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Two governing principles of perceptual inference, the lik@od principle and the Simplicity
principle, have been much discussed by perceptual thepest often placed in opposition.
Recently, Chater (1996) has argued that the two principlesetually consistent in that their
decisions tend to agree asymptotically. This article sézkslate in a more mathematically di-
rect way what is arguably the most plausible version of diliked theory, Bayesian inference,
with a recently-proposed generalized formal minimum pglec(the maximum-depth rule of
Minimal Model theory). Assuming qualitative informatiom ¢he part of the observer, and
equal prior probabilities among among all competing hypséis, maximizing the Bayesian
posterior probability turns out to be mathematically eglént to choosing the maximum-
depth interpretation from a hierarchical space of possbine interpretations. That is, the
maximum-depth rule is analytically equivalent to Bayedwaiparticular choice of priors. Thus
this version of the Simplicity principle, as well as “fulldwn Bayes,” each constitute distinct
points in a well-defined continuum of possible perceptualgien rules. In a very literal math-
ematical sense, the observer’s position in this continuame:-consequently, the perceptual
decision rule it employs—reflect the nature of its tacit agstions about the environment.

Simplicity vs. Likelihood of the principle (Hatfield & Epstein, 1985), paralleling an
principles in Perception analogous debate about the rationale of Occam’s razor in the
selection of scientific theories (Quine, 1965; Sober, 1975)

A recurrent theme in the study of human visual perception Another well-known principle of perceptual inference,
is the idea that the visual system selects the simplespirger Ssometimes held up in opposition to the Simplicity princjple
tation consistent with the visual image—sometimes reterre is the Likelihood principle choose the interpretation most
to as theSimplicity principle sometimes by the Gestalt term likely to be true. The rationale behind this idea seems rel-
Pragnanz and sometimes as thainimum principle The  atively self-evident, in that it is clearly desirable (s&pgm
principle has taken many forms, from a relatively vaguepref an evolutionary point of view) for the organism to achieve
erence for the maximization of “regularity” (Kanizsa, 1979 veridical percepts of the world. Yet the mere statement of
to more concrete systems in which the image is describethe principle begs the question of how the visual system ac-
in some fixed coding language, and the interpretation whostlally determines the relative likelihood of various catate
code is of minimal length is selected (Hochberg & McAlister, interpretations, and hence it has not been clear exactly how
1953; Leeuwenberg, 1971; Buffart, Leeuwenberg, & Restlethe Likelihood principle might translate into concrete com
1981). Many phenomena of visual perception seem to b@utational procedures.
explained at least in part by appeals to the minimum princi-  yigorically, the minimum principle and the likelihood
ple, in one form or another. Yet at the same time many aupinciple have usually been regarded as competitors, or at
thors have been troubled over the motivation or justificatio |oaqt roughly contradictory (Perkins, 1976; Hatfield & Ep-
stein, 1985; Leeuwenberg & Boselie, 1988; van der Helm,
2000). Recently, however Chater (1996), using mathemati-
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(namely, veridicality) while suggesting a criterion by whi  terior probability, i.e. the conditional probability of the hy-

the most likely interpretation can be identified (hamelypmi pothesis given the data. In the context of visual perception

imum length). the data is the visual imageand the hypotheses are the
Nevertheless Chater’'s demonstration is pitched at a veryarious scene interpretations among which the observéer wil

high level of abstraction. The argument connecting probachoose. In what follows | will assume an imag&hosen

bility to complexity is based on the notion #flmogorov  from an image spack and a finité set$ = {S,S... S}

complexity(the length of the shortest computer program thatof distinct candidate interpretations, i.e. categoriedisfal

could generate a given string). The beauty of the mathemascenes. Each interpretati® has an associatdikelihood

ics surrounding Kolmogorov complexity is that it doesn’t de function [{1|S) indicating how likely a given possible image

pend on details of the coding language used—all so-calleés under that hypothesis; and each scene occurs with a cer-

universal codes give approximately the same complexityain scalar prior probabilityp(S). The priors must sum to

value. But the flip side of this same universality is that whil unity (3; p(S) = 1), and each likelihood function integrates

one can makegeneral statements about the Kolmogorov to unity overl (J; p(1|S)dl = 1).

complexity of a given string, you never know the specific By Bayes’ rule, given imagé, the posterior probability

value—the length of the actual shortest program; in fact it i that the interpretatio is correct is

uncomputable in general (see Schoning & Pruim, 1998 for

a simple proof of this). The agreement between the proba- Si = P(S)p(l1S) 1)

bility of an interpretation and its complexity (like all $ta P(SIH = Y p(S)p(1]S)

ments about Kolmogorov complexity) is necessarily asymp- ) ) ) )

totic: they tend to match in the limit as number of stimulus Because the denominator is the same for all interpretations

elements grows infinitely large. But for any given stimulus the winning interpretation will be th& that maximizes the

and any given coding language, the disagreement can be drimerator

bitrarily large, and thus potentially overshadow the agree

ment! The exact discrepancy for realistic stimuli depends p(S)p(S), 2

on the coding language, meaning that different coding lan:

. : : o ._i.e. the product of the prior and the likelihood. (Noticesthi
\?vlijt?]g:xstrgr?willg g{?g;gﬁ%%g‘fg :Stg?gjgig:”d'cal Conmus'odepends both on the likelihood of the given image urigler

Hence Chater’s argument, while persuasive in an abstra sev;/rflga: waesFgllj)%re?\r/gza)b,m%(tﬁgrtz;t‘iﬁit\iAcl) %St:]r;tewti)l(leg)er?m-
sense, leaves open narrower—but crucial—questions such 9 )

: : ortant below is theupportof an interpretatiols, defined as
the nature of the actual coding Ianguagelused by t.he. wstuﬁ_‘e region of whereSF’)spIikelihood is r?on—zeréﬁand denoted
system, and the exact form of the associated minimizatio S)
rule. The current paper seeks to demonstrate a stronger al% '
more specific connection between a particular minimization
rule recently proposed (the maximum-depth rule of Mini- o(S) = {l llp(l[S) > O}. 3)
mal Model theory; see Feldman, 1997c, 1997b, 1999, 2003} support of a scene mod8§l is the set of images that
and probabilistically optimal inference, i.e. Bayesiae-th cqydhave been produced by it.

ory. The conditions invoked in this rule are less general A f,|ly Bayesian observer would select an interpretation
than in Chater’s formulation, but are important in wide va- by first computing the product (2) for &, and then select-
riety of perceptual situations, especially those invaMier- g the largest. Bayesian theory has at times been criticized

ceptual organization, grouping, and the inference of treeor requiring this global maximization, which may involve a
dimensionality. Hence while consistent with Chater’s 9€N-yreat deal of computation.

eral conclusion, the connections between minimum princi-
ples and Bayes described below give a more concrete ac- 1 gchnically, the agreement between two complexity measure
count of why perceptually realistic simplicity minimizati s bounded by a constant that does not depend on the stimulus.

tends to yield the true state of the world. But the size of the constant depends on the amount of inféomat
needed to specify the design of a complete Turing machine, en
Bayesian formulation abling one universal Turing machine to simulate anothecaBse

Turing machines, or Turing-equivalent computing systenthsas

Bayesian theory is particularly attractive formulation of human brains, can be_ arbitrarily large and com_plex, thetaons!if_-
the likelihood principle in perception (for examples Seeference between coding lengths for two machines can beanihyjt
Buithoff & Yuille, 1991; Feldman, 2001; Knill & Richards, |af§gt\3/ve will not generally require thag be finite, but it is more
1996; Landy, Maloney, Johnston, & Young, 1995). Its at- , . ’

! ’ ’ ! ! : tat I tt .
tractiveness stems largely from the fact that it providespr no ? T'ﬁgaszpcgonr\t/egglar? Zﬁifrg%:;y be defined as the region
ably optimal inferences under conditions of uncertainge(s

. ) ) where p(1]S) > € for some arbitrarily small numbes; this makes
Jaynes, 1957/1988 for an especially lucid demonstration ofq gifference in the ensuing theory.

this). Thus Bayes provides “rational” perceptual decision 4 Technically this is thenaximum-a-posterioffMAP) interpre-

In Bayesian theory, the subjective belief in a particulartation. This is the most straightforward, but not the onlgyveof
hypothesis given particular data is associated withpib®  choosing a single best interpretation in Bayesian theory.
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Hierarchies of candidate units in the well-known theory of Biederman (1987), which
Interpretations are built out of non-accidental relations, are another exam

ple of embedded interpretation categories (Fig. b). Adaeén t

In some perceptual situations, though, pre-existing formap, i jgeq in these examples is simply that some candidate
relations among th§ may make such an elaborate CompUta'interpretations are special cases of others

tion unnecessary. The argument developed below shows that
when the sef of candidate interpretationsligerarchicalin Neutral prior probabilities
a way that perceptual interpretations often are, Bayeg rul

reduces to a simpler form that requires far less computation We would like to consider how hierarchical interpreta-
This simpler form turns out to be equivalent to a particulartion spaces work when placed in a Bayesian framework. As
minimum rule in the literature, thus showing in a new way suggested above, it turns out that their embedded structure
the relationship between the Likelihood and Simplicitynpri makes Bayesian decisions reduce to a particularly simple

ciples. ) _ _ form. Before we start, we must consider how prior proba-
Many discussions and controversies about Bayesian reailities ought to be assigned to interpretations in a higmar
soning, and in particular its applicability to human inioiits, In the perceptual literature a great deal of emphasis has

revolve around the way the prior probabilities and likebdo  peen put on the idea of “neutral” prior probabilities: that
functions are assigned. The discussion below focuses on ho, prior assumptions that entail as the least possible com-
probability is distributed among the prioptS ), but analo-  mitment on the part of the perceiver. A formal scheme that
gous arguments can be made about the way probability isccounts for human perception without making any ad hoc
assigned within each likelihood functigtl |S). assumptions about the perceiver’s knowledge—for example,
In most treatments, the set of candidate interpretatfons by positing neutral priors—would seem especially convinc-
is treated as “flat”, i.e. with no hierarchy among the intefpr ing.
tations. However in many perceptual situations, some eandi  Non-accidental inference has often been held up as such
date interpretations may actually bpecial casesf others.  a system, and there appears to be a widespread belief in
For example, the interpretatic (I is Fido) is a proper sub-  the literature that non-accidental interpretation is ifiest
set of another interpretatid (1 is a dog: if S holds, then by Bayesian theory under very neutral probabilistic assump
by its very natureS; must hold as well. | will denote this tions. There are, however, several different ways of agsign

situation byS, — S;. In probabilistic terms the relation="  prior probability “neutrally” or uniformly, and it turns d@u
can be defined by that non-accidental inference is justified under some ways
) but not others.
S — § iff () S o(S1), (4) For explicitness, consider two ways to assign priors uni-

formly: over the image spade or over the hypothesis space

i.e. whenevers, is possible (has non-zero likelihoo&) ] T !
is possible too, but not necessarily vice versa (cf. Bennett’- ! will refer to these two distinct assumptions as two ver-

Hoffman, & Murthy, 1993). The situation is graphically de- Sions of thequal Priors Assumptio(EPA):
picted in Fig. 1. The relatior~ can hold hierarchically as
well, with interpretations embedded within interpretato
within interpretations; or some interpretations may be em-
bedded in others, while still others i$ are disjoint. The
structure of the interpretation space can be depictedahagr
matically; Fig. 2a show some of the possibilities. | will lcal
interpretation spaces in which some of the interpretatwas v .
cases, such as non-accidental properties).

embedded in othetserarchical d Assumption EPA- is more truly “neutral” because it

Examples of hierarchical interpretation spaces aboun K i bout what hvooth the ob
in the perceptual literature, often involving the notion of makes no assumptions about what nypotheses the observer

“non-accidentalness.” Non-accidental relations (Witin is entertaining. EPAS by contrast explicitly refers to the

Tenenbaum, 1983; Lowe, 1987) are geometric relations bes_pecifi_c hypotheses under c0n§ideration, and hence assigns
tween image elements that are unlikely to occur by accidenpr'orSE'g a d!fferf?nt;/\{‘ay dependﬁlng on Whlat thesethyfpothgses
and which consequently are perceptually salient (Wagemang.rﬁ[' AS .|nte ech .sqtueez?st. an equad?mour; 'to'rilgiro a
1992). Examples include parallelism, collinearity (Caell P!y Massinto each interpretation, regarciess of ensic

& Umansky, 1976: Smits & Vos, 1986; Feldman, 1997a),S|ze in the space or its relation to c_)ther interpretations—i
and skew symmetry (Kanade, 1981; Wagemans, 1993) (sége case of non-acud_ental properties, squeezing that same
Fig. a). Non-accidental configurations can be regarded adnount of mass even into some areas thatreineitesimally
special cases of, and hence embedded in, generic relations’ |

f le th fli irs th llel Note that the integral of such a prior over any infinite image
or example the set of line segment pairs that paealle spacel will be infinite (and not unity as required), making this an

is a subset of the set @il line segment pairs. Moreover «mnroper prior.” Traditional Bayesian theory includes timeds for
non-accidental relations can be embedded hierarchidally: dealing with this situation that make it unproblematic forgoses

example collinear lines segments are necessarily parallebf the current paper (Box & Tiao, 1973). In any case this ersif
though not vice versa (Fig. a). Geons, the part representati the EPA is not pursued in what follows.

EPA4: p(l) is constant for all € 1.5
EPA-S: p(S) is constant for alB e §.

These two assumptions are generalbt equivalent, unless
the supports of all interpretations have equal areas imthe i
age space (which is emphatically not true in many important
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(a)

I o(S)

p(I| Sz)

(b) 0 puIs)

» oo o(S)

|‘
Figure 1 Schematic depiction of the relati® — S, showing (a) regions of support 8f andS, and (b) the likelihood functionp(l|S;)
andp(l|S).

smaller than others. This results in a highly non-uniforeydi  structuresS;, S, ... occur in the world, the perceiver now
tribution of probability mass over the image space (i.e.-conproceeds to make no distinction among them as to their prior
tradicting EPA}). For example straight cylinders and curved probability.

cylinders would be assigned the same prior, despite the fact

that the former is a lower-dimensional subspace of the lat- °A simple example to make this clear: assume two interpreta-
ter, and hence in a sense contains infinitely fewer possiblons St and$, with S, the larger and, the non-accidental spe-
images. Presumably, perceptual theorists usually have somCia! case, and let be the probability tha%, happens "by accident

thing like EPAI—uniform over the whole image space—in when$; is really correct. Then when the non-accidental relapn
mind when they refer to a truly neutral prior happens, assuming ERAthe posterior for interpretatio® is

Surprisingly, though, and contrary to the widespread

view, under assumption EPA-Bayes doesot support non- p(Sl) = PU1S)P(S)
accidental inference (Jepson & Richards, 1992). Rather, un P(1S)P(S) + P(HS)P(SL)
der EPA4, Bayes does not favamyinterpretation over any _ (D)

other® Thus under a totally neutral prior Bayes gives no - (D)(55) + (&) (tX5)
support at all for what we see—and thus no account of the 1

plain facts of perception. Bayes only accords with human =
judgments if the special or non-accidental configuratiors a

given elevated priors in some way, such as by EPfsee =
also Richards, Jepson, & Feldman, 1996 for discussion).

Thus EPA} does not appear to be psychologically plausible.

Hence in what follows | will generally assume EBA- The posterior is equal between the two hypotheses, and overe
. . it does not depend oa In effect, under EPA- the fact thatS,
Although this means that EPAs not completely neutral  expains the image better is exactly balanced by the fa¢tShis

in the absolutely interpretation-independent sense of-EPAess likely to occur in the first place. Regardless of the ritaga of
[, it should be understood that it is legitimately neutral in ag, the non-accidental inference is not preferr&tjual priors give
different sense: having assumed that certain types of scergual posteriors.
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Figure 2 Various possible hierarchical interpretation spacerdiag. () — S (b)) S — S, — 9,9 — 9,5 — 3,5 — S, (b)
S=1{51,9,S3},S — Si. Adjacent to each interpretation is its likelihood ratie¢<€qgs. 18—-20 and surrounding text).
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Figure 3 Examples of well-known hierarchical interpretation sgsmérom the literature: (a) non-accidental properties Kivi& Tenen-

baum, 1983; Lowe, 1987); (b) geons (a partial set) (Biederrhf87). In each case lower interpretations are “specg&d<’aof their upper
neighbors in the diagram. Note that the geons form a disgmate with hierarchical components, like Fig. 2c.
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The benefit of making this assumption lies in its computa- Bayes yields a minimum rule
tional consequences: assumption EPMakes computation
of the posterior probability very simple, because the prior
probabilities now cancel out and become irrelevant. As dis-
cussed above, under full Bayes, the observer ought to prefer
the interpretatior§ that maximizes the product of the prior

This section shows that, under these two assumptions:

(i) EPA-S
(i) qualitativeness

and likelihood, Bayes' rule is analytically equivalent to a minimum rule.
Consider a simple case with only two interpretati®s
pS)p([S)- () andsy, with S, — S, (that is, S, is strictly more restrictive
But under EPAS, all the p(S) are equal, thanSy; see Fig. 2a). What does Bayes tell us in this case?
By Bayes' rule, we should choo&g (the more restrictive
P(S) =p(S)=...=p(S) =1/n. (6) interpretation) whenever
Hence the equal priors/h cancel out of the comparison, and
the winner will be the interpretation that simply maximizes P(S)p(11S2) > p(S)P(HS). (8)
the likelihoodp(1[S). By EPA-S, p(S1) = p(S) = 1/2, so this inequality holds
o whenever
Qualitativeness
Now imagine an observer who has accesly to qualita- p(1S2) > p(1|S). 9)

tive information about the image. For example imagine thai\ow, following the assumption of qualitativeness, conside
the observer does not kndvprecisely enough to compute its an observer who knowanly that the image falls within the
likelihood p(1|S), butdoesknow whichS's assigned non-  sypport of the smaller interpretati&,

zero likelihood—i.e., which interpretations were coresmt

with the image. This assumption actually reflects the way we | €0(S) (10)

speak informally about non-accidental properties. Fonexa ] .

ple when we ask how an observer would interpret paralle(€-d., knowing that two line segments are parallel, but not

lines, what we really mean is: what would the observer thinkknowing anything else about the image). The likelihood of

given only the knowledge that the observed line segmentis situation undeg; is

are parallel, but without knowing (or perhaps knowing but

ignoring) any other information about their geometry? That / p(11S)dl, (12)

is, what do we do when we know that the image satisfies a o(%)

certain model (parallelness) but don’t know exactly what it the integral ofSy’s likelihood over the entirety 08’s sup-

likelihood is under that model (or under any other model)? port, which is by definition equal to unity. The likelihood of
Formally, in this situation we don’t know exactly where in this situation unde8;, on the other hand, is the integral of

| the imagel falls—and hence we don’t have enough infor- S;’s likelihood over the support d&, i.e.

mation to do Bayes “properly”—but weo know in which

support regions(S) it falls—that is, which interpretations / p(1|Sy)dl (12)

are at least consistent with | will refer to this assumption o(S) ’

asqualitativeness An observer with qualitative knowledge

about the imagé knows in effect one “bit” of information

about each interpretatid®, or in other words onIW bits of

(the shaded area in Fig. 1b). Because by assumgtigy) C
0(S1), this quantity must be less than unity,

information altogether. This is in a very literal sense much

less information than knowing the precise likelihoodlof {/ p(IISL)dI} <1 (13)
Nevertheless, as the next section shows, this very impover- (%)

ished information turns out to be very useful. Hence ifl € 0(S), the total likelihood of5; (unity) isalways

Notice that the assumption of qualitativeness attributes greater than the total likelihood & (Eq. 12), ands; always
perfectly well-defined state of knowledge to the observerwins.
and hence can be realized explicitly in Bayesian terms. Conversely, assume the observer knows only tHatls
Specifically, say that the observer knows that that the imageutsidethe support of3,, | ¢ 0(S,) (e.g., knowing that two
| falls in some regiorA C I. The likelihood of this state of line segments are not parallel). Now by definitipf|S;) =
affairs (i.e., state of knowledge) is the integral of prabigb 0, butp(1|S;) > 0, soS; always wins.

over all ofA, i.e. Thus the orthodox Bayesian decision in the cgse» S,
assuming EPAS and qualitativeness, has an extremely sim-
p(l falls in AlS) = / p(1|S)dI. (7)  pleform:
A

This relation, which is fundamental to all calculations in
a Bayesian framework, underlies the argument in the nextf S, is consistent with the image, inf&; otherwise, infels;.
section. (24)
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In words: if the specialized configurati& holds in the  the diagramiit sits. This number plays an important role én th
image, draw the more restrictive interpretation, becalige t theory, and can be tied directly to Bayesian theory as falow
would explainthe image (the image would be 100% likely
under that “story”); whereas under the less restrictiverint The “winning margin” of the
pretation, the image would be just a coincidence, and thus interpretation
unexplained. This is the basic logic of non-accidental prop o
erties, analogous to Rock (1983)'s “coincidence explamati A Very useful measure of the probabilistic strength of
principle,” rendered in Bayesian language. an |nterpretat_|onS, prgbably first _suggested by Jeffreys

What about more complex interpretation spaces, with(1939/1961), is the ratio between its likelihood and that of

more than just two interpretations? It can be shown that i€ @mpty or “null” hypothesis, denoteg:
any hierarchical space (like the ones in Fig. 2a, or arllgrar p(1]S)
more complicated ones) this rule generalizes: Li= m, (16)
. ) ) ~ Here the “null” hypothesi&, is the weakest or most gen-
Choose the lowest interpretation on the diagram consisténteral under consideration: in our terms this means the highes
(15)  “grandparent” of§ in the interpretation space diagram. Thus

Formally, the word “diagram” here meanspartial order  the likelihood ratio gives the degree to which the targegrint
defined over the interpretation spageand “the lowest in  pretation seems more compelling than a null or “random”
the diagram” means the formal minimum in this partial orderpattern. In the case of our two-interpretation SpEBe S},
among all interpretations with nonzero likelihood givee th the likelihood ratio of the more restrictive interpretati® is
image! That is, among all interpretations that could havejust
produced the imagehoose the one that is most restrictive
A proof of this generalization can be found in the Appendix. P p(1|S) 17

Rule (15) has the form of a “minimum rule,” and indeed 2= p(1|S1)” (17)
in several earlier papers (Feldman, 1997c, 1997b, 1999), |
have developed it as such (using non-Bayesian argument
The theory describing the necessary partial orders and d
agrams is called Minimal Model theory, and the minimum
rule is referred as thenaximum-depth rulgor sometimes
the lattice-minimum rule see Feldman, 1997c; Jepson &
Richards, 1991), with the chosen interpretation called th
maximum-depth interpretatiomminimal modelor minimal
interpretation

The notion of “simplest” captured by the maximum- 8:/ P(lSuppendl , (18)
depth rule contrasts with the more conventional notion of a o(Sower)
minimum-length description in the tradition of “coding the for any two interpretation§,per and Sower that adjoin each
ory” (Hochberg & McAlister, 1953; Leeuwenberg, 1971; other on the diagram. That is, given thafalls in the sup-
Buffartetal., 1981; see Wagemans, 1999 for a critique). Theort of one interpretatio,ppes € is the probability that it
main difference is that instead of minimizing leegthofthe  alsofalls in the support of the more specialized interpreta-
description, in Minimal Model theory one seeks an extremation Soyer. Thuse is our standard value for the probability of
interpretation in a connected, ranked series of interpogts;  a “coincidence.”
or, what turns out to be equivalent, to find the minimum in  In the above exampleS; plays the role ofS,yperand S
certain well-defined algebra (see Feldman, 1997b). One adhat of Sower, S0 S takes up about of S's total area (i.e.
vantage of the resulting theory is that it becomes possibléhe integral (12) equals). That means that whe® is re-
to explore the mathematical properties of the selectioa rul ally true, there is a probability of abogthat the image will
relatively directly—the arguments in the current paper be-appear to be consistent wia anyway
ing but one example. In a sense the advantage of algebraic Combining these equations, and again assuming qualita-
techniques is that they do not depend on details of the codiveness and EP4- we find immediately that the likelihood
ing language, but rather on structural properties of tha-rel ratio forS, depends ois thus:
tions among interpretations. By contrast, | know of no way to

In order to do some thumbnail calculations about likeli-
100d ratios, it is convenient to introduce the following com
mon notational approximation. Every time two interpreta-
tions are connected by an edge in the diagram (i.e., every
time one interpretation is embedded in another), assunte tha
dhe lower one occupies about the same relative area within
the upper one, and denote this relative area:by

tie conventional complexity-minimization techniques (g Lp= 1 (19)
are tied to a particular coding language) to Bayesian optima g’
ity analytically (rather than asymptotically). that is, whenS, appears possible, then the strength of the

The term “maximum-depth” reflects the use of the terminference that it is actually the true state of the world igéa
depth (or logical depthor sometimesodimensiopto de- (1 /¢) whenevek is a small.

note the row numbed of the given interpretation on the
interpretation-space diagram (counting down from the top, 7Formally, before talking about “the” minimum in this paitia
with the top level denoted zero)—that is, just how far downorder, we need to prove that it is unique; see Appendix.
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What about when there are more than just two interprevice versa). This is important, because in the conventional
tations? Imagine an interpretati®that sitsd steps down wisdom it is sometimes suggested that non-accidentakinfer
the diagram from the top. (Recall that the numderthe  ence works because the probability of an unlikely viewpoint
“row number” of the interpretation in the diagram, is called (etc.) is nearly zero. This is wrong. Non-accidental infeee
the depthof the interpretation.) By an obvious extension of works because more restrictive interpretations are s@erg
the above argument, the likelihood ratio of this interpiieta  even those that ajast a little more restrictive.

will be All of the above will sound extremely familiar to anyone
familiar with the standard story of non-accidentalnesse Th

Lsr 1 _ed (20) point here is that (a) there are a few important hidden as-

ed sumptions in the standard story, (b) by adding those assump-

As we move down the diagram to increasingly complex “co-ions you can put the whole thing on a firm Bayesian footing
incidences” (i.e., ad increases), the probability of the con- and (c) when you generalize the story to more complicated
figuration having occurred by accident decreases exponefi€rarchies you get the maximum-depth rule.
tially, and the strength of our inference that the configorat Summarizing, the above argument shows that the
is not a coincidence increases rapidly. For example, withhaximum-depth rule instantiates a kind of qualitative
€ = 0.05 (the conventional value for the probability of a “co- Bayesian perceptual inference (cf. Jepson & Mann, 1999).
incidence” in psychology) and = 2 (the depth otollinear- Itis not tha; the maximum-depth rule is vaguely or approx-
ity in the diagram in Fig. )£ = 0.05 2 = 400, meaning that imately equivalent to Bayes (as Chater showed equivalences
the inference of collinearity given a pair of collinear seg- Petween simplicity principles and Bayes always are at)gast
ments is 400 times stronger than the default interpretation rather it isexactlyequivalent to Bayesian reasoning using
no structure. As interpretations get further down the diagr ~ @ssumptions and information that is qualitative in a well-
they very rapidly increase in probabilistic compellingsiés defined sense. The maximum-depthrule is literally a restate
an explicitly Bayesian sense. ment of Bayes' rule under certain assumptions about the ob-

Of course, Eq. 20 is approximate because it is only sS€rvers knowledge and beliefs.
convenient simplification to assume that each step down the )
diagram will occur by chance with the same probabitity A continuum of perceptual
But it captures the intuition that successively more restri inference rules
tive interpretations—being progressively less likely txor
by coincidence—are thus progressivaigreimpressive and
compelling when they do occur.

Hence assuming qualitativeness and EfAaot only is

Taking stock, we see that the maximum-depth rule is not
only consistent with Bayes’ rule, but actuallyBayes rule
when the priors are set a certain way. This leads naturally to

Bayes' rule provably equivalent to the maximum-depth rule,2 different W_ay_of viewing the range of_poss_ible perceptual
but “depth” itself gives a numeric measure of the proba_lnference principles. Rather than viewing different pprce

bilistic strength of the interpretation. This statemerings 1@l decision rules as representing distinct and mutuaHy i

into sharpest possible relief the direct analytic conmexie- ~ COnsistent procedures, instead view them as represeaiing
tween the maximum-depth rule and Bayesian theory ternative choices of priorsThen, the potentially open-ended
' catalog of conceivable distinct rules materializes as & ver

; : concrete and bounded parametric space: namely, thé-
A quick recap, with an example dimensional space of possible prior probabilities, which |

Let's quickly summarize the situation by means of an ex-Will refer to asobserver spacéFig. 4).
ample. The image contains a pair of parallel line segments. This representation of the range of perceptual rules is at-
Are they paralleby acciden(S;) or as a stable aspect of the tractive in that it makes explicit that alternative rulesynadl
structure of this world$p)? After all, even segments whose be realizations of a common comprehensive procedure—i.e.,
relative angle is determined randomly will occasionallpha @ Bayesian one—but all manifesting distinct assumptions on
pen to be parallél. the part of the observer, yielding different decisions. sThi

If the configuration was created randomly, then its beingmakes very explicit the connections among alternative-prin
parallel was only a coincidence that wouldn't always happer¢iples, and at the same time consummates Chater’s insight
that way (Eq. 13); the probability of such a coincidence is that reasonable principles may all represent differeressaf
(Eg. 18). On the other hand, if the configuration is truly{sta the same coin.
bly) parallel in the world, then the chances the lines would—, , i
appear parallel in the image is 100% (Eq. 11). This means _ Note that the non-accidental question would usually be ghose
that the posterior on the “parallel” interpretation is 100% in terms of three-dimensionality: is this pair of line segrsetruly

e " e . parallelin 3D, or is the parallelness just a coincidencei@fpoint?
which is higher than that of the “non-parallel” interprébat, In my view this is really just a special case of the (more Hasizy

which is¢ (refer back to Eq. 13). Hence in this situation we o question is posed here: does the configuration have fyope

conclude that the lines are truly parallel (Eq. 14). _ P by accident or (as it were) “on purpose™—i.e. because of some
Notice that this does not depend on the value!oft is stable causal process?
purely a consequence of the fact tigatis embedded ir§; *Recall that the priors must sum to unity, removing one degree

(i.e., random configurations can come out parallel, but nobf freedom fromm, the number of interpretations.
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Entropy surface

=Y p(Sloglp(S)]

=

Observer space
EPA -1

EPA-S Pg
Figure 4 Observer space. Each point in this- 1-dimensional space represents a particular choice of prababilities. The figure also
shows the information or entropy surface defined over thassp

Among the infinity of points in observer space, severalspace (see Fig. 4), which represents exactly how much infor-
merit special mention. One such is EBA-where all the mation the observer's assumptions embody at each point in
p(S) are equal (see Fig. 4). As shown above, an ob+this space. Thus this number gives a very basic property of
server at this point in this space—whatever its algorithmicthe observer.
or implementation-Al details—is in effect employing the  The value ofH as the priors are varied constitutes a
maximum-depth rule and thus a form of minimum principle. smooth surface defined over observer space. It is easy

Another point in the space is ERA-which as discussed to show that this “information surface” reaches a unique
above (a) is not generally the same as EPAb) is what maximum at EPAS. That is, the observer executing the
is often meant by a “neutral” prior (c) does not correspondmaximum-depth rule is also maximizing its own informa-
to any particularly simple computational rule, and (d) i$ no tion content, as compared with other rules, including “true
plausible as a model of human observers. Bayes. This may sound slightly paradoxical, but only due

Finally, another very important point somewhere in ob-to the ambiguity of the traditional rendering of informatio
server space, often referred to in the literature, is thatpoi theoretic terms into English. Equivalently, but perhapseno
where the priors are theorrect ones for a given environ- intelligibly, the entropyor uncertaintyof the observer’s as-
ment. | will denote this point bypg(S) (g for “ground  sumptions is maximal when the ERAprior is used. Thus
truth”). While EPA<S represents a simplified guess aboutthe use of the true priors entakaowing moreabout the en-
the priors,py(S)—located, presumably, somewhelifferent ~ vironment, while the EPAS and the minimum rule entail
from EPA-S—represents the actual frequencies with whichknowing less buguessing morabout the environment.
the variousS occur in the observer’s world. While the pri-  The idea of measuring perceivers’ knowledge or judg-
ors at EPAS literally cancel and drop out of Bayes rule—or, ments by means of Shannon information is an old idea in
equivalently, are disregarded—ay the priors are felt with  psychology (Attneave, 1954), though it has actually notbee
exactly the weight Bayes prescribes. Thus the observer laaxploited as much as it might (though Gilden, Hiris, & Blake,

cated at this point is executing “true Bayes.” 1995 and Kubovy & Wagemans, 1995 are excellent recent

examples). The idea that the observer ought to maximize

The information content of the this quantity in its assumptions, after taking into account
observer’s assumptions whatever affirmative knowledge it possesses, is the essence

of the idea of Maximum-Entropy inference, which has been

Distinct points in observer space differ in the nature of thevery influential in probability theory, machine learningica
assumptions about the world they embody. In a very direcphysics (see Skilling, 1988). Here the application of an
way, too, they differ in thejuantityof information they em-  information-theoretic measure simply gives mathematical

body: namely, in the sense of Shannon’s measlre precision to the argument that the Simplicity and Likelioo
principles both represent “rational” inference but witKel-

ent quantities—as well as types—of background knowledge.

H(p) = 5 p(S)loglp(S)]. 1)

. ) . ) o %Indeed, it is axiomatic in the derivation of Shannon’s infiar
This equation yields a scalar quantity (expressible inibits tion measure that it is maximal when all probabilities areagsee
the logarithm is taken in base 2) for each point in observeKhinchin, 1957 for a derivation).
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The tradeoff between precision idea of complexity minimization has seemed at times no
and optimality more than a handy but totally unjustified calculating trick,
. . whose empirical success was essentially mystifying (again
It might seem that the observer ought to aspire to be Io—See Hatfield & Epstein, 1985). Chater's (1996) argument

cated atpg: after all, that is by definition theight answer. ; ; .
e ; v X goes a long way towards clearing up this mystery: in a very
E:;SS S'gﬁéep?(')cgren% l\)/\;:?hgtsﬁeh?r\lljvs\gerzé)rsse}/se'[ﬁ;;nrne;er\r;g;:/%ageneral but also somewhat abstract sense, complexity mini-

. X mization serves the purpose of building a veridical represe
enwronme_ntthe observe_r has no way of knowing what theytation in the Bayesian sense. But because this property is
are. Evolution may contribute to setting them, as often SP€Chared by any reasonable complexity measure (any one that
f universal in Kolmogorov’s sense), Chater's argumensdoe
ot help clear up the ambiguity in specifying exactly which
minimum rule the visual system uses.

The argument in the current paper shows that a certain
mathematically well-defined minimum rule—the maximum-
depth rule of Minimal Model theory—achieves Bayesian op-
tabulated and fully crossed. timality under very reasonable assumptions. Again, the ar-

; . ument is analytic, not asymptotic: the maximum-depth in-
rigrghou(lg rﬁ gse;ntp;23';5&1',{?61{6::%};hl?:;t?oenglsio(gtth\?v;[]r#e?erpretation is precisely the Bayesian interpretationiassg
b Py P X neutral priors over the interpretations and qualitativevidn

D e EroLssanjdge abou the mage. Tis provdes  alonsle for e use
S : L be the maximum depth rule, in that it shows mathematically
likelihood function (namely, V\_/hetherfalls within its sco_pe), why the rule tends to produce correct interpretations. More
e iy e o tore o sl he seal umerie lSuer, s verson o e Sl prncpe and ordinary
men% and needs to'know the detailslaiell enough, and Bayesian mferenpe can be regarded as distinct points in a
the st’ructure of each likelihood function in enough (Jietail well-defme_d continuous space of possible pe_rc_eptual rules
'’ The two principles (as well as every other point in observer

get(e:grr:{p:sthtehgrce)g?:r\?;naiimc Vggfﬂ%g'(jss) sf|(r)'rr1 elvegsér_ space) differ in the prior probabilities they assume, ang th
y ' 9 pytop differ literally in the magnitude of their information caentt.

form an easy minimization. Yet this simple procedure may Finally, these arguments emphasize that different rules fo

give rise to little loss in the accuracy of the final decisions perceptual inference can differ not only in the computation

because the maximum-depth rule will only conflict with the l?ey specify, but in the knowledge and assumptions they em-

true Bayesian decision in the rare cases when the details % - A .
the priors or likelihood function priors overwhelm the em- 00dY- This idea recasts the historic debate between the Sim-
plicity and Likelihood principles: the question is not what

bedding relations (€.g. poi@in Fig. 1), computational tricks the visual system uses, but rathet wha

Putting this another way, with hierarchical interpretatio assumptions about the world are embedded in the rules it em-
spaces, most of the inferential leverage comes from the-stru ploys P

ture of the hierarchy—the details about which interpretai

are embedded in which others. The precise quantitative de-
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Appendix: Generalization of the
minimum rule (maximum-depth
rule) to arbitraryn

An interpretation spacgé = {S;... S} is said to behier-

archicalif for eachS;, S € §, one of the following holds:

(a)o(S1)No(S) =0(S's andSy's supports are dis-

joint)
(b) S — S,
©S—S.

Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (59 o ) . ] . )
Measurement and modeling of depth cue combination: in deThat is, in every pair of interpretations, either one camgai
fense of weak fusionvision Researc8%(3), 389-412. the other the two do not overlap at all. This means that every
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hierarchical interpretation space is partially orderecsby-
port inclusion. Note that this trivially includes “flat” spas
with all interpretations disjoint.

We seek to prove that for an arbitrary hierarchical interpre
tation spaces with likelihood functionsp(l|S), and assum-
ing EPA-S priors p(S) = 1/n, then given any image€ I,
the minimal interpretatioy,;, of I is

(i) unigue, and
(ii) the maximum a posteriori interpretation lof

Proof.

Assume in what follows that all are contained in the
union of the supports of all interpretations; that isJalhder
discussion are have non-zero likelihood in at least&ne

(i) Uniqueness. Givenl, define aminimal interpretation

in € $ as an interpretation such that for evegywith
I € o(S) (i.e. that could have produce}l eitherSyi, =S
or Shin — S+ (Syin eitheris orimpliesevery interpretation
that might have produceld) We seek to prove th&yj, is
unique.

By induction. Assume some hierarchical interpretation
spaces such that has a unique minimal interpretati®, .

An example of such a space is the one-element spagen
which cases = Sy, is clearly unique.

Now add a new interpretatioBhew, such that the new
interpretation space U {Snhew} is also hierarchical. Now,
if 1 ¢ o(Snew) (i-e., p(I/Snew) = 0), then Syip, is still
the unique minimal interpretation in the new interpretatio
spaces U {Snew}. Conversely, assumiec o(Shew) (i.€.,
P(l{Snew) > 0). First,a(Syin) ando(Snew) cannot be dis-
joint because they both contaln Hence eitheiShew —
Shin: in which casénewis the new minimum and is unique,
or elseSyin — Snew in which caseSyjp, is still the mini-
mum and still unique.

All hierarchical interpretation spaces can be built up from
the one-element space by the above induction. Hence all hi-
erarchical interpretation spaces have unique minimat-inte
pretations for all, completing the proof of uniqueness.

(il) Bayesian correctnessWe seek to show that givdrand
S the unique minimal interpretatiogy,;, is the maximum a
posteriori interpretation, i.e., maximizegS)p(l|S), assum-
ing EPA-S and qualitativeness as discussed in the text.
Again we proceed by induction from a spagewith the
desired property, such as the one-element sp&geDenote
the maximum a posterior interpretationgnby Sy ap. and
again denote the new interpretation®ew. If | ¢ o(Shew)
then clearlySap continues to be the best interpretation.
Conversely, assume If€ a(Shew). First, o(Syap) and
0(Snew) cannot be disjoint because they both conthin
Hence eitheGhew— Sy ap. in which case by the argument
sketched in the text (Egs. 11, 12 and$fjewhas higher pos-
terior than§ypp and becomes the new best interpretation,
or elseSyap — Snew in which casegap continues to be
the best interpretation.



