For video footage from past you can visit the individual event pages, or go to our YouTube Channel

To filter by event category, click on the event category link in the table below or use the menu on the right.

List of Past Events

The role of Manifold learning in Human Motion Analysis

Dr. Ahmed Elgammal

Monday, November 27, 2006, 01:00pm - 02:00pm

Rutgers University, Department of Computer Science

Copy to My Calendar (iCal) Download as iCal file
 

Human body is an articulated object with high degrees of freedom.Despite the high dimensionality of the configuration space, many human motion activities lie intrinsically on low dimensional manifolds. Although the intrinsic body configuration manifolds might be very low in dimensionality, the resulting appearance manifolds are challenging to model given various aspects that affects the appearance such as the shape and appearance of the person performing the motion, or variation in the view point, or illumination. Our objective is to learn representations for the shape and the appearance of moving (dynamic) objects that support tasks such as synthesis, pose recovery, reconstruction, and tracking. We studied various approaches for representing global deformation manifolds that preserve their geometric structure. Given such representations, we can learn generative models for dynamic shape and appearance. We also address the fundamental question of separating style and content on nonlinear manifolds representing dynamic objects.We learn factorized generative models that explicitly decompose the intrinsic body configuration(content) as a function of time from the appearance/shape (stylefactors) of the person performing the action as time-invariantparameters. We show results on pose recovery, body tracking, gaitrecognition, as well as facial expression tracking and recognition.

Dr. Ahmed Elgammal