× shape and size×

shape data with zero mean bounce responses, despite ar-
bitrarily large total∆F, as the respective∆ f ’s cancel each
other out. There is no such valley in the data, and thus
no evidence of this cancellation characteristic of motion en-
ergy. To test the fit of model more systematically, we re-
gressed the mean bounce responses onto the calculated mo-
tion energy differential (using a quadratic model as in Adel-
son & Bergen, 1985) in the two cases where this trade-off
exists, Exp. 5 and 6. The fit in Exp. 5 (luminance×
shape) wasF(2,22) = 6.69, p = .0054,R2 = .3783; good
but far weaker than the fit of the Bayesian model (again
F = 14.95, p < .000001,R2 = .7974). Similarly the mo-
tion energy fit in Exp. 6 was good (F(2,22) = 6.75, p =
.0052,R2 = .3804) but much poorer than the Bayesian model
(againF = 94.64, p < .000001,R2 = .9614). Thus we can
reasonably conclude that the Bayesian model gives a better
account of human judgments, and that our task does not pri-
marily reflect simple motion energy.

It is worth noting that motion energy is insensitive toany
pure shape change which does not change area or luminance,
(unlike our shape parameter that does change area). This is
inherent in the fact that motion energy does not encode shape
features directly, but only insofar as they affect the luminance
integral within the receptive field. (Indeed, this is the entire
point of motion energy models—to get away from overt fea-
tural representations, and this seems to fit early motion com-
putations well.) So for example any motion energy model

4 In the case of size change, the net effect is only approximately
zero because size changes are equal and opposite in log space, while
energy depends on actual linear area (not log area). Howeverin the
case of luminance change, where luminance themselves are pro-
portions, changes yield zero net motion energy change, incorrectly
predicting constant mean bounce responses. For example a lumi-
nance pair ofa = 55%, b = 45% gives sums to 100% (standard)
luminance over the entire receptive field, exactly the same as a = b
= 50%. The same applies to change in the shape parameter. Hence
the simple motion energy model predicts no effect of luminance or
shape changes by themselves, which is obviously at odds withthe
results of Exps. 1 and 3 respectively.
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would predict equal bounce responses whena and b were
both circles as when whena was a rabbit andb an (equal-
size, equal-luminance) hat. This prediction seems implausi-
ble in our displays, though admittedly this extreme condition
was not tested.

The role of spatiotemporal information

So far we have explicitly ignored spatiotemporal infor-
mation such as the position and velocity of candidate ob-
jects. As mentioned, such information is definitely impor-
tant to perceived object identity, and in fact probably dom-
inates over featural information when the two are counter-
posed (Johnston & Pashler, 1990; Nissen, 1985). How might
this type of information be integrated into our framework?

In our view, spatiotemporal information can be integrated
into the framework we have developed above in a very seam-
less way by observing that spatiotemporal factors do not in-
fluence observers’ object assignments, as it were, directly,
but rather only via observers’expectationsabout them. That
is, a spatiotemporal feature such as the object’s position can
be regarded as just another type of feature, in no way qual-
itatively distinct from other types of properties, except that
the observer has particularly strong subjective expectations
about its value. As in the theory so far, such subjective expec-
tations express themselves via the evolution functionΨ. For
example a strong expectation that objects ought to be station-
ary would be represented by a very tight (low-variance) dis-
tribution Ψ(∆x) (with x representing spatial position). Simi-
larly, a strong expectation that objects move in straight paths
would be expressed as a very tight distributionΨ(∆v) (with
v representing velocity). These expectations can be inte-
grated into the evolution functionΨ simply by considering
its domain to be the full feature-change space∆F viewed as
including spatiotemporal feature change as well as featural
factors.

The tendency for spatiotemporal information to dominate
over featural information then simply corresponds to the ten-
dency for spatiotemporal changes to have relatively tight sub-
jective distributions. In standard Bayesian theory, the influ-
ence of a cue turns out to depend inversely on its variance
(see Box & Tiao, 1973) Thus the Bayesian observer in our
model, having tight distributions around its expected spa-
tiotemporal predictions, would consequently tend to weigh
spatiotemporal factors correspondingly heavily in its object
individuations. No special mechanisms or dominance rules
are required.

A similar situation exists in the literature on haptic vs. vi-
sual cues, where classical studies had suggested that visual
cues dominated over haptic cues in cases of conflict. A recent
study (Ernst & Banks, 2002) has shown instead that subjects’
behavior is consistent with a uniform Bayesian model inte-
grating both visual and haptic cues, while the superiority of
visual cues is accounted for by the relative tightness of their
noise distributions (i.e., their greater reliability).

Object individuation: a more
extended view

Summing up, we have established so far that the subjects
observing our displays make in effect a Bayesian decision
about what the most likely interpretation is: which type of
event (bouncing or crossing), and thus which assignment of
individual identities to the two objects, best explains theob-
served featural differences. We now attempt to show how
this decision procedure entails what is in effect a particular
“theory of objects” on the part of the observer.

To this end, in this section we recast the mathematics of
the Bayesian decision procedure established in the previous
section in a more complete and naturalistic setting. In partic-
ular, we assume that the bounce/stream decision in our exper-
imental task is a proxy for the more ubiquitous decision that
must be made at each point in a real image stream, where
a correspondence must be subjectively established between
objects in one “frame” of the stream and the next (we con-
sider the case of a continuous image stream below). That is,
we assume that subject’s expectations about feature change
as an object passes behind the occluder in our displays cor-
respond closely to their expectations about feature change
whenever an object in one image evolves into a subjectively
co-individual object in the next image. Thus the evolution
function Ψ(∆F) refers not only to subjective expectations
in the experimental displays but also, more generally, to the
evolution of objects over time in a natural setting.

We emphasize that the our proposals in this section, per-
haps despite appearances, actually represent only a rather
modest extension of the Bayesian model discussed above.
The “objects as geodesics” hypothesis presented below is
a direct mathematical consequence of the properties of the
Bayesian observer, except generalized to continuous time
(instead of a single discrete decision as the object encounters
the occluder) and to an arbitrary continuous feature space.
The relevance of Mahalanobis distance (discussed below),
similarly, is a mathematical entailment of the subjective de-
pendence on the likelihood of feature change as evidenced
in the experimental data. Hence unless the success of the
Bayesian model in some way critically depended on the de-
tails of the experimental situation and the featural variables
used, then the theory below is only a modest extrapolation of
the data at hand.

Extending the Bayesian model

We begin by postulating an arbitrary feature spaceF , no
longer limited to the three features in our experiments, but
now encompassing all potential observable properties of ob-
jects in the visual field. Assume that at timet the observer
sees a single object with feature vectorF0. At time t +∆t, the
observer is confronted with some setF1,F2, . . . of possible
candidate objects, each of which might be the same object
asF0 but with somewhat altered features. Of course, these
objects may all be different locations and distances from the
original location ofF0; we take up this issue below. For the
moment assume that they are all equally plausible spatiotem-
porally (e.g., all equidistant from the location ofF0) so we
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can restrict our discussion to the effects of featural cues.
The Bayesian model discussed above says that in this situ-

ation, the observer will perceive as the continuation ofF0 that
object whose featural difference∆Fi = Fi −F0 has the highest
likelihood p(∆Fi |STREAM) (i.e., what in the experiments we
would have called the “likelihood under the streaming inter-
pretation”). Note that this does not exactly mean thesmall-
estfeatural change per se, but rather theleast unlikelyfeatu-
ral change given the expected distribution of feature change.
This distribution is none other than what in the previous sec-
tion we called the object evolution functionΨ(∆F). Thus
the observer faced with the choice ofF1,F2, . . . simply ought
to—and by our data, will—choose the one that maximizes
Ψ(Fi −F0).

Fig. 14 illustrates the situation by placing all the objects
under discussion in the context of the evolution function
Ψ(∆F), illustrated schematically as a Gaussian via a con-
tour plot. The original objectF0 is at dead center (∆F = 0).
Candidates for the role of continuation ofF0 sit at various
positions in feature-change space. In the example shown,F1
is closer toF0 in Euclidean distance: it has the minimum
feature change if a step any direction in∆F space is taken as
equally important. ButF2 is closer in aprobabilisticsense,
as can be checked by examining the isoprobability contours
closely: F2 is less than two bands fromF0, while F1 is two
whole bands away. HenceF2 has fallen less far “down the
hill” from F0, and is thus more likely under the evolution
function; it represents a less-unexpected magnitude of fea-
ture change fromF0, and is thus the subjective winner as the
evolution ofF0.

This fairly intuitive notion of probabilistic distance is
termed theMahalanobis distancein the mathematical litera-
ture (see Duda, Hart, & Stork, 2001 for an introduction). In-
tuitively, Mahalanobis distance is Euclidean distance scaled
by probability in the underlying distribution.5 Thus rephras-
ing, we can say that the Bayesian observer in our set-up
simply chooses the candidate object at timet + ∆t which is
at minimum Mahalanobis distance from the original object
at time t. This expression of the rule emphasizes that the
observer is indeed finding a “minimally-distant” extension
of the original object, but doing so under a distance metric
which is itself informed (and indeed determined) by subject
expectations about the probability of feature change.

Extending this to a sequence of discrete times is simple.
Now instead of one step, whose Mahalanobis distance we
would like to minimize, we have a sequence of steps, each of
which the observer would like to make as small as possible in
the Mahalanobis sense. The resulting chain of steps (imagine
a sequence of minimum-distance jumps from rock to rock as
one crosses a river) constitutes the observer’s judgment of
the most likely continuous existence of the object through
the world under observation. More pointedly, one can think
of this chain of choices as in effectconstitutingthe “object”
itself: that is, a subjectively continuous stream of existence
over the sequence of frames.

Another natural generalization is to consider a continuous
rather than discrete progression of images over time, i.e. tak-
ing ∆t → 0. In this case the featural change∆F becomes

infinitesimal, and as a result the likelihoods of the various
candidate objects will differ from each other only infinites-
imally: all will have moved only infinitesimally “down the
hill” of Ψ(∆F) (see below for a more careful explanation). In
this case, as in the discrete case, the choice of where the given
objects’ identity ought to go is still perfectly well-defined; it
depends on the directions in which the candidates lie and the
structure ofΨ.

Objects as geodesics

Extrapolating this to a full-fledge continuous image
stream yields a particularly succinct way of stating the pro-
posed “object concept.” In the discrete version of our theory,
an object is viewed as a sequence of Bayesian choices among
candidate identities, such that the winning chain minimizes
Mahalanobis distance through the feature space at each step.
In the continuous version, an object is a continuous path
through feature space such that eachinfinitesimal stepmini-
mizes Mahalanobis distance. In mathematical terminology,a
minimum-length path on a curved surface is called ageodesic
(a generalization of the notion of “straight line” appropriate
for curved spaces; see below for a more technical explana-
tion). Hence in our proposal, a subjective mental object is a
geodesic through Mahalanobis feature space(see Fig. 15 for
a schematic illustration).

A physical analogy may be helpful. Just as in relativistic
gravity, where physical objects move along geodesics in a
spacetime that is warped by massive objects, in our frame-
work psychologicalobjects move along geodesics in feature-
space-time that is warped by subjective probability distribu-
tions. In the vivid phrase sometimes used, in physics an ob-
ject is a “space-time worm;” by our theory, apsychologi-
cal object is a minimal-length worm through a subjectively
warped feature space.

A related proposal was made by Carlton and Shepard
(1990), developing an earlier suggestion of Shepard (1957).
They suggested that the motion path mentally interpolated
between two viewed objects tends to be geodesic in psycho-
logical space (cf. Tenenbaum, de Silva, & Langford, 2000).
Their proposal was primarily aimed at understanding appar-
ent motion without feature change, but with an obvious ex-
tension to featural similarity spaces similar to that developed
here.

This idea can be fleshed out formally a bit more, as fol-
lows. A continuous image stream can be thought of as func-

5 More technically, Mahalanobis distance simply replaces the
Euclidean norm, which in our notation would be expressed as

(∆F)t(∆F) (18)

with the transformed norm

(∆F)tΣ−1(∆F), (19)

in which Σ is the covariance matrix of the subjective probability
distributionΨ(∆F), and the superscriptt indicates the matrix trans-
pose. Thus the Mahalanobis norm is simply the Euclidean norm
scaled by the (co-)variance of the underlying distributionin the
given direction.
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Geodesic path

Candidate evolutions

Feature space

∆t

Ψ

Figure 15. Schematic illustration of a geodesic through Mahalanobisfeature space. At each (possibly) infinitesimal step, the observer
chooses the path of minimum Mahalanobis distance from the features of the object at the previous step.

tion of space and time,I(x,y,t). Running this stream through
the observer’s feature representation yields a featural repre-
sentationF(x,y,t), in which each point in space-time〈x,y,t〉
maps to a feature vectorF , which we understand to include
any object features that the observer cares to represent.

Now consider an individual object located at a par-
ticular point in space-time〈x0,y0,t0〉, with feature vector
F(x0,y0,t0). To subjectively continue this object’s existence
to pointx1,y1 at timet1 = t0 + ∆t entails space-time motion
of the object’s identity, which we denote∆x = 〈x1,y1,t1〉−
〈x0,y0,t0〉, and an associated feature change∆F , which as
before denotesF(x1,y1,t1)−F(x0,y0,t0). As discussed, this
feature change∆F has an associated subjective probability
Ψ(∆F), which determines its plausibility, and thus under the
Bayesian model the probability with which the observer will
subjectively continue the object in the direction∆x.

In the case of continuous time, we simply take the limit
as∆t → 0. The space-time motion∆x becomes a vector, de-
noted~x, meaning the instantaneous direction in which the
object’s identity is moving at timet0. (In the experiments,
this was forced to be either in the streaming direction or in
the bouncing direction; here we consider all possible direc-
tions.) In place of the discrete featural difference∆F , we
now take the limit as∆t → 0

lim
∆t→0

∆F
∆x

, (20)

which is simply the partial derivative

∂F
∂~x

, (21)

meaning the instantaneous change in feature vector as one
moves in the direction~x.

The hypothesis, then, is that at each point in space-time
subjective object identity moves in the direction~x that mini-
mizes the subjective probability of feature change

Ψ
[

∂F
∂~x

]

. (22)

We can now state the objects-as-geodesics hypothesis
more formally as follows. Each point〈x,y,t〉 in space-time
maps to a feature vectorF(x,y,t). Each motion~x through
this space-time entails a particular feature change, with asso-
ciated subjective probability given byΨ. Now, impose upon
space-time the Mahalanobis metric under the probability dis-
tributionΨ. Objects, as conceived by the Bayesian observer,
are geodesics through this space:

[Objects as geodesics]

An individual object is a geodesic through
space-time under the Mahalanobis metric given
the subjective probability functionΨ(∂F/∂~x).

Again, it should be understood that this proposal is really
a direct consequence, or more accurately a restatement, of
the properties of the Bayesian object observer as proposed
above, simply extrapolated to a continuous stream of infer-
ences each of which is analogous to the single decision made
by our subjects in the bouncing/streaming task. The geodesic
characterization of objects is simply a way of capturing the
idea that psychological individual objects represent subjec-
tively maximally-probable paths through the space of possi-
ble feature changes.
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0

f1

f2

F1 F2

F0

Ψ(∆F)

Figure 14. An illustration of objectF0 and its possible extensions
F1,F2, . . . as situated in the evolution distribution functionΨ(∆F)
(schematically indicated as a contour plot). Given objectF0 at time
t, which of F1,F2, . . . is perceived as the evolution of the same ob-
ject? The Bayesian answer is: the one that has the highest likeli-
hood according to the evolution function—the one that has fallen
the least “down the hill,” in this caseF2. As illustrated in the ex-
ample, this is not necessarily the one with the smallest total feature
change, but rather the one with theleast unlikelyfeature change.F1
is closer in Euclidean distance, butF2 is closer probabilistically, as
can be checked by examining the isoprobability contours in the fig-
ure. This sense of “probabilistic proximity” is calledMahalanobis
distance.)

The object hypothesis

We conclude this theoretical discussion with one addi-
tional remark. In any sequence of images, no matter how
structured or unstructured,somepath will be of minimal
length. Our object definition so far simply says the observer
chooses the shortest from available alternatives. If the world
is very random, the best available hypothesis may still in-
volve a large amount of feature change at each time step—
truly a “blooming, buzzing confusion,” in William James’s
famous phrase. However, implicit in this entire scheme (and
more particularly, in the feature stability assumption, which
led to the assumption that the evolution function is centered
at zero) is the presumption thatsomepaths will in fact be
much shorter (i.e. entail much less featural change) than one

would expect in a totally random world. Indeed, if the world
in fact did contain some objects with relatively stable prop-
erties, than some of these geodesics will be extremely short.
The hypothesis that such pathsdo in fact existis thus a ver-
sion of what is sometimes called the “object hypothesis” (see
Feldman, 1999; Gregory, 1970; Reynolds, 1985), and is a
particularization of W. Richards’ (1988) “Principle of Natu-
ral Modes.” The underlying idea is that the world we inhabit
does in fact contain stable entities:

[Object hypothesis]

In the natural world, some geodesics in Maha-
lanobis feature space will be short.

This assumption is not necessary for our scheme to be
well-defined: again, even if the world were random (and
thus did not obey the object hypothesis),somepath would
be shortest. But something like this assumption is necessary
in order for the Bayesian decision scheme to be a sensible
one. Without it, the Bayesian observer would be choosing
among hypothesesnoneof which actually corresponds to
a stable object as hoped. That the object hypothesis is im-
plicitly believed by human observers is testified by our data,
which demonstrate that subjects do have evolution functions
centered near zero, meaning that they do expect evolving in-
dividual objects to have stable properties. Without such a
hypothesis in their mental arsenal, our subjects’ pattern of
responses makes little sense.

Conclusion

In summary, our experiments suggest that human ob-
servers form a correspondence between items in succes-
sive time-slices—and thus create a representation of indi-
vidual objects bearing continuous existence—by determin-
ing the most plausible featural correspondence given subjec-
tive expectations about objects are likely to change over time.
These expectations, encoded as a subjective probability dis-
tribution (our “evolution function”), are then combined ina
simple way, via Bayes’ rule, to establish object individuation.
Again, our model is expressed in terms of featural properties,
because these were the only ones that were informative in
our displays; spatiotemporal properties would probably have
dominated were they useful to the observer, but in our stud-
ies they were completely ambiguous. However, as discussed
above, spatiotemporal properties could be incorporated into
the Bayesian observer model, and thus into our “object con-
cept,” without substantially altering it.

In everyday conception, the individuation of physical ob-
jects is often described as if there were an objective, phys-
ical fact of the matter: one object is at a certain time is re-
garded asin fact the same as another at a previous time, in
virtue of continuous intervening existence. Considering the
bouncing/streaming task, however, it becomes apparent that
the very notion of “continuous intervening existence” has a
subjective element. One mustdecidewhether existence has
in fact intervened continuously; and in doing so, all one has
to work with are observable properties. Our proposal is that
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this situation extends to object individuation generally,not
just when the choices are made artificially ambiguous as in
our laboratory. All object individuation, in the end, is based
on observables, and no further ground truth is available.

Our data suggest that mental representation of object indi-
viduation depends in fact on subjective apprehension of how
things change (the object evolution function), and in par-
ticular, on the subjective expectation that real physical ob-
jects tend not to change too much (the feature stability as-
sumption). These assumptions lead via Bayes’ rule to a very
specific quantitative prediction of how choices will be made
when individuation is rendered ambiguous, as in our experi-
mental task, which are borne out by the data. The conclusion
is that human observers follow a very reasonable strategy
when individuating objects, one based on making the best
guess possible given the data available.
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