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Two governing principles of perceptual inference, the Likelihood principle and the Simplicity
principle, have been much discussed by perceptual theorists, and often placed in opposition.
Recently, Chater (1996) has argued that the two principles are actually consistent in that their
decisions tend to agree asymptotically. This article seeksto relate in a more mathematically di-
rect way what is arguably the most plausible version of a likelihood theory, Bayesian inference,
with a recently-proposed generalized formal minimum principle (the maximum-depth rule of
Minimal Model theory). Assuming qualitative information on the part of the observer, and
equal prior probabilities among among all competing hypotheses, maximizing the Bayesian
posterior probability turns out to be mathematically equivalent to choosing the maximum-
depth interpretation from a hierarchical space of possiblescene interpretations. That is, the
maximum-depth rule is analytically equivalent to Bayes with a particular choice of priors. Thus
this version of the Simplicity principle, as well as “full-blown Bayes,” each constitute distinct
points in a well-defined continuum of possible perceptual decision rules. In a very literal math-
ematical sense, the observer’s position in this continuum—and, consequently, the perceptual
decision rule it employs—reflect the nature of its tacit assumptions about the environment.

Simplicity vs. Likelihood
principles in Perception

A recurrent theme in the study of human visual perception
is the idea that the visual system selects the simplest interpre-
tation consistent with the visual image—sometimes referred
to as theSimplicity principle, sometimes by the Gestalt term
Prägnanz, and sometimes as theminimum principle. The
principle has taken many forms, from a relatively vague pref-
erence for the maximization of “regularity” (Kanizsa, 1979),
to more concrete systems in which the image is described
in some fixed coding language, and the interpretation whose
code is of minimal length is selected (Hochberg & McAlister,
1953; Leeuwenberg, 1971; Buffart, Leeuwenberg, & Restle,
1981). Many phenomena of visual perception seem to be
explained at least in part by appeals to the minimum princi-
ple, in one form or another. Yet at the same time many au-
thors have been troubled over the motivation or justification
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of the principle (Hatfield & Epstein, 1985), paralleling an
analogous debate about the rationale of Occam’s razor in the
selection of scientific theories (Quine, 1965; Sober, 1975).

Another well-known principle of perceptual inference,
sometimes held up in opposition to the Simplicity principle,
is the Likelihood principle: choose the interpretation most
likely to be true. The rationale behind this idea seems rel-
atively self-evident, in that it is clearly desirable (say,from
an evolutionary point of view) for the organism to achieve
veridical percepts of the world. Yet the mere statement of
the principle begs the question of how the visual system ac-
tually determines the relative likelihood of various candidate
interpretations, and hence it has not been clear exactly how
the Likelihood principle might translate into concrete com-
putational procedures.

Historically, the minimum principle and the likelihood
principle have usually been regarded as competitors, or at
least roughly contradictory (Perkins, 1976; Hatfield & Ep-
stein, 1985; Leeuwenberg & Boselie, 1988; van der Helm,
2000). Recently, however Chater (1996), using mathemati-
cal arguments paralleling those from Minimum Description
Length (MDL) theory (Rissanen, 1989), has shown that the
two principles can be regarded as equivalent. Under very
general assumptions, the visual interpretation whose descrip-
tion is of minimum length is, in fact, the one that is most
likely to be the correct in an objective sense. This remarkable
demonstration combines the most appealing aspects of both
principles, giving the minimum principle a clear rationale
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(namely, veridicality) while suggesting a criterion by which
the most likely interpretation can be identified (namely, min-
imum length).

Nevertheless Chater’s demonstration is pitched at a very
high level of abstraction. The argument connecting proba-
bility to complexity is based on the notion ofKolmogorov
complexity(the length of the shortest computer program that
could generate a given string). The beauty of the mathemat-
ics surrounding Kolmogorov complexity is that it doesn’t de-
pend on details of the coding language used—all so-called
universal codes give approximately the same complexity
value. But the flip side of this same universality is that while
one can makegeneral statements about the Kolmogorov
complexity of a given string, you never know the specific
value—the length of the actual shortest program; in fact it is
uncomputable in general (see Schöning & Pruim, 1998 for
a simple proof of this). The agreement between the proba-
bility of an interpretation and its complexity (like all state-
ments about Kolmogorov complexity) is necessarily asymp-
totic: they tend to match in the limit as number of stimulus
elements grows infinitely large. But for any given stimulus
and any given coding language, the disagreement can be ar-
bitrarily large, and thus potentially overshadow the agree-
ment.1 The exact discrepancy for realistic stimuli depends
on the coding language, meaning that different coding lan-
guages may in practice achieve the most veridical conclusion
with extremely different degrees of success.

Hence Chater’s argument, while persuasive in an abstract
sense, leaves open narrower—but crucial—questions such as
the nature of the actual coding language used by the visual
system, and the exact form of the associated minimization
rule. The current paper seeks to demonstrate a stronger and
more specific connection between a particular minimization
rule recently proposed (the maximum-depth rule of Mini-
mal Model theory; see Feldman, 1997c, 1997b, 1999, 2003)
and probabilistically optimal inference, i.e. Bayesian the-
ory. The conditions invoked in this rule are less general
than in Chater’s formulation, but are important in wide va-
riety of perceptual situations, especially those involving per-
ceptual organization, grouping, and the inference of three-
dimensionality. Hence while consistent with Chater’s gen-
eral conclusion, the connections between minimum princi-
ples and Bayes described below give a more concrete ac-
count of why perceptually realistic simplicity minimization
tends to yield the true state of the world.

Bayesian formulation

Bayesian theory is particularly attractive formulation of
the likelihood principle in perception (for examples see
Bülthoff & Yuille, 1991; Feldman, 2001; Knill & Richards,
1996; Landy, Maloney, Johnston, & Young, 1995). Its at-
tractiveness stems largely from the fact that it provides prov-
ably optimal inferences under conditions of uncertainty (see
Jaynes, 1957/1988 for an especially lucid demonstration of
this). Thus Bayes provides “rational” perceptual decisions.

In Bayesian theory, the subjective belief in a particular
hypothesis given particular data is associated with thepos-

terior probability, i.e. the conditional probability of the hy-
pothesis given the data. In the context of visual perception,
the data is the visual imageI and the hypotheses are the
various scene interpretations among which the observer will
choose. In what follows I will assume an imageI chosen
from an image spaceI, and a finite2 setS = {S1,S2 . . .Sn}
of distinct candidate interpretations, i.e. categories ofdistal
scenes. Each interpretationSi has an associatedlikelihood
function p(I |Si) indicating how likely a given possible image
is under that hypothesis; and each scene occurs with a cer-
tain scalar prior probabilityp(Si). The priors must sum to
unity (∑i p(Si) = 1), and each likelihood function integrates
to unity overI (

R

I p(I |Si)dI = 1).
By Bayes’ rule, given imageI , the posterior probability

that the interpretationSi is correct is

p(Si|I) =
p(Si)p(I |Si)

∑ j p(Sj)p(I |Sj)
(1)

Because the denominator is the same for all interpretations,
the winning interpretation will be thatSi that maximizes the
numerator

p(Si)p(I |Si), (2)

i.e. the product of the prior and the likelihood. (Notice this
depends both on the likelihood of the given image underSi,
as well as the prior probabilityp(Si) thatSi was true before
the image was observed.) Another definition that will be im-
portant below is thesupportof an interpretationSi , defined as
the region ofI whereSi ’s likelihood is non-zero3 and denoted
σ(Si),

σ(Si) = {I ∈ I|p(I |Si) > 0}. (3)

The support of a scene modelSi is the set of images that
couldhave been produced by it.

A fully Bayesian observer would select an interpretation
by first computing the product (2) for allSi , and then select-
ing the largest.4 Bayesian theory has at times been criticized
for requiring this global maximization, which may involve a
great deal of computation.

1 Technically, the agreement between two complexity measures
is bounded by a constant that does not depend on the stimulus.
But the size of the constant depends on the amount of information
needed to specify the design of a complete Turing machine, en-
abling one universal Turing machine to simulate another. Because
Turing machines, or Turing-equivalent computing systems such as
human brains, can be arbitrarily large and complex, the constant dif-
ference between coding lengths for two machines can be arbitrarily
large.

2 We will not generally require thatS be finite, but it is more
notationally convenient to assume so.

3 The support ofS can alternatively be defined as the region
wherep(I |S) > ε for some arbitrarily small numberε; this makes
no difference in the ensuing theory.

4 Technically this is themaximum-a-posteriori(MAP) interpre-
tation. This is the most straightforward, but not the only, way of
choosing a single best interpretation in Bayesian theory.
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Hierarchies of candidate
interpretations

In some perceptual situations, though, pre-existing formal
relations among theSi may make such an elaborate computa-
tion unnecessary. The argument developed below shows that
when the setS of candidate interpretations ishierarchicalin
a way that perceptual interpretations often are, Bayes’ rule
reduces to a simpler form that requires far less computation.
This simpler form turns out to be equivalent to a particular
minimum rule in the literature, thus showing in a new way
the relationship between the Likelihood and Simplicity prin-
ciples.

Many discussions and controversies about Bayesian rea-
soning, and in particular its applicability to human intuitions,
revolve around the way the prior probabilities and likelihood
functions are assigned. The discussion below focuses on how
probability is distributed among the priorsp(Si), but analo-
gous arguments can be made about the way probability is
assigned within each likelihood functionp(I |Si).

In most treatments, the set of candidate interpretationsS

is treated as “flat”, i.e. with no hierarchy among the interpre-
tations. However in many perceptual situations, some candi-
date interpretations may actually bespecial casesof others.
For example, the interpretationS2 (I is Fido) is a proper sub-
set of another interpretationS1 (I is a dog): if S2 holds, then
by its very natureS1 must hold as well. I will denote this
situation byS2 → S1. In probabilistic terms the relation “→”
can be defined by

S2 → S1 iff σ(S2) ( σ(S1), (4)

i.e. wheneverS2 is possible (has non-zero likelihood)S1
is possible too, but not necessarily vice versa (cf. Bennett,
Hoffman, & Murthy, 1993). The situation is graphically de-
picted in Fig. 1. The relation→ can hold hierarchically as
well, with interpretations embedded within interpretations
within interpretations; or some interpretations may be em-
bedded in others, while still others inS are disjoint. The
structure of the interpretation space can be depicted diagram-
matically; Fig. 2a show some of the possibilities. I will call
interpretation spaces in which some of the interpretationsare
embedded in othershierarchical.

Examples of hierarchical interpretation spaces abound
in the perceptual literature, often involving the notion of
“non-accidentalness.” Non-accidental relations (Witkin&
Tenenbaum, 1983; Lowe, 1987) are geometric relations be-
tween image elements that are unlikely to occur by accident,
and which consequently are perceptually salient (Wagemans,
1992). Examples include parallelism, collinearity (Caelli
& Umansky, 1976; Smits & Vos, 1986; Feldman, 1997a),
and skew symmetry (Kanade, 1981; Wagemans, 1993) (see
Fig. a). Non-accidental configurations can be regarded as
special cases of, and hence embedded in, generic relations:
for example the set of line segment pairs that areparallel
is a subset of the set ofall line segment pairs. Moreover
non-accidental relations can be embedded hierarchically:for
example collinear lines segments are necessarily parallel,
though not vice versa (Fig. a). Geons, the part representation

units in the well-known theory of Biederman (1987), which
are built out of non-accidental relations, are another exam-
ple of embedded interpretation categories (Fig. b). Again the
main idea in these examples is simply that some candidate
interpretations are special cases of others.

Neutral prior probabilities

We would like to consider how hierarchical interpreta-
tion spaces work when placed in a Bayesian framework. As
suggested above, it turns out that their embedded structure
makes Bayesian decisions reduce to a particularly simple
form. Before we start, we must consider how prior proba-
bilities ought to be assigned to interpretations in a hierarchy.

In the perceptual literature a great deal of emphasis has
been put on the idea of “neutral” prior probabilities: that
is, prior assumptions that entail as the least possible com-
mitment on the part of the perceiver. A formal scheme that
accounts for human perception without making any ad hoc
assumptions about the perceiver’s knowledge—for example,
by positing neutral priors—would seem especially convinc-
ing.

Non-accidental inference has often been held up as such
a system, and there appears to be a widespread belief in
the literature that non-accidental interpretation is justified
by Bayesian theory under very neutral probabilistic assump-
tions. There are, however, several different ways of assigning
prior probability “neutrally” or uniformly, and it turns out
that non-accidental inference is justified under some ways
but not others.

For explicitness, consider two ways to assign priors uni-
formly: over the image spaceI; or over the hypothesis space
S . I will refer to these two distinct assumptions as two ver-
sions of theEqual Priors Assumption(EPA):

EPA-I: p(I) is constant for allI ∈ I.5

EPA-S : p(S) is constant for allS∈ S .

These two assumptions are generallynot equivalent, unless
the supports of all interpretations have equal areas in the im-
age space (which is emphatically not true in many important
cases, such as non-accidental properties).

Assumption EPA-I is more truly “neutral” because it
makes no assumptions about what hypotheses the observer
is entertaining. EPA-S by contrast explicitly refers to the
specific hypotheses under consideration, and hence assigns
priors in a different way depending on what these hypotheses
are. EPA-S in effect “squeezes” an equal amount of proba-
bility mass into each interpretation, regardless of its intrinsic
size in the space or its relation to other interpretations—in
the case of non-accidental properties, squeezing that same
amount of mass even into some areas that areinfinitesimally

5 Note that the integral of such a prior over any infinite image
spaceI will be infinite (and not unity as required), making this an
“improper prior.” Traditional Bayesian theory includes methods for
dealing with this situation that make it unproblematic for purposes
of the current paper (Box & Tiao, 1973). In any case this version of
the EPA is not pursued in what follows.
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Figure 1. Schematic depiction of the relationS2 → S1, showing (a) regions of support ofS1 andS2 and (b) the likelihood functionsp(I |S1)
andp(I |S2).

smaller than others. This results in a highly non-uniform dis-
tribution of probability mass over the image space (i.e. con-
tradicting EPA-I). For example straight cylinders and curved
cylinders would be assigned the same prior, despite the fact
that the former is a lower-dimensional subspace of the lat-
ter, and hence in a sense contains infinitely fewer possible
images. Presumably, perceptual theorists usually have some-
thing like EPA-I—uniform over the whole image space—in
mind when they refer to a truly neutral prior.

Surprisingly, though, and contrary to the widespread
view, under assumption EPA-I, Bayes doesnot support non-
accidental inference (Jepson & Richards, 1992). Rather, un-
der EPA-I, Bayes does not favorany interpretation over any
other.6 Thus under a totally neutral prior Bayes gives no
support at all for what we see—and thus no account of the
plain facts of perception. Bayes only accords with human
judgments if the special or non-accidental configurations are
given elevated priors in some way, such as by EPA-S (see
also Richards, Jepson, & Feldman, 1996 for discussion).
Thus EPA-I does not appear to be psychologically plausible.
Hence in what follows I will generally assume EPA-S .

Although this means that EPA-S is not completely neutral
in the absolutely interpretation-independent sense of EPA-
I, it should be understood that it is legitimately neutral in a
different sense: having assumed that certain types of scene

structuresS1,S2, . . . occur in the world, the perceiver now
proceeds to make no distinction among them as to their prior
probability.

6 A simple example to make this clear: assume two interpreta-
tions S1 andS2, with S1 the larger andS2 the non-accidental spe-
cial case, and letε be the probability thatS2 happens “by accident”
whenS1 is really correct. Then when the non-accidental relationS2
happens, assuming EPA-I, the posterior for interpretationS2 is

p(S2|I) =
p(I |S2)p(S2)

p(I |S2)p(S2)+ p(I |S1)p(S1)

=
(1)( ε

1+ε )

(1)( ε
1+ε )+(ε)( 1

1+ε )

=
1

1+1

=
1
2

The posterior is equal between the two hypotheses, and, moreover,
it does not depend onε. In effect, under EPA-I, the fact thatS2
explains the image better is exactly balanced by the fact that S2 is
less likely to occur in the first place. Regardless of the magnitude of
ε, the non-accidental inference is not preferred.Equal priors give
equal posteriors.
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Figure 2. Various possible hierarchical interpretation space diagrams. (a)S2 → S1 (b) S2 → S1,S3 → S2,S4 → S2,S5 → S3,S5 → S4, (b)
S = {S1,S2,S3},S2 → S1. Adjacent to each interpretation is its likelihood ratio (see Eqs. 18–20 and surrounding text).
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Figure 3. Examples of well-known hierarchical interpretation spaces from the literature: (a) non-accidental properties (Witkin & Tenen-
baum, 1983; Lowe, 1987); (b) geons (a partial set) (Biederman, 1987). In each case lower interpretations are “special cases” of their upper
neighbors in the diagram. Note that the geons form a disjointspace with hierarchical components, like Fig. 2c.
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The benefit of making this assumption lies in its computa-
tional consequences: assumption EPA-S makes computation
of the posterior probability very simple, because the prior
probabilities now cancel out and become irrelevant. As dis-
cussed above, under full Bayes, the observer ought to prefer
the interpretationSi that maximizes the product of the prior
and likelihood,

p(Si)p(I |Si). (5)

But under EPA-S , all thep(Si) are equal,

p(S1) = p(S2) = . . . = p(Sn) = 1/n. (6)

Hence the equal priors 1/n cancel out of the comparison, and
the winner will be the interpretation that simply maximizes
the likelihoodp(I |Si).

Qualitativeness

Now imagine an observer who has accessonly to qualita-
tive information about the image. For example imagine that
the observer does not knowI precisely enough to compute its
likelihood p(I |Si), butdoesknow whichSi ’s assignedI non-
zero likelihood—i.e., which interpretations were consistent
with the image. This assumption actually reflects the way we
speak informally about non-accidental properties. For exam-
ple when we ask how an observer would interpret parallel
lines, what we really mean is: what would the observer think
given only the knowledge that the observed line segments
are parallel, but without knowing (or perhaps knowing but
ignoring) any other information about their geometry? That
is, what do we do when we know that the image satisfies a
certain model (parallelness) but don’t know exactly what its
likelihood is under that model (or under any other model)?

Formally, in this situation we don’t know exactly where in
I the imageI falls—and hence we don’t have enough infor-
mation to do Bayes “properly”—but wedo know in which
support regionsσ(Si) it falls—that is, which interpretations
are at least consistent withI . I will refer to this assumption
asqualitativeness. An observer with qualitative knowledge
about the imageI knows in effect one “bit” of information
about each interpretationSi , or in other words onlyN bits of
information altogether. This is in a very literal sense much
less information than knowing the precise likelihood ofI .
Nevertheless, as the next section shows, this very impover-
ished information turns out to be very useful.

Notice that the assumption of qualitativeness attributes a
perfectly well-defined state of knowledge to the observer,
and hence can be realized explicitly in Bayesian terms.
Specifically, say that the observer knows that that the image
I falls in some regionA ⊆ I. The likelihood of this state of
affairs (i.e., state of knowledge) is the integral of probability
over all ofA, i.e.

p(I falls in A|Si) =

Z

A
p(I |Si)dI. (7)

This relation, which is fundamental to all calculations in
a Bayesian framework, underlies the argument in the next
section.

Bayes yields a minimum rule

This section shows that, under these two assumptions:

(i) EPA-S
(ii) qualitativeness

Bayes’ rule is analytically equivalent to a minimum rule.
Consider a simple case with only two interpretationsS1

andS2, with S2 → S1 (that is,S2 is strictly more restrictive
thanS1; see Fig. 2a). What does Bayes tell us in this case?

By Bayes’ rule, we should chooseS2 (the more restrictive
interpretation) whenever

p(S2)p(I |S2) > p(S1)p(I |S1). (8)

By EPA-S , p(S1) = p(S2) = 1/2, so this inequality holds
whenever

p(I |S2) > p(I |S1). (9)

Now, following the assumption of qualitativeness, consider
an observer who knowsonly that the imageI falls within the
support of the smaller interpretationS2,

I ∈ σ(S2) (10)

(e.g., knowing that two line segments are parallel, but not
knowing anything else about the image). The likelihood of
this situation underS2 is

Z

σ(S2)
p(I |S2)dI, (11)

the integral ofS2’s likelihood over the entirety ofS2’s sup-
port, which is by definition equal to unity. The likelihood of
this situation underS1, on the other hand, is the integral of
S1’s likelihood over the support ofS2, i.e.

Z

σ(S2)
p(I |S1)dI, (12)

(the shaded area in Fig. 1b). Because by assumptionσ(S2) (

σ(S1), this quantity must be less than unity,
[

Z

σ(S2)
p(I |S1)dI

]

< 1. (13)

Hence ifI ∈ σ(S2), the total likelihood ofS2 (unity) isalways
greater than the total likelihood ofS1 (Eq. 12), andS2 always
wins.

Conversely, assume the observer knows only thatI falls
outsidethe support ofS2, I /∈ σ(S2) (e.g., knowing that two
line segments are not parallel). Now by definitionp(I |S2) =
0, butp(I |S1) > 0, soS1 always wins.

Thus the orthodox Bayesian decision in the caseS2 → S1,
assuming EPA-S and qualitativeness, has an extremely sim-
ple form:

If S2 is consistent with the image, inferS2; otherwise, inferS1.
(14)
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In words: if the specialized configurationS2 holds in the
image, draw the more restrictive interpretation, because that
would explain the image (the image would be 100% likely
under that “story”); whereas under the less restrictive inter-
pretation, the image would be just a coincidence, and thus
unexplained. This is the basic logic of non-accidental prop-
erties, analogous to Rock (1983)’s “coincidence explanation
principle,” rendered in Bayesian language.

What about more complex interpretation spaces, with
more than just two interpretations? It can be shown that in
any hierarchical space (like the ones in Fig. 2a, or arbitrarily
more complicated ones) this rule generalizes:

Choose the lowest interpretation on the diagram consistentwith I .
(15)

Formally, the word “diagram” here means apartial order
defined over the interpretation spaceS , and “the lowest in
the diagram” means the formal minimum in this partial order
among all interpretations with nonzero likelihood given the
image.7 That is, among all interpretations that could have
produced the image,choose the one that is most restrictive.
A proof of this generalization can be found in the Appendix.

Rule (15) has the form of a “minimum rule,” and indeed
in several earlier papers (Feldman, 1997c, 1997b, 1999), I
have developed it as such (using non-Bayesian arguments).
The theory describing the necessary partial orders and di-
agrams is called Minimal Model theory, and the minimum
rule is referred as themaximum-depth rule(or sometimes
the lattice-minimum rule; see Feldman, 1997c; Jepson &
Richards, 1991), with the chosen interpretation called the
maximum-depth interpretation, minimal modelor minimal
interpretation.

The notion of “simplest” captured by the maximum-
depth rule contrasts with the more conventional notion of a
minimum-length description in the tradition of “coding the-
ory” (Hochberg & McAlister, 1953; Leeuwenberg, 1971;
Buffart et al., 1981; see Wagemans, 1999 for a critique). The
main difference is that instead of minimizing thelengthof the
description, in Minimal Model theory one seeks an extremal
interpretation in a connected, ranked series of interpretations;
or, what turns out to be equivalent, to find the minimum in
certain well-defined algebra (see Feldman, 1997b). One ad-
vantage of the resulting theory is that it becomes possible
to explore the mathematical properties of the selection rule
relatively directly—the arguments in the current paper be-
ing but one example. In a sense the advantage of algebraic
techniques is that they do not depend on details of the cod-
ing language, but rather on structural properties of the rela-
tions among interpretations. By contrast, I know of no way to
tie conventional complexity-minimization techniques (which
are tied to a particular coding language) to Bayesian optimal-
ity analytically(rather than asymptotically).

The term “maximum-depth” reflects the use of the term
depth (or logical depthor sometimescodimension) to de-
note the row numberd of the given interpretation on the
interpretation-space diagram (counting down from the top,
with the top level denoted zero)—that is, just how far down

the diagram it sits. This number plays an important role in the
theory, and can be tied directly to Bayesian theory as follows.

The “winning margin” of the
interpretation

A very useful measure of the probabilistic strength of
an interpretationSi , probably first suggested by Jeffreys
(1939/1961), is the ratio between its likelihood and that of
the empty or “null” hypothesis, denotedLi :

Li =
p(I |Si)

p(I |S0)
, (16)

Here the “null” hypothesisS0 is the weakest or most gen-
eral under consideration: in our terms this means the highest
“grandparent” ofSi in the interpretation space diagram. Thus
the likelihood ratio gives the degree to which the target inter-
pretation seems more compelling than a null or “random”
pattern. In the case of our two-interpretation space{S1,S2},
the likelihood ratio of the more restrictive interpretation S2 is
just

L2 =
p(I |S2)

p(I |S1)
. (17)

In order to do some thumbnail calculations about likeli-
hood ratios, it is convenient to introduce the following com-
mon notational approximation. Every time two interpreta-
tions are connected by an edge in the diagram (i.e., every
time one interpretation is embedded in another), assume that
the lower one occupies about the same relative area within
the upper one, and denote this relative area byε:

ε =
Z

σ(Slower)
p(I |Supper)dI, (18)

for any two interpretationsSupper andSlower that adjoin each
other on the diagram. That is, given thatI falls in the sup-
port of one interpretationSupper, ε is the probability that it
also falls in the support of the more specialized interpreta-
tion Slower. Thusε is our standard value for the probability of
a “coincidence.”

In the above examplesS1 plays the role ofSupper andS2
that of Slower, so S2 takes up aboutε of S1’s total area (i.e.
the integral (12) equalsε). That means that whenS1 is re-
ally true, there is a probability of aboutε that the image will
appear to be consistent withS2 anyway.

Combining these equations, and again assuming qualita-
tiveness and EPA-S , we find immediately that the likelihood
ratio forS2 depends onε thus:

L2 =
1
ε

; (19)

that is, whenS2 appears possible, then the strength of the
inference that it is actually the true state of the world is large
(1/ε) wheneverε is a small.

7 Formally, before talking about “the” minimum in this partial
order, we need to prove that it is unique; see Appendix.
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What about when there are more than just two interpre-
tations? Imagine an interpretationS that sitsd steps down
the diagram from the top. (Recall that the numberd, the
“row number” of the interpretation in the diagram, is called
thedepthof the interpretation.) By an obvious extension of
the above argument, the likelihood ratio of this interpretation
will be

LS≈
1
εd = ε−d. (20)

As we move down the diagram to increasingly complex “co-
incidences” (i.e., asd increases), the probability of the con-
figuration having occurred by accident decreases exponen-
tially, and the strength of our inference that the configuration
is not a coincidence increases rapidly. For example, with
ε = 0.05 (the conventional value for the probability of a “co-
incidence” in psychology) andd = 2 (the depth ofcollinear-
ity in the diagram in Fig. ),L = 0.05−2 = 400, meaning that
the inference of collinearity given a pair of collinear seg-
ments is 400 times stronger than the default interpretationof
no structure. As interpretations get further down the diagram,
they very rapidly increase in probabilistic compellingness, in
an explicitly Bayesian sense.

Of course, Eq. 20 is approximate because it is only a
convenient simplification to assume that each step down the
diagram will occur by chance with the same probabilityε.
But it captures the intuition that successively more restric-
tive interpretations—being progressively less likely to occur
by coincidence—are thus progressivelymoreimpressive and
compelling when they do occur.

Hence assuming qualitativeness and EPA-S , not only is
Bayes’ rule provably equivalent to the maximum-depth rule,
but “depth” itself gives a numeric measure of the proba-
bilistic strength of the interpretation. This statement brings
into sharpest possible relief the direct analytic connection be-
tween the maximum-depth rule and Bayesian theory.

A quick recap, with an example

Let’s quickly summarize the situation by means of an ex-
ample. The image contains a pair of parallel line segments.
Are they parallelby accident(S1) or as a stable aspect of the
structure of this world (S2)? After all, even segments whose
relative angle is determined randomly will occasionally hap-
pen to be parallel.8

If the configuration was created randomly, then its being
parallel was only a coincidence that wouldn’t always happen
that way (Eq. 13); the probability of such a coincidence isε
(Eq. 18). On the other hand, if the configuration is truly (sta-
bly) parallel in the world, then the chances the lines would
appear parallel in the image is 100% (Eq. 11). This means
that the posterior on the “parallel” interpretation is 100%,
which is higher than that of the “non-parallel” interpretation,
which isε (refer back to Eq. 13). Hence in this situation we
conclude that the lines are truly parallel (Eq. 14).

Notice that this does not depend on the value ofε! It is
purely a consequence of the fact thatS2 is embedded inS1
(i.e., random configurations can come out parallel, but not

vice versa). This is important, because in the conventional
wisdom it is sometimes suggested that non-accidental infer-
ence works because the probability of an unlikely viewpoint
(etc.) is nearly zero. This is wrong. Non-accidental inference
works because more restrictive interpretations are stronger—
even those that arejust a little more restrictive.

All of the above will sound extremely familiar to anyone
familiar with the standard story of non-accidentalness. The
point here is that (a) there are a few important hidden as-
sumptions in the standard story, (b) by adding those assump-
tions you can put the whole thing on a firm Bayesian footing
and (c) when you generalize the story to more complicated
hierarchies you get the maximum-depth rule.

Summarizing, the above argument shows that the
maximum-depth rule instantiates a kind of qualitative
Bayesian perceptual inference (cf. Jepson & Mann, 1999).
It is not that the maximum-depth rule is vaguely or approx-
imately equivalent to Bayes (as Chater showed equivalences
between simplicity principles and Bayes always are at least);
rather it isexactlyequivalent to Bayesian reasoning using
assumptions and information that is qualitative in a well-
defined sense. The maximum-depth rule is literally a restate-
ment of Bayes’ rule under certain assumptions about the ob-
server’s knowledge and beliefs.

A continuum of perceptual
inference rules

Taking stock, we see that the maximum-depth rule is not
only consistent with Bayes’ rule, but actuallyis Bayes rule
when the priors are set a certain way. This leads naturally to
a different way of viewing the range of possible perceptual
inference principles. Rather than viewing different percep-
tual decision rules as representing distinct and mutually in-
consistent procedures, instead view them as representingal-
ternative choices of priors.Then, the potentially open-ended
catalog of conceivable distinct rules materializes as a very
concrete and bounded parametric space: namely, then−1-
dimensional9 space of possible prior probabilities, which I
will refer to asobserver space(Fig. 4).

This representation of the range of perceptual rules is at-
tractive in that it makes explicit that alternative rules may all
be realizations of a common comprehensive procedure—i.e.,
a Bayesian one—but all manifesting distinct assumptions on
the part of the observer, yielding different decisions. This
makes very explicit the connections among alternative prin-
ciples, and at the same time consummates Chater’s insight
that reasonable principles may all represent different sides of
the same coin.

8 Note that the non-accidental question would usually be posed
in terms of three-dimensionality: is this pair of line segments truly
parallel in 3D, or is the parallelness just a coincidence of viewpoint?
In my view this is really just a special case of the (more basic) way
the question is posed here: does the configuration have property
P by accident or (as it were) “on purpose”—i.e. because of some
stable causal process?

9 Recall that the priors must sum to unity, removing one degree
of freedom fromn, the number of interpretations.
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Figure 4. Observer space. Each point in thisn−1-dimensional space represents a particular choice of prior probabilities. The figure also
shows the information or entropy surface defined over this space.

Among the infinity of points in observer space, several
merit special mention. One such is EPA-S , where all the
p(Si) are equal (see Fig. 4). As shown above, an ob-
server at this point in this space—whatever its algorithmic
or implementation-Al details—is in effect employing the
maximum-depth rule and thus a form of minimum principle.

Another point in the space is EPA-I, which as discussed
above (a) is not generally the same as EPA-S (b) is what
is often meant by a “neutral” prior (c) does not correspond
to any particularly simple computational rule, and (d) is not
plausible as a model of human observers.

Finally, another very important point somewhere in ob-
server space, often referred to in the literature, is the point
where the priors are thecorrect ones for a given environ-
ment. I will denote this point bypg(Si) (g for “ground
truth”). While EPA-S represents a simplified guess about
the priors,pg(Si)—located, presumably, somewheredifferent
from EPA-S—represents the actual frequencies with which
the variousSi occur in the observer’s world. While the pri-
ors at EPA-S literally cancel and drop out of Bayes rule—or,
equivalently, are disregarded—atpg the priors are felt with
exactly the weight Bayes prescribes. Thus the observer lo-
cated at this point is executing “true Bayes.”

The information content of the
observer’s assumptions

Distinct points in observer space differ in the nature of the
assumptions about the world they embody. In a very direct
way, too, they differ in thequantityof information they em-
body: namely, in the sense of Shannon’s measureH:

H(p) = −
n

∑
i=1

p(Si) log[p(Si)]. (21)

This equation yields a scalar quantity (expressible in bitsif
the logarithm is taken in base 2) for each point in observer

space (see Fig. 4), which represents exactly how much infor-
mation the observer’s assumptions embody at each point in
this space. Thus this number gives a very basic property of
the observer.

The value ofH as the priors are varied constitutes a
smooth surface defined over observer space. It is easy
to show that this “information surface” reaches a unique
maximum at EPA-S10. That is, the observer executing the
maximum-depth rule is also maximizing its own informa-
tion content, as compared with other rules, including “true”
Bayes. This may sound slightly paradoxical, but only due
to the ambiguity of the traditional rendering of information-
theoretic terms into English. Equivalently, but perhaps more
intelligibly, the entropyor uncertaintyof the observer’s as-
sumptions is maximal when the EPA-S prior is used. Thus
the use of the true priors entailsknowing moreabout the en-
vironment, while the EPA-S and the minimum rule entail
knowing less butguessing moreabout the environment.

The idea of measuring perceivers’ knowledge or judg-
ments by means of Shannon information is an old idea in
psychology (Attneave, 1954), though it has actually not been
exploited as much as it might (though Gilden, Hiris, & Blake,
1995 and Kubovy & Wagemans, 1995 are excellent recent
examples). The idea that the observer ought to maximize
this quantity in its assumptions, after taking into account
whatever affirmative knowledge it possesses, is the essence
of the idea of Maximum-Entropy inference, which has been
very influential in probability theory, machine learning, and
physics (see Skilling, 1988). Here the application of an
information-theoretic measure simply gives mathematical
precision to the argument that the Simplicity and Likelihood
principles both represent “rational” inference but with differ-
ent quantities—as well as types—of background knowledge.

10 Indeed, it is axiomatic in the derivation of Shannon’s informa-
tion measure that it is maximal when all probabilities are equal (see
Khinchin, 1957 for a derivation).
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The tradeoff between precision
and optimality

It might seem that the observer ought to aspire to be lo-
cated atpg: after all, that is by definition theright answer.
This simple dictum brings, however, several inherent prob-
lems. One problem with the true priors is that, in any given
environment,the observer has no way of knowing what they
are. Evolution may contribute to setting them, as often spec-
ulated in Bayesian treatments, but there is no guarantee that
the needed priors refer to stable categories that have ex-
isted over evolutionary time-scales. They may, in principle,
change from environment to environment, from day to night,
or indeed from image to image. Storing priors tuned to differ-
ent situations leads quickly to a combinatorial explosion as
all factors that may influence the priors need to be explicitly
tabulated and fully crossed.11

It should be emphasized, in fact, that the use of the true
priors pg comes at a substantial computational cost. While
the maximum-depth-rule observer ignores the priors, and
only needs to determine one bit of information about each
likelihood function (namely, whetherI falls within its scope),
the pg needs to store or estimate the actual numeric value
of pg(Si) for eachSi , in principle tuned to each environ-
ment, and needs to know the details ofI well enough, and
the structure of each likelihood function in enough detail,to
determine the precise numeric value ofp(I |Si) for everySi.
By contrast, the observer using EPA-S needs simply to per-
form an easy minimization. Yet this simple procedure may
give rise to little loss in the accuracy of the final decisions,
because the maximum-depth rule will only conflict with the
true Bayesian decision in the rare cases when the details of
the priors or likelihood function priors overwhelm the em-
bedding relations (e.g. pointQ in Fig. 1).

Putting this another way, with hierarchical interpretation
spaces, most of the inferential leverage comes from the struc-
ture of the hierarchy—the details about which interpretations
are embedded in which others. The precise quantitative de-
tails of the priors and likelihood functions add little in the
way of correctness to the final decision, but cause most of the
computational difficulties. Doing away with them by means
of EPA-S causes relatively few errors but greatly simplifies
the computation.

A reasonable gloss on the situation, then, is that the ob-
server atpg holds the correct answer, while the one at EPA-S

can calculate its answer the most conveniently, and end up
with an answer that is not too far off in a wide range of sit-
uations, including novel environments where the priors are
in fact totally unknown. Indeed, by following a reasonable
and cheap strategy, it may be that the observer is minimiz-
ing some combined accuracy-and-expense loss function and
thus following a truly “optimal” meta-strategy, although that
is admittedly pure speculation. In the words of the medieval
philosopher Fabricius,nature does what is best.

Conclusions

For those perceptual theorists who have fretted over the
philosophical justification for the Simplicity principle,the

idea of complexity minimization has seemed at times no
more than a handy but totally unjustified calculating trick,
whose empirical success was essentially mystifying (again
see Hatfield & Epstein, 1985). Chater’s (1996) argument
goes a long way towards clearing up this mystery: in a very
general but also somewhat abstract sense, complexity mini-
mization serves the purpose of building a veridical represen-
tation in the Bayesian sense. But because this property is
shared by any reasonable complexity measure (any one that
is universal in Kolmogorov’s sense), Chater’s argument does
not help clear up the ambiguity in specifying exactly which
minimum rule the visual system uses.

The argument in the current paper shows that a certain
mathematically well-defined minimum rule—the maximum-
depth rule of Minimal Model theory—achieves Bayesian op-
timality under very reasonable assumptions. Again, the ar-
gument is analytic, not asymptotic: the maximum-depth in-
terpretation is precisely the Bayesian interpretation assuming
neutral priors over the interpretations and qualitative knowl-
edge about the image. This provides a rationale for the use
of the maximum depth rule, in that it shows mathematically
why the rule tends to produce correct interpretations. More-
over, this version of the Simplicity principle and ordinary
Bayesian inference can be regarded as distinct points in a
well-defined continuous space of possible perceptual rules.
The two principles (as well as every other point in observer
space) differ in the prior probabilities they assume, and thus
differ literally in the magnitude of their information content.

Finally, these arguments emphasize that different rules for
perceptual inference can differ not only in the computations
they specify, but in the knowledge and assumptions they em-
body. This idea recasts the historic debate between the Sim-
plicity and Likelihood principles: the question is not what
computational tricks the visual system uses, but rather what
assumptions about the world are embedded in the rules it em-
ploys.
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Appendix: Generalization of the
minimum rule (maximum-depth

rule) to arbitraryn

An interpretation spaceS = {S1 . . .Sn} is said to behier-
archical if for eachS1,S2 ∈ S , one of the following holds:

(a)σ(S1)∩σ(S2)= /0 (S1’s andS2’s supports are dis-
joint)

(b) S1 → S2,
(c) S2 → S1.

That is, in every pair of interpretations, either one contains
the other the two do not overlap at all. This means that every
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hierarchical interpretation space is partially ordered bysup-
port inclusion. Note that this trivially includes “flat” spaces
with all interpretations disjoint.

We seek to prove that for an arbitrary hierarchical interpre-
tation spaceS with likelihood functionsp(I |Si), and assum-
ing EPA-S priors p(Si) = 1/n, then given any imageI ∈ I,
the minimal interpretationSmin of I is

(i) unique, and
(ii) the maximum a posteriori interpretation ofI .

Proof.
Assume in what follows that allI are contained in the

union of the supports of all interpretations; that is, allI under
discussion are have non-zero likelihood in at least oneSi.

(i) Uniqueness. Given I , define aminimal interpretation
Smin ∈ S as an interpretation such that for everySi with
I ∈ σ(Si) (i.e. that could have producedI ), eitherSmin = Si
or Smin → Si . (Smin eitheris or impliesevery interpretation
that might have producedI .) We seek to prove thatSmin is
unique.

By induction. Assume some hierarchical interpretation
spaceS such thatI has a unique minimal interpretationSmin.
An example of such a space is the one-element space{S}, in
which caseS= Smin is clearly unique.

Now add a new interpretationSnew, such that the new
interpretation spaceS ∪ {Snew} is also hierarchical. Now,
if I /∈ σ(Snew) (i.e., p(I |Snew) = 0), then Smin is still
the unique minimal interpretation in the new interpretation
spaceS ∪ {Snew}. Conversely, assumeI ∈ σ(Snew) (i.e.,
p(I |Snew) > 0). First,σ(Smin) andσ(Snew) cannot be dis-
joint because they both containI . Hence eitherSnew→
Smin, in which caseSnewis the new minimum and is unique,
or elseSmin → Snew, in which caseSmin is still the mini-
mum and still unique.

All hierarchical interpretation spaces can be built up from
the one-element space by the above induction. Hence all hi-
erarchical interpretation spaces have unique minimal inter-
pretations for allI , completing the proof of uniqueness.

(ii) Bayesian correctness.We seek to show that givenI and
S the unique minimal interpretationSmin is the maximum a
posteriori interpretation, i.e., maximizesp(S)p(I |S), assum-
ing EPA-S and qualitativeness as discussed in the text.

Again we proceed by induction from a spaceS with the
desired property, such as the one-element space{S}. Denote
the maximum a posterior interpretation inS by SMAP, and
again denote the new interpretation bySnew. If I /∈ σ(Snew)
then clearlySMAP continues to be the best interpretation.
Conversely, assume ifI ∈ σ(Snew). First, σ(SMAP) and
σ(Snew) cannot be disjoint because they both containI .
Hence eitherSnew→ SMAP, in which case by the argument
sketched in the text (Eqs. 11, 12 and ff)Snewhas higher pos-
terior thanSMAP and becomes the new best interpretation;
or elseSMAP → Snew, in which caseSMAP continues to be
the best interpretation.


